Bio

Clinical Focus


  • Neurology
  • movement disorders

Academic Appointments


Administrative Appointments


  • Co-director, Stanford Balance Center (2010 - Present)
  • Division Chief, Movement Disorders division, Department of Neurology and Neurological Sciences (1999 - Present)
  • Director, Stanford Movement Disorders Center (1999 - Present)

Professional Education


  • Residency:Hospital of the University of Pennsylvania (1988) PA
  • Fellowship:UCSF Medical Center (1992) CA
  • Board Certification: Neurology, American Board of Psychiatry and Neurology (1991)
  • Internship:Hospital of the University of Pennsylvania (1985) PA
  • Medical Education:University of Pennsylvania School of Medicine (1984) PA
  • BA, University of York, England, Mathematics and physics
  • MSE, University of Pennsylvania, Bioengineering
  • MD, University of Pennsylvania, Medicine

Research & Scholarship

Current Research and Scholarly Interests


My research focus is human motor control and brain pathophysiology in movement disorders. Our overall goal is to understand the role of the basal ganglia electrical activity in the pathogenesis of movement disorders. We have developed novel computerized technology to measure fine, limb and postural movement. With these we are measuring local field potentials in basal ganglia nuclei in patients with Parkinson's disease and dystonian and correlating brain signalling with motor behavior.

Clinical Trials


  • Neural Signatures of Parkinson's Disease Recruiting

    The purpose of this study is to provide objective measurements of abnormal movements of the body in correlation with neural activity of the brain and track how these change over time. This may allow for the development of objective evaluation of the neural activity causing abnormal movements, which may lead to the ability of the DBS system to stimulate the brain by sensing the abnormal neural activity that is causing abnormal movements.

    View full details

Teaching

2013-14 Courses


Publications

Journal Articles


  • The effect of medication and the role of postural instability in different components of freezing of gait (FOG). Parkinsonism & related disorders Nantel, J., Bronte-Stewart, H. 2014; 20 (4): 447-451

    Abstract

    Freezing of gait (FOG) is associated with gait asymmetry and arrhythmicity, cognitive impairment in Parkinson's disease (PD). However, the role of postural instability (PI) in and the effect of dopaminergic medication (meds) on FOG are unclear. We investigated the effect of meds on FOG using a validated metric, Stepping in Place (SIP) and the relationship between PI and FOG.We assessed static posturography (off meds), SIP, UPDRS-III (off/on meds) and the FOG-questionnaire (FOG-Q) in 15 freezers/15 non-freezers and 14 healthy controls.UPDRS-III, rigidity, tremor (P<0.01) and axial subscores (P<0.05) improved with meds in freezers. Only UPDRS-III and tremor improved in non-freezers (P<0.01). Meds improved freezing episode (FE) frequency, duration and stride duration in freezers (P<0.01). Over 73% of freezers did not freeze on meds, although one freezer had more and longer duration FEs. Meds did not improve SIP cycle asymmetry and arrhythmicity, which remained greater in freezers compared to other groups on and off meds (P<0.01, P<0.05 respectively). Center of pressure (CoP) mediolateral displacement and velocity (VCoP) in both directions were larger in freezers (P<0.05). FOG-Q was correlated with CoP anteroposterior displacement and mediolateral VCoP (R=0.42; R=0.40, P<0.05). The improvement of FOG frequency and duration but not of gait asymmetry and arrhythmicity on meds suggests that both dopaminergic and non-dopaminergic networks contribute to FOG. The correlations between postural instability and FOG severity and SIP asymmetry on meds, suggest that as the disease progresses, postural instability interferes with gait symmetry and lead to on meds FOG and falls.

    View details for DOI 10.1016/j.parkreldis.2014.01.017

    View details for PubMedID 24530016

  • Perceptual errors increase with movement duration and may contribute to hypokinesia in Parkinson's disease. Neuroscience Koop, M. M., Hill, B. C., Bronte-Stewart, H. M. 2013; 243: 1-13

    Abstract

    People with Parkinson's disease (PD) perceive that their movement amplitude is greater than what they actually perform. The neural mechanisms underlying one's perception of movement are believed to involve the sensorimotor integration process (SIP). How PD affects the SIP is not well understood. A previous study interrogating the SIP showed healthy adults (HAs) overestimated their limb position in the direction of movement and the error and its variance (VOE) depended on movement duration. We asked if PDs showed errors in perceived limb position and if the dependence on movement duration was different from HAs. We used an existing computational model of the SIP to explore mechanisms for the error and VOE as a function of movement duration. Twenty PDs, off medication, and 20 age-matched HAs were asked to estimate the position of their hand after performing 50, slow, non-visually guided wrist flexion or extension movements for a random period of time (<4.0s). Both groups overestimated the amount they moved; however, the PDs' error and VOE were larger (p<0.001). HAs showed increasing error/VOE for small movement durations that reduced/stabilized for longer movement durations. PDs however showed increasing error/VOE with increasing movement duration that did not significantly improve/stabilize. The model suggested that the basis for such perceptual deficits may be abnormal proprioceptive feedback and/or processing of an abnormal internal impression (prediction) that underestimates movement amplitude. Simulation results imply that the PD's SIP could no longer effectively access sensory (proprioceptive) feedback to correct errors in other components of the SIP due to the abnormal processing of sensory feedback. We suggest from this study that an impaired perception of movement amplitude and sensory processing deficits contribute to hypokinesia in PD.

    View details for DOI 10.1016/j.neuroscience.2013.03.026

    View details for PubMedID 23542737

  • Resting Beta Hypersynchrony in Secondary Dystonia and Its Suppression During Pallidal Deep Brain Stimulation in DYT3+ Lubag Dystonia. Neuromodulation Whitmer, D., de Solages, C., Hill, B. C., Yu, H., Bronte-Stewart, H. 2013; 16 (3): 200-205

    Abstract

    1) To characterize patterns of globus pallidus interna neural synchrony in patients with secondary dystonia; 2) to determine whether neural hypersynchrony in the globus pallidus externa (GPe) and interna (GPi) is attenuated during high frequency deep brain stimulation (HF DBS) in a patient with DYT3+ dystonia and in a patient with secondary dystonia due to childhood encephalitis.We recorded local field potentials from the DBS lead in the GPi of four patients (seven hemispheres) with secondary dystonia and from one patient (two hemispheres) with primary DYT3+ dystonia. In two patients, we also recorded pallidal local field potentials during the administration of 10?sec epochs of HF DBS.Power spectral densities during rest demonstrated visible peaks in the beta band in seven out of nine cases. In DYT3+ dystonia, power in the alpha and beta bands, but not theta band, was attenuated during HF DBS in the GPe and in GPi, and attenuation was most prominent in the high beta band. This patient demonstrated an early and maintained improvement in dystonia. There was no beta peak and the power spectrum was not attenuated during HF DBS in a patient with secondary dystonia due to childhood encephalitis.These results suggest that beta hypersynchrony, demonstrated now in both primary and secondary dystonia, may play a pathophysiological role in pathological hyperkinesis. Further investigation is needed in a larger cohort of well-characterized primary and secondary dystonia patients.

    View details for DOI 10.1111/j.1525-1403.2012.00519.x

    View details for PubMedID 23094951

  • Improved efficacy of temporally non-regular deep brain stimulation in Parkinson's disease EXPERIMENTAL NEUROLOGY Brocker, D. T., Swan, B. D., Turner, D. A., Gross, R. E., Tatter, S. B., Koop, M. M., Bronte-Stewart, H., Grill, W. M. 2013; 239: 60-67

    Abstract

    High frequency deep brain stimulation is an effective therapy for motor symptoms in Parkinson's disease. However, the relative clinical efficacy of regular versus non-regular temporal patterns of stimulation in Parkinson's disease remains unclear. To determine the temporal characteristics of non-regular temporal patterns of stimulation important for the treatment of Parkinson's disease, we compared the efficacy of temporally regular stimulation with four non-regular patterns of stimulation in subjects with Parkinson's disease using an alternating finger tapping task. The patterns of stimulation were also evaluated in a biophysical model of the parkinsonian basal ganglia that exhibited prominent oscillatory activity in the beta frequency range. The temporal patterns of stimulation differentially improved motor task performance. Three of the non-regular patterns of stimulation improved performance of the finger tapping task more than temporally regular stimulation. In the computational model all patterns of deep brain stimulation suppressed beta band oscillatory activity, and the degree of suppression was strongly correlated with the clinical efficacy across stimulation patterns. The three non-regular patterns of stimulation that improved motor performance over regular stimulation also suppressed beta band oscillatory activity in the computational model more effectively than regular stimulation. These data demonstrate that the temporal pattern of stimulation is an important consideration for the clinical efficacy of deep brain stimulation in Parkinson's disease. Furthermore, non-regular patterns of stimulation may ameliorate motor symptoms and suppress pathological rhythmic activity in the basal ganglia more effectively than regular stimulation. Therefore, non-regular patterns of deep brain stimulation may have useful clinical and experimental applications.

    View details for DOI 10.1016/j.expneurol.2012.09.008

    View details for Web of Science ID 000313765000007

    View details for PubMedID 23022917

  • DEFICITS IN VISUOSPATIAL PROCESSING CONTRIBUTE TO QUANTITATIVE MEASURES OF FREEZING OF GAIT IN PARKINSON'S DISEASE NEUROSCIENCE Nantel, J., McDonald, J. C., Tan, S., Bronte-Stewart, H. 2012; 221: 151-156

    Abstract

    The aim of this study was to investigate whether an objective measure of freezing of gait (FOG) using a validated alternating stepping in place (SIP) task, is related to executive and/or visuospatial cognitive impairment in Parkinson's disease (PD).We studied prospectively 30 PD subjects with the Unified Parkinson's Disease Rating Scale (UPDRS) III, the FOGq, Trail Making Test Part B (TMTB), Wisconsin Card Sorting, Initiation/Perseveration, Matrix Reasoning (MR) and Block Design (BD). PD subjects performed three, 100s trials of alternative SIP while standing on two force platforms to assess the number and duration of freezing episodes (FE), SIP rhythmicity and symmetry.Freezers had larger cycle asymmetry and arrhythmicity than non-freezers (P<0.05). Performance on BD and MR tests differentiated freezers from non-freezers (P<0.04; P=0.001, respectively). BD performance negatively correlated with the FOGq total (P<0.05), the number and duration of FE (P<0.01), SIP arrhythmicity and asymmetry (P=0.01, P<0.05). MR performance negatively correlated with all FOGq #3 and total as well as SIP FE metrics (P?0.01), except for SIP asymmetry.Deficits in visuospatial perception and reasoning not in executive function differentiated freezers from non-freezers. Deficits in visuospatial processing negatively correlated with all SIP freeze metrics, whereas deficits in executive function were only correlated with SIP arrhythmicity, the FOGq total and the duration of freezing episodes. These results suggest that deficits in visuospatial processing to perform a motor task contribute to FOG and that different cognitive deficits may contribute to different aspects of freezing in PD. This is the first study to our knowledge that has compared metrics of freezing to cognitive tasks in the visuospatial and visual reasoning domains.

    View details for DOI 10.1016/j.neuroscience.2012.07.007

    View details for Web of Science ID 000308628100015

    View details for PubMedID 22796080

  • High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson's disease FRONTIERS IN HUMAN NEUROSCIENCE Whitmer, D., de Solages, C., Hill, B., Yu, H., Henderson, J. M., Bronte-Stewart, H. 2012; 6

    Abstract

    Parkinson's disease (PD) is marked by excessive synchronous activity in the beta (8-35 Hz) band throughout the cortico-basal ganglia network. The optimal location of high frequency deep brain stimulation (HF DBS) within the subthalamic nucleus (STN) region and the location of maximal beta hypersynchrony are currently matters of debate. Additionally, the effect of STN HF DBS on neural synchrony in functionally connected regions of motor cortex is unknown and is of great interest. Scalp EEG studies demonstrated that stimulation of the STN can activate motor cortex antidromically, but the spatial specificity of this effect has not been examined. The present study examined the effect of STN HF DBS on neural synchrony within the cortico-basal ganglia network in patients with PD. We measured local field potentials dorsal to and within the STN of PD patients, and additionally in the motor cortex in a subset of these patients. We used diffusion tensor imaging (DTI) to guide the placement of subdural cortical surface electrodes over the DTI-identified origin of the hyperdirect pathway (HDP) between motor cortex and the STN. The results demonstrated that local beta power was attenuated during HF DBS both dorsal to and within the STN. The degree of attenuation was monotonic with increased DBS voltages in both locations, but this voltage-dependent effect was greater in the central STN than dorsal to the STN (p < 0.05). Cortical signals over the estimated origin of the HDP also demonstrated attenuation of beta hypersynchrony during DBS dorsal to or within STN, whereas signals from non-specific regions of motor cortex were not attenuated. The spatially-specific suppression of beta synchrony in the motor cortex support the hypothesis that DBS may treat Parkinsonism by reducing excessive synchrony in the functionally connected sensorimotor network.

    View details for DOI 10.3389/fnhum.2012.00155

    View details for Web of Science ID 000304862500001

    View details for PubMedID 22675296

  • Effect of medication and STN-DBS on postural control in subjects with Parkinson's disease PARKINSONISM & RELATED DISORDERS Nantel, J., McDonald, J. C., Bronte-Stewart, H. 2012; 18 (3): 285-289

    Abstract

    To assess the effect of disease severity, dopaminergic medication (med) and STN-DBS on postural stability in Parkinson's disease (PD).Postural sway in quiet stance, and the Unified Parkinson's Disease Rating Scale (motor) (UPDRS III) were evaluated in 129 subjects in the off-med state. A subgroup of 28 subjects was studied on-med and after STN-DBS. Postural sway was measured using center of pressure (CoP) root mean square displacement (RMS(CoP)) and mean velocity (V(CoP)) in the anterior-posterior (AP) and medial-lateral (ML) directions.All CoP parameters were larger in moderate/advanced subjects vs controls (P < 0.001) and early subjects. Only RMS(CoP)ML was larger in early subjects vs controls (P < 0.05). Med, DBS and DBS + med decreased UPDRS III compared to off-med (P < 0.001). RMS(CoP)ML and V(CoP)ML were larger on-med vs off-med and vs DBS (P < 0.001). Compared to controls and PD subjects with normal CoP sway off-med, med increased all CoP parameters (P < 0.01) but DBS returned V(CoP)ML to normal values. For 'abnormal' PD subjects, STN-DBS improved the excessive V(CoP) in ML compared to off and on-med pre-DBS (P < 0.05).Postural sway in quiet stance increased with disease severity. Only ML CoP displacement was abnormal in early stage PD, and this may be a compensatory mechanism. Medication increased ML postural sway. In 'normal' PD subjects, STN-DBS reversed medication induced postural instability. Subjects with abnormal balance in quiet stance did not benefit from medication or DBS, except for improvement in ML CoP velocity from DBS. This may serve to reduce postural instability and falling.

    View details for DOI 10.1016/j.parkreldis.2011.11.005

    View details for Web of Science ID 000301813200015

    View details for PubMedID 22130147

  • New drugs/devices ? Deep brain stimulation (DBS) Neurology Clin Pract Bronte-Stewart HM 2012; 12 (2): 67 - 71
  • Maximal subthalamic beta hypersynchrony of the local field potential in Parkinson's disease is located in the central region of the nucleus JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY de Solages, C., Hill, B. C., Yu, H., Henderson, J. M., Bronte-Stewart, H. 2011; 82 (12): 1387-1389

    Abstract

    A pathological marker of Parkinson's disease is the existence of abnormal synchrony of neuronal activity within the beta frequency range (13-35 Hz) in the subthalamic nucleus (STN). Recent studies examining the topography of this rhythm have located beta hypersynchrony in the most dorsal part of the STN. In contrast, this study of the topography of the local field potential beta oscillations in 18 STNs with a 1 mm spatial resolution revealed that the point of maximal beta hypersynchrony was located at 53 24% of the trajectory span from the dorsal to the ventral borders of the STN (corresponding to a 3.0 1.6 mm depth for a 5.9 0.75 mm STN span). This suggests that maximal beta hypersynchrony is located in the central region of the nucleus and that further investigation should be done before using STN spectral profiles as an indicator for guiding placement of deep brain stimulation leads.

    View details for DOI 10.1136/jnnp.2010.223107

    View details for Web of Science ID 000296766100018

    View details for PubMedID 21205981

  • Human Subthalamic Neuron Spiking Exhibits Subtle Responses to Sedatives ANESTHESIOLOGY MacIver, M. B., Bronte-Stewart, H. M., Henderson, J. M., Jaffe, R. A., Brock-Utne, J. G. 2011; 115 (2): 254-264

    Abstract

    During deep brain stimulation implant surgery, microelectrode recordings are used to map the location of targeted neurons. The effects produced by propofol or remifentanil on discharge activity of subthalamic neurons were studied intraoperatively to determine whether they alter neuronal activity.Microelectrode recordings from 11 neurons, each from individual patients, were discriminated and analyzed before and after administration of either propofol or remifentanil. Subthalamic neurons in rat brain slices were recorded in patch-clamp to investigate cellular level effects.Neurons discharged at 42 9 spikes/s (mean SD) and showed a common pattern of inhibition that lasted 4.3 ms. Unique discharge profiles were evident for each neuron, seen using joint-interval analysis. Propofol (intravenous bolus 0.3 mg/kg) produced sedation, with minor effects on discharge activity (less than 2.0% change in frequency). A prolongation of recurrent inhibition was evident from joint-interval analysis, and propofol's effect peaked within 2 min, with recovery evident at 10 min. Subthalamic neurons recorded in rat brain slices exhibited inhibitory synaptic currents that were prolonged by propofol (155%) but appeared to lack tonic inhibitory currents. Propofol did not alter membrane potential, membrane resistance, current-evoked discharge, or holding current during voltage clamp. Remifentanil (0.05 mg/kg) had little effect on overall subthalamic neuron discharge activity and did not prolong recurrent inhibition.These results help to characterize the circuit properties and feedback inhibition of subthalamic neurons and demonstrate that both propofol and remifentanil produce only minor alterations of subthalamic neuron discharge activity that should not interfere with deep brain stimulation implant surgery.

    View details for Web of Science ID 000293168800006

    View details for PubMedID 21701380

  • Repetitive stepping in place identifies and measures freezing episodes in subjects with Parkinson's disease GAIT & POSTURE Nantel, J., de Solages, C., Bronte-Stewart, H. 2011; 34 (3): 329-333

    Abstract

    Freezing of gait (FOG) in Parkinson's disease (PD) is challenging to measure. We asked whether a repetitive stepping in place (SIP) task on force plates could identify freezing episodes (FEs) in PD subjects, self-classified as "freezers", using the validated FOG questionnaire (FOG-Q) and whether a computerized algorithm could provide automatic detection of FEs during SIP. Thirty PD subjects and nine age-matched controls completed the SIP task. PD subjects were assessed using the Unified Parkinson's Disease Rating motor Scale (UPDRS-III) and the FOG-Q. The identification of "freezers" using the SIP task correlated with the FOG-Q (r=0.80, P<0.001). The specificity and sensitivity of identifying freezers using the SIP task reached 93% and 87%. The number and duration of FEs detected by the algorithm correlated with visual inspection (r=0.97, r=0.998, P<0.001). Freezers had larger SIP asymmetry compared to controls (P=0.02) and non-freezers (P=0.03) as well as larger arhythmicity (P=0.003 and P<0.001, respectively). UPDRS subscores were higher in freezers compared to non-freezers (P<0.05). These results suggest that the SIP task is a useful tool to detect freezing in PD and is correlated with FOG-Q. SIP cycle asymmetry and stride time variability were worse in freezers, similar to that shown in FOG studies. Detection of the number and duration of FEs using a computerized algorithm correlated with independent visual inspection of records.

    View details for DOI 10.1016/j.gaitpost.2011.05.020

    View details for Web of Science ID 000295771800007

    View details for PubMedID 21715166

  • Inclusion and Exclusion Criteria for DBS in Dystonia MOVEMENT DISORDERS Bronte-Stewart, H., Taira, T., Valldeoriola, F., Merello, M., Marks, W. J., Albanese, A., Bressman, S., Moro, E. 2011; 26: S5-S16

    Abstract

    When considering a patient with dystonia for deep brain stimulation (DBS) surgery several factors need to be considered. Level B evidence has shown that all motor features and associated pain in primary generalized and segmental dystonia are potentially responsive to globus pallidus internus (GPi) DBS. However, improvements in clinical series of ? 90% may reflect methods that need improvement, and larger prospective studies are needed to address these factors. Nevertheless, to date the selection criteria for DBS-specifically in terms of patient features (severity and nature of symptoms, age, time of evolution, or any other demographic or disease aspects)--have not been assessed in a systematic fashion. In general, dystonia patients are not considered for DBS unless medical therapies have been previously and extensively tested. The vast majority of reported patients have had DBS surgery when the disease was provoking important disability, with loss of independence and impaired quality of life. There does not appear to be an upper age limit or a minimum age limit, although there are no published data regarding the outcome of GPi DBS for dystonia in children younger than 7 years of age. There is currently no enough evidence to prove that subjects with primary--generalized dystonia who undergo DBS at an early age and sooner rather than later after disease onset may gain more benefit from DBS than those undergoing DBS after the development of fixed skeletal deformities. There is no enough evidence to refuse or support consideration of DBS in patients with previous ablative procedures.

    View details for DOI 10.1002/mds.23482

    View details for Web of Science ID 000291866500003

    View details for PubMedID 21692112

  • Deep Brain Stimulation in "On"-State Parkinson Hyperpyrexia NEUROLOGY Klepitskaya, O., Cole, W., Henderson, J., Bronte-Stewart, H. 2011; 76 (7): S69-S71

    View details for Web of Science ID 000287362300014

    View details for PubMedID 21321358

  • Immediate versus delayed switch from levodopa/carbidopa to levodopa/carbidopa/entacapone: effects on motor function and quality of life in patients with Parkinson's disease with end-of-dose wearing off Int J Neurosci Lew MF, Somogyi M, McCague K, Welsh M, Lce Qol Study group 2011; 121 (11): 605 - 13
  • Deep Brain Stimulation for Parkinson?s Disease. An expert consensus and review of key issues Archives of Neurology Bronstein JM, Tagliati M., Alterman RL, the Deep Brain Study group 2011; 68 (2): 165
  • Clinical Motor Outcome of Bilateral Subthalamic Nucleus Deep-Brain Stimulation for Parkinson's Disease Using Image-Guided Frameless Stereotaxy NEUROSURGERY Bronte-Stewart, H., Louie, S., Batya, S., Henderson, J. M. 2010; 67 (4): 1088-1093

    Abstract

    Image-guided neuronavigation has largely replaced stereotactic frames when precise, real-time anatomic localization is required during neurosurgical procedures. However, some procedures, including placement of deep-brain stimulation (DBS) leads for the treatment of movement disorders, are still performed using frame-based stereotaxy. Despite the demonstration of comparable accuracy between frame-based and "frameless" image-guided approaches, the clinical efficacy of frameless DBS placement has never been reported.To analyze the outcomes of subthalamic nucleus (STN) DBS using the frameless technique for the treatment of Parkinson's disease (PD).Of 31 subjects (20 men) with PD for 10 4 years, 28 had bilateral STN DBS and 3 had unilateral STN DBS. The Unified Parkinson's Disease Rating Scale (UPDRS) motor scale (III) and total medication doses were assessed before surgery on and off medication and off medication/ON DBS (off/ON) after 6 to 12 months of STN DBS.There was a 58% improvement from bilateral STN DBS in the UPDRS III (40 16 preoperatively off, 17 11 off/ON) 9.6 1.9 months after surgery (P < .001). This compared favorably with the published outcomes using the frame-based technique. All motor subscores improved significantly (P < .01). The mean reduction in medication was 50%. No intraoperative complications occurred, but one subject with hypertension died of a delayed hemorrhage postoperatively. Two subjects developed postoperative infections that required lead removal and antibiotics.Bilateral STN DBS for PD performed by an experienced team using a frameless approach results in outcomes comparable to those reported with the use of the frame-based technique.

    View details for DOI 10.1227/NEU.0b013e3181ecc887

    View details for Web of Science ID 000282197900060

    View details for PubMedID 20881573

  • Socioeconomic Trends in Deep Brain Stimulation (DBS) Surgery NEUROMODULATION Lad, S. P., Kalanithi, P. S., Patil, C. G., Itthimathin, P., Batya, S., Bronte-Stewart, H., Boakye, M., Henderson, J. M. 2010; 13 (3): 182-186

    Abstract

    Objective:? We evaluated trends in deep brain stimulation (DBS) for the 14-year period from 1993 to 2006. Materials and Methods:? We utilized the Nationwide Inpatient Sample data base from the Healthcare Cost and Utilization Project, Agency for Healthcare Research and Quality. Results:? A total of 34,792 patients underwent DBS surgery from 1993 to 2006. There were 756 DBS cases performed in 1993 compared with 4200 DBS procedures performed in 2006. Significant increases in nationwide DBS volume coincided with regulatory approval for new indications-Parkinson's disease and dystonia, respectively. Cost of DBS surgery increased from $38,840 in 1993 to $69,329 in 2006. The majority of cases were done in metropolitan areas (97%) at large academic centers (91%) at a national bill of $291 MM. Conclusions:? Future studies will need to include the socioeconomic impact of the technology on disease status, patient access, and costs as it expands to novel indications.

    View details for DOI 10.1111/j.1525-1403.2010.00278.x

    View details for Web of Science ID 000279764700011

    View details for PubMedID 21992830

  • Bilateral symmetry and coherence of subthalamic nuclei beta band activity in Parkinson's disease EXPERIMENTAL NEUROLOGY de Solages, C., Hill, B. C., Koop, M. M., Henderson, J. M., Bronte-Stewart, H. 2010; 221 (1): 260-266

    Abstract

    Abnormal synchronization of neuronal activity in the basal ganglia has been associated with the dysfunction of sensorimotor circuits in Parkinson's disease (PD). In particular, oscillations at frequencies within the beta range (13-35 Hz) are specifically modulated by dopaminergic medication and are correlated with the clinical state of the subjects. While these oscillations have been shown to be coherent ipsilaterally within the basal ganglia and between the basal ganglia nuclei and the ipsilateral motor cortex in PD, the bilateral extent of their coherence has never been characterized. Here we demonstrate for the first time that the beta band oscillations recorded in the local field potential of the subthalamic nuclei (STN), while appearing different across subjects, are occurring at the same frequencies bilaterally (p<0.001) and are coherent between the two STNs of individual PD subjects (11/12 cases, p<0.05). These findings suggest the existence of a bilateral network controlling the beta band activity in the basal ganglia in PD.

    View details for DOI 10.1016/j.expneurol.2009.11.012

    View details for Web of Science ID 000273827500030

    View details for PubMedID 19944098

  • Hybrid Cars May Interfere with Implanted Deep Brain Stimulators MOVEMENT DISORDERS Chen, C., Cole, W., Bronte-Stewart, H. M. 2009; 24 (15): 2290-2291

    View details for DOI 10.1002/mds.22739

    View details for Web of Science ID 000272570000019

    View details for PubMedID 19768726

  • Quantitative Lateralized Measures of Bradykinesia at Different Stages of Parkinson's Disease: The Role of the Less Affected Side MOVEMENT DISORDERS Louie, S., Koop, M. M., Frenklach, A., Bronte-Stewart, H. 2009; 24 (13): 1991-1997

    Abstract

    The onset of motor abnormalities in Parkinson's disease (PD) is usually unilateral. However, current therapeutic trials do not analyze separately the performance of the more affected (MA) and less affected (LA) limbs. From a cohort of 85 subjects at different stages of PD, we asked whether the relationship between bradykinesia and disease severity was similar on both limbs and if the MA side remained more bradykinetic than the LA side in advanced PD. MA and LA limb determination was made from the history of the side first affected. Twenty-one age-matched subjects were used as controls. The velocities of finger and arm movements on both sides were inversely correlated with disease severity (P < 0.03). The slope of the decline in wrist movement velocity was steeper on the LA side (P = 0.029). When the regression lines were extrapolated to the y-axis (UPDRS III = 0) the performance of the LA side was not different from that of controls (P = 0.954 and P = 0.829 for finger and arm movements, respectively), whereas that of the MA side was slower (P = 0.019 and P = 0.016), suggesting that at the theoretical state of no disease the LA side would reflect less or no contralateral nigral pathology. With increasing disease severity, there was less difference between MA and LA sides in both finger and arm bradykinesia (P < 0.004). These findings highlight the value of analyzing separately the MA and LA sides in subjects with PD, especially for clinical trials of potential disease modifying agents in early stages of disease.

    View details for DOI 10.1002/mds.22741

    View details for Web of Science ID 000271555700016

    View details for PubMedID 19672996

  • Testing Objective Measures of Motor Impairment in Early Parkinson's Disease: Feasibility Study of an At-Home Testing Device MOVEMENT DISORDERS Goetz, C. G., Stebbins, G. T., Wolff, D., DeLeeuw, W., Bronte-Stewart, H., Elble, R., Hallet, M., Nutt, J., Ramig, L., Sanger, T., Wu, A. D., Kraus, P. H., Blasucci, L. M., Shamim, E. A., Sethi, K. D., Spielman, J., Kubota, K., Grove, A. S., Dishman, E., Taylor, C. B. 2009; 24 (4): 551-556

    Abstract

    We tested the feasibility of a computer based at-home testing device (AHTD) in early-stage, unmedicated Parkinson's disease (PD) patients over 6 months. We measured compliance, technical reliability, and patient satisfaction to weekly assessments of tremor, small and large muscle bradykinesia, speech, reaction/movement times, and complex motor control. relative to the UPDRS motor score. The AHTD is a 6.5'' x 10'' computerized assessment battery. Data are stored on a USB memory stick and sent by internet to a central data repository as encrypted data packets. Although not designed or powered to measure change, the study collected data to observe patterns relative to UPDRS motor scores. Fifty-two PD patients enrolled, and 50 completed the 6 month trial, 48 remaining without medication. Patients complied with 90.6% of weekly 30-minute assessments, and 98.5% of data packets were successfully transmitted and decrypted. On a 100-point scale, patient satisfaction with the program at study end was 87.2 (range: 80-100). UPDRS motor scores significantly worsened over 6 months, and trends for worsening over time occurred for alternating finger taps (P = 0.08), tremor (P = 0.06) and speech (P = 0.11). Change in tremor was a significant predictor of change in UPDRS (P = 0.047) and was detected in the first month of the study. This new computer-based technology offers a feasible format for assessing PD-related impairment from home. The high patient compliance and satisfaction suggest the feasibility of its incorporation into larger clinical trials, especially when travel is difficult and early changes or frequent data collection are considered important to document.

    View details for DOI 10.1002/mds.22379

    View details for Web of Science ID 000265003800010

    View details for PubMedID 19086085

  • Excessive Postural Sway and the Risk of Falls at Different Stages of Parkinson's Disease MOVEMENT DISORDERS Frenklach, A., Louie, S., Koop, M. M., Bronte-Stewart, H. 2009; 24 (3): 377-385

    Abstract

    Excessive postural sway may result in falls in Parkinson's disease (PD). We measured postural sway using the sensory organization test (SOT) of dynamic posturography in static (platform still) and dynamic (sway referenced platform) conditions with normal, no and inappropriate visual feedback in 102 subjects with PD, off medication. Twenty-five healthy subjects were used as age-matched controls. Eighteen very early stage PD subjects had never used dopaminergic medication. Postural sway was normal in those subjects in all conditions, but was abnormal in subjects with more advanced symptoms (UPDRS III > 20, P < 0.01). Postural sway increased with disease severity in all conditions except static, eyes closed (P < 0.0001). We developed the SOT Fall Severity Scale (SOTFSS) from the number of times postural sway was so large that the subject had to take a step (registered as a "fall") and showed that falls mainly occurred in dynamic conditions, and were correlated with disease severity (P < 0.0001). In dynamic conditions the SOTFSS was correlated with the retropulsion score from the UPDRS III (N = 102, P < 0.0001) and with the subjects' self-reported fall frequency from the UPDRS II (N = 62, SOT5: P = 0.0419, SOT6: P = 0.0034).

    View details for DOI 10.1002/mds.22358

    View details for Web of Science ID 000263747200009

    View details for PubMedID 18972546

  • A comparison of treatment thresholds in two large Parkinson?s disease clinical trial cohorts Movement Disorders Marras C, Lang AE, Eberly SW, Oakes D, Fahn S, Schwid SR, Hyson C, Shoulson I; Parkinson Study Group DATATOP, PRECEPT investigators 2009; 24 (16): 2370 - 8
  • The STN beta-band profile in Parkinson's disease is stationary and shows prolonged attenuation after deep brain stimulation EXPERIMENTAL NEUROLOGY Bronte-Stewart, H., Barberini, C., Koop, M. M., Hill, B. C., Henderson, J. M., Wingeier, B. 2009; 215 (1): 20-28

    Abstract

    Producing accurate movements may rely on the functional independence of sensorimotor circuits within basal ganglia nuclei. In parkinsonism there is abnormal synchrony of electrical activity within these circuits that results in a loss of independence across motor channels. Local field potential (LFP) recordings reflect the summation of local electrical fields and an increase in LFP power reflects increased synchrony in local neuronal networks. We recorded LFPs from the subthalamic nucleus (STN) deep brain stimulation (DBS) lead in the operating room in 22 cases from 16 subjects with Parkinson's disease (PD) who were off medication. There was elevated LFP power at beta frequencies (13-35 Hz) at rest. The LFP spectral profile was consistent across several periods of rest that were separated by movement and/or DBS, and appeared to be a relatively stationary phenomenon. The spectral profile and frequencies of the beta-band peak(s) varied among subjects but were similar between the right and left STNs within certain individuals. These results suggest that the LFP spectrum at rest may characterize a "signature" rhythm for an individual with PD. Beta-band power was attenuated after intra-operative STN DBS (p<0.05). The attenuation lasted for 10 s after short periods (30 s) and for up to 50 s after longer periods (5 min) of DBS. The finding that longer periods of DBS attenuated beta power for a longer time suggests that there may be long-acting functional changes to networks in the STN in PD after chronic DBS.

    View details for DOI 10.1016/j.expneurol.2008.09.008

    View details for Web of Science ID 000262462300003

    View details for PubMedID 18929561

  • A longitudinal program for biomarker development in Parkinson?s disease: a feasibility study Movement Disorders Ravina B, Tanner C, Dieuliis D, Eberly S, Flagg E, Galpern WR, Fahn S, Goetz CG, Grate S, Kurlan R, Lang AE, Marek K, Kieburtz K, Oakes D, Elliott R, Shoulson I; Parkinson Study Group LABS-PD Investigators 2009; 24 (14): 2081 - 90
  • Quantitative measures of fine motor, limb, and postural bradykinesia in very early stage, untreated Parkinson's disease MOVEMENT DISORDERS Koop, M. M., Shivitz, N., Bronte-Stewart, H. 2008; 23 (9): 1262-1268

    Abstract

    Few studies have characterized the motor control abnormalities of very early stage Parkinson's disease (PD), when symptoms are mild and usually unilateral. However, this group is the most targeted for potential disease-modifying therapeutics. We have validated several quantitative measures of bradykinesia with the Unified Parkinson's Disease Rating Scale motor disability score (UPDRS III) and have found these useful in studies of advanced PD. In this study, we asked if quantitative measures of finger, forearm, and postural movement velocity could detect bradykinesia in 20 patients with very early stage, untreated PD. The results revealed evidence of significant finger and forearm bradykinesia of the patient group's more affected side when compared to the nondominant side of 19 age-matched control subjects (P = 0.001 and P < 0.001, respectively). Furthermore, the patient group's forearm movement velocity on the more affected side was significantly slower than their less affected side (P = 0.005), highlighting the importance of using an outcome measure that is lateralized in studies of very early stage PD. In contrast to our previous study that revealed significant postural bradykinesia in patients with advanced PD, we did not detect postural bradykinesia in patients with very early stage, untreated PD. Based on these findings, we suggest that the use of quantitative, lateralized measures of bradykinesia would be useful in studies of very early stage, untreated PD. These measures may improve a study by: increasing efficiency and objectivity of the evaluation, decreasing cost, and decreasing the number of subjects needed for statistical significance.

    View details for DOI 10.1002/mds.22077

    View details for Web of Science ID 000258421800010

    View details for PubMedID 18464283

  • Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson?s disease Neurology The Parkinson's study group, PRECEPT investigators 2007; 69: 1480- 1490
  • Bilateral subthalamic nucleus deep brain stimulation improves certain aspects of postural control in Parkinson's disease, whereas medication does not MOVEMENT DISORDERS Shivitz, N., Miller Koop, M., Fahimi, J., Heit, G., Bronte-Stewart, H. M. 2006; 21 (8): 1088-1097

    Abstract

    Postural control requires precise integration of sensory inputs and motor output, but clinical assessments of postural control do not differentiate between these. Previously, we found that this differentiation is important in Parkinson's disease (PD) as there was a dissociated effect of medication versus pallidotomy on sensory aspects of postural instability. In this study, we address several questions that emerged from that work in 28 different patients with PD off and on medication, before and after bilateral subthalamic nucleus deep brain stimulation (B-STN DBS): (1) In a different cohort is there still an unusually large percentage of patients with postural instability in sensory-deprived conditions? (2) Are more specific measures of motor aspects of postural control using dynamic posturography (postural movement velocity [MV] and reaction time [RT]) abnormal in PD as seen clinically using the Postural Instability and Gait Disorder score of the Unified Parkinson's Disease Rating Scale? (3) What is the effect of B-STN DBS versus medication on sensory versus motor aspects of postural instability in PD? The results included (1) substantially more patients (39%) versus controls (5%) exhibited postural instability in conditions of limited sensory feedback; (2) postural MV and postural RT were abnormal off medication preoperatively (N(subset) = 23; P < 0.001 for both); (3) B-STN DBS improved abnormal sensory aspects of postural instability (P < 0.05) and postural MV (P = 0.005), whereas medication did not. Neither B-STN DBS nor medication improved postural RT. For the group as a whole, STN DBS plus medication was better therapy than medication preoperatively for sensory aspects of postural control (P = 0.003).

    View details for DOI 10.1002/mds.20905

    View details for Web of Science ID 000240081900006

    View details for PubMedID 16671073

  • Improvement in a quantitative measure of bradykinesia after microelectrode recording in patients with Parkinson's disease during deep brain stimulation surgery MOVEMENT DISORDERS Koop, M. M., Andrzejewski, A., Hill, B. C., Heit, G., Bronte-Stewart, H. M. 2006; 21 (5): 673-678

    Abstract

    It is widely accepted that patients with Parkinson's disease experience immediate but temporary improvement in motor signs after surgical implantation of subthalamic nucleus (STN) deep brain stimulating electrodes before the electrodes are activated, although this has never been formally studied. Based on anecdotal observations that limb mobility improved just after microelectrode recording (MER) during deep brain stimulation (DBS) procedures, we designed a prospective study to measure upper extremity bradykinesia using a quantitative measure of angular velocity. Measurements were made pre- and post-MER and during intraoperative DBS. Analysis of 98 STN DBS procedures performed on 61 patients showed that MER did not create adverse clinical symptoms despite concerns that MER increases morbidity. Quantitative upper extremity bradykinesia improved after MER alone, and further improvement was seen during intraoperative DBS. Electrophysiological data from each case were then compared to the improvement in bradykinesia post-MER alone and a significant correlation was found between the improvement in arm bradykinesia, the number of passes through the STN with somatosensory driving, and also with the number of arm cells with somatosensory driving in the STN, but not with total number of passes, total number of passes through the STN, or total number of cells with somatosensory driving in the STN. This study demonstrates that there is a significant improvement in upper extremity bradykinesia just after MER, before inserting or activating the DBS electrode in patients with Parkinson's disease who undergo STN DBS.

    View details for DOI 10.1002/mds.20796

    View details for Web of Science ID 000237712700012

    View details for PubMedID 16440333

  • Practice parameter: Treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review) Report of the Quality Standards Subcommittee of the American Academy of Neurology NEUROLOGY Pahwa, R., Factor, S. A., Lyons, K. E., Ondo, W. G., Gronseth, G., Bronte-Stewart, H., Hallett, M., Miyasaki, J., Stevens, J., Weiner, W. J. 2006; 66 (7): 983-995

    Abstract

    To make evidence-based treatment recommendations for the medical and surgical treatment of patients with Parkinson disease (PD) with levodopa-induced motor fluctuations and dyskinesia. To that end, five questions were addressed. 1. Which medications reduce off time? 2. What is the relative efficacy of medications in reducing off time? 3. Which medications reduce dyskinesia? 4. Does deep brain stimulation (DBS) of the subthalamic nucleus (STN), globus pallidus interna (GPi), or ventral intermediate (VIM) nucleus of the thalamus reduce off time, dyskinesia, and antiparkinsonian medication usage and improve motor function? 5. Which factors predict improvement after DBS?A 10-member committee including movement disorder specialists and general neurologists evaluated the available evidence based on a structured literature review including MEDLINE, EMBASE, and Ovid databases from 1965 through June 2004. RESULTS, CONCLUSIONS, AND RECOMMENDATIONS: 1. Entacapone and rasagiline should be offered to reduce off time (Level A). Pergolide, pramipexole, ropinirole, and tolcapone should be considered to reduce off time (Level B). Apomorphine, cabergoline, and selegiline may be considered to reduce off time (Level C). 2. The available evidence does not establish superiority of one medicine over another in reducing off time (Level B). Sustained release carbidopa/levodopa and bromocriptine may be disregarded to reduce off time (Level C). 3. Amantadine may be considered to reduce dyskinesia (Level C). 4. Deep brain stimulation of the STN may be considered to improve motor function and reduce off time, dyskinesia, and medication usage (Level C). There is insufficient evidence to support or refute the efficacy of DBS of the GPi or VIM nucleus of the thalamus in reducing off time, dyskinesia, or medication usage, or to improve motor function. 5. Preoperative response to levodopa predicts better outcome after DBS of the STN (Level B).

    View details for Web of Science ID 000236673300007

    View details for PubMedID 16606909

  • Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson's disease EXPERIMENTAL NEUROLOGY Wingeier, B., Tcheng, T., Koop, M. M., Hill, B. C., Heit, G., Bronte-Stewart, H. M. 2006; 197 (1): 244-251

    Abstract

    Power spectra from local field potentials (LFPs) recorded post-operatively from the deep brain stimulation (DBS) macroelectrode show prominence of the beta rhythm (11-30 Hz) in untreated Parkinson's disease (PD). Dopaminergic medication and movement attenuate this beta band in PD. In this pilot study of six sides in four patients, we recorded LFPs from the DBS electrode in untreated PD patients in the operating room. In all cases, there was a peak in the time-frequency spectrogram in the beta frequency range when the patients were at rest, which was associated with attenuation in the same range with movement. The actual frequency range and the strength of the beta peak varied among cases. In two patients, intra-operative constraints permitted recording of LFPs at rest, before and immediately after subthalamic nucleus (STN) DBS. In both patients we documented that STN DBS caused a significant attenuation in power in the beta band at rest that persisted for 15-25 s after DBS had been turned off (P < 0.01). From one case, our data suggest that the beta rhythm attenuation was most prominent within the STN itself. This study shows for the first time that STN DBS attenuates the power in the prominent beta band recorded in the STN of patients with PD. These pilot findings raise the interesting possibility of using this biomarker for closed loop DBS or neuromodulation.

    View details for DOI 10.1016/j.expneurol.2005.09.016

    View details for Web of Science ID 000234534200025

    View details for PubMedID 16289053

  • Quantitative measurements of alternating finger tapping in Parkinson's disease correlate with UPDRS motor disability and reveal the improvement in fine motor control from medication and deep brain stimulation. Movement disorders Taylor Tavares, A. L., Jefferis, G. S., Koop, M., Hill, B. C., Hastie, T., Heit, G., Bronte-Stewart, H. M. 2005; 20 (10): 1286-1298

    Abstract

    The Unified Parkinson's Disease Rating Scale (UPDRS) is the primary outcome measure in most clinical trials of Parkinson's disease (PD) therapeutics. Each subscore of the motor section (UPDRS III) compresses a wide range of motor performance into a coarse-grained scale from 0 to 4; the assessment of performance can also be subjective. Quantitative digitography (QDG) is an objective, quantitative assessment of digital motor control using a computer-interfaced musical keyboard. In this study, we show that the kinematics of a repetitive alternating finger-tapping (RAFT) task using QDG correlate with the UPDRS motor score, particularly with the bradykinesia subscore, in 33 patients with PD. We show that dopaminergic medication and an average of 9.5 months of bilateral subthalamic nucleus deep brain stimulation (B-STN DBS) significantly improve UPDRS and QDG scores but may have different effects on certain kinematic parameters. This study substantiates the use of QDG to measure motor outcome in trials of PD therapeutics and shows that medication and B-STN DBS both improve fine motor control.

    View details for PubMedID 16001401

  • The North American survey of placement and adjustment strategies for deep brain stimulation STEREOTACTIC AND FUNCTIONAL NEUROSURGERY Ondo, W. G., Bronte-Stewart, H. 2005; 83 (4): 142-147

    Abstract

    Deep brain stimulation (DBS) is gaining wide acceptance as treatment for Parkinson's disease (PD), essential tremor, and dystonia.A 40-item questionnaire commissioned by the DBS Study Group was sent to 46 centers that had performed at least 25 DBS implantations. These centers were identified through the DBS Study Group, other professional societies, and with the assistance of the Medtronic Corporation. The results were then tabulated and descriptive analyses were performed.Thirty-six of 47 centers (77%) responded, they had implanted 4,553 patients. The timing for bilaterally implanted patients varied, as 13 sites almost always implanted simultaneously whereas 14 sites almost never implanted simultaneously. Stereotactic frames included Leksell (n = 19), CRW (n = 15) and Compass (n = 2). Post-placement imaging was routinely performed by almost all centers and included MRI (n = 23), CT (n = 4), CT/MRI variably (n = 5), and ventriculography (n = 1). Two centers used more than one electrode per side. The 34 centers that used a single electrode averaged 2.3 +/- 1.4 passes per electrode (range: 1-18 passes). Most centers used macro-stimulation to confirm placement by assessing the intra-operative clinical response (n = 34), and to assess for adverse events (n = 26) at high voltages, averaging 6.7 +/- 2.3 V (range: 4-10). The initial activation averaged 18 +/- 12 days after electrode placement (average range: 11 +/- 10 to 28 +/- 18 days, absolute range: 1-90 days). Most sites had several programmers; however, the primary programmers were neurology staff (n = 15), the neurologist (n = 13), neurosurgery staff (n = 6), the neurosurgeon (n = 2), or a physiatrist (n = 1). Twelve centers automatically reduced PD medications on the day of initial activation, 9 centers reduced them variably, and 16 centers initially did not reduce them. Eventually, 80.4% of patients were reported to have some dose reduction, and 47.1% had a greater than 50% reduction of PD medications.Strategies regarding DBS placement and adjustment vary in North America.

    View details for DOI 10.1159/000088654

    View details for Web of Science ID 000233954700003

    View details for PubMedID 16205106

  • Microelectrode recording revealing a somatotopic body map in the subthalamic nucleus in humans with Parkinson disease JOURNAL OF NEUROSURGERY Romanelli, P., Heit, G., Hill, B. C., Kraus, A., Hastie, T., Bronte-Stewart, H. M. 2004; 100 (4): 611-618

    Abstract

    The subthalamic nucleus (STN) is a key structure for motor control through the basal ganglia. The aim of this study was to show that the STN in patients with Parkinson disease (PD) has a somatotopic organization similar to that in nonhuman primates.A functional map of the STN was obtained using electrophysiological microrecording during placement of deep brain stimulation (DBS) electrodes in patients with PD. Magnetic resonance imaging was combined with ventriculography and intraoperative x-ray film to assess the position of the electrodes and the STN units, which were activated by limb movements to map the sensorimotor region of the STN. Each activated cell was located relative to the anterior commissure-posterior commissure line. Three-dimensional coordinates of the cells were analyzed statistically to determine whether those cells activated by movements of the arm and leg were segregated spatially. Three hundred seventy-nine microelectrode tracks were created during placement of 71 DBS electrodes in 44 consecutive patients. Somatosensory driving was found in 288 tracks. The authors identified and localized 1213 movement-related cells and recorded responses from 29 orofacial cells, 480 arm-related cells, 558 leg-related cells, and 146 cells responsive to both arm and leg movements. Leg-related cells were localized in medial (p < 0.0001) and ventral (p < 0.0004) positions and tended to be situated anteriorly (p = 0.063) relative to arm-related cells.Evidence of somatotopic organization in the STN in patients with PD supports the current theory of highly segregated loops integrating cortex-basal ganglia connections. These loops are preserved in chronic degenerative diseases such as PD, but may subserve a distorted body map. This finding also supports the relevance of microelectrode mapping in the optimal placement of DBS electrodes along the subthalamic homunculus.

    View details for Web of Science ID 000220440900009

    View details for PubMedID 15070113

  • The functional organization of the sensorimotor region of the subthalamic nucleus STEREOTACTIC AND FUNCTIONAL NEUROSURGERY Romanelli, P., Bronte-Stewart, H., Heit, G., Schaal, D. W., Esposito, V. 2004; 82 (5-6): 222-229

    Abstract

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is viewed by many as the ultimate therapy targeting severe advanced stages of Parkinson's disease (PD). A fundamental constituent of the mechanisms underlying the therapeutic effects of DBS is clearly the functional organization of the STN; however, there is limited understanding of the organization of this structure in humans. Data from primates suggest that different domains can be identified in the STN, including a sensorimotor area with a segregated body map, as well as nonmotor areas. Recent clinical studies have used microelectrode recording to investigate the presence of a body map in the sensorimotor STN of PD patients. This paper will review and compare experimental and clinical data regarding the functional organization of the STN and discuss the clinical implications for PD patients undergoing STN DBS.

    View details for DOI 10.1159/000082778

    View details for Web of Science ID 000227207300004

    View details for PubMedID 15604597

  • Possible necessity for deep brain stimulation of both the ventralis intermedius and subthalamic nuclei to resolve Holmes tremor - Case report JOURNAL OF NEUROSURGERY Romanelli, P., Bronte-Stewart, H., COURTNEY, T., Heit, G. 2003; 99 (3): 566-571

    Abstract

    Holmes tremor is characterized by resting, postural, and intention tremor. Deep brain stimulation (DBS) of both the nucleus ventralis intermedius (Vim) and the subthalamic nucleus (STN) may be required to control these three tremor components. A 79-year-old man presented with a long-standing combination of resting, postural, and intention tremor, which was associated with severe disability and was resistant to medical treatment. Neuroimaging studies failed to reveal areas of discrete brain damage. A DBS device was placed in the Vim and produced an improvement in both the intention and postural tremor, but there was residual resting tremor, as demonstrated by clinical observation and quantitative tremor analysis. Placement of an additional DBS device in the STN resolved the resting tremor. Stimulation of the Vim or STN alone failed to produce global resolution of mixed tremor, whereas combined Vim-STN stimulation produced global relief without creating noticeable side effects. Combined Vim-STN stimulation can thus be a safe and effective treatment for Holmes tremor.

    View details for Web of Science ID 000184969500019

    View details for PubMedID 12959446

  • Surgical therapy for dystonia. Current neurology and neuroscience reports Bronte-Stewart, H. 2003; 3 (4): 296-305

    Abstract

    Surgical treatments for dystonia have been available since the early 20th century, but have improved in their efficacy to adversity ratio through a combination of technologic advances and better understanding of the role of the basal ganglia in dystonia. The word "dystonia" describes a phenotype of involuntary movement that may manifest from a variety of conditions. Dystonia may affect only certain regions of the body or may be generalized. It appears to be critical to determine whether the etiology underlying the dystonia is "primary" (ie, occurring from a genetic or idiopathic origin) or "secondary" (ie, occurring as a result of structural, metabolic, or neurodegenerative disorders). Secondary dystonias are far more common than primary dystonias. Primary dystonias respond well to pallidotomy or deep brain stimulation of the internal segment of the globus pallidum, whereas secondary dystonias appear to respond partially at best. Limited historic and current data suggest that the thalamus may be a promising target for the treatment of secondary dystonias, but more careful, prospective, randomized studies are needed. Combinations of bilateral targets are possible with the current technology of DBS, but not widely used due to surgical morbidity and expense. This article reviews the surgical treatment of dystonia from past to present, with a focus on separating the outcomes for primary versus secondary and generalized versus cervical dystonia.

    View details for PubMedID 12930699

  • Parkinson's Disease: Surgical Options. Current treatment options in neurology Bronte-Stewart, H. 2003; 5 (2): 131-147

    Abstract

    Surgical therapy for Parkinson's disease (PD) has been a treatment option for over 100 years. Advances in the knowledge of basal ganglia physiology and in techniques of stereotactic neurosurgery and neuroimaging have allowed more accurate placement of lesions or "brain pacemakers" in the sensorimotor regions of target nuclei. This, in turn, has led to improved efficacy with fewer complications than in the past. Currently, bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) or the internal segment of the globus pallidus (GPi) is the preferred option (and is approved by the US Food and Drug Administration) for the surgical treatment of PD. The most important predictors for outcome for DBS for PD are patient selection and electrode location. Patients should have a documented preoperative improvement from dopaminergic medication of at least 30% in the patient's Unified Parkinson's Disease Rating Scale motor disability scores. A levodopa challenge may be needed to document the best "on" state. Dementia or active cognitive decline must be excluded. Active psychiatric disease should be treated preoperatively. Patients should be motivated, with good support systems, and committed to the postoperative management of DBS therapy. Deep brain stimulation should be considered when the patient begins to experience dyskinesia and on-off fluctuations despite optimal medical therapy. Deep brain stimulation is not a good option at the final stages of the disease because of the increased incidence of dementia and severe comorbidity. The DBS electrode should be placed in the sensorimotor region of the GPi or STN. Subthalamic nucleus and GPi DBS can improve all motor aspects of PD, as well as predictable "on" time, without dyskinesia or fluctuations. On average, STN DBS results in a greater reduction of dopaminergic medication compared with GPi DBS. Because of the smaller size of the target region, the pulse generator battery life is longer with STN then with GPi DBS. Deep brain stimulation programming is a skill that is readily learned and may be required of all neurologists in the future. Emerging surgical therapies are restorative, and they aim to replace or regenerate degenerating dopaminergic neurons. These include embryonic mesencephalic tissue transplantation, human embryonic stem cell transplantation, and gene-derived methods of intracerebral implantation of growth factors and dopamine- producing cell lines. It will be important to determine whether DBS, if performed before the onset of motor response complications to medical therapy, may prevent this stage of disease altogether or delay it for a significant period of time. The same question applies to the future with restorative therapy.

    View details for PubMedID 12628062

  • Postural instability in idiopathic Parkinson's disease: the role of medication and unilateral pallidotomy BRAIN Bronte-Stewart, H. M., Minn, A. Y., Rodrigues, K., Buckley, E. L., Nashner, L. M. 2002; 125: 2100-2114

    Abstract

    Postural instability (PI) is common in idiopathic Parkinson's disease (IPD). We measured sensory and motor contributions to PI in 50 patients with advanced IPD, off and on medication and in a subset pre- and 3, 6 and 12 months post-unilateral pallidotomy, using computerized dynamic posturography [specifically, the Sensory Organization Test (SOT) and the Unified Parkinson's Disease Rating Scale (UPDRS) subscale PIGD (Postural Instability and Gait Disorder)]. Off medication, all patients had abnormal PIGD scores. The group could be separated into those with normal SOT equilibrium scores (SOTN) and those, the majority, with abnormal postural control when sensory feedback was limited (SOTABN). Medication improved the PIGD scores but worsened the SOT scores in the majority of patients. Increases in spontaneous sway in some patients contributed to the negative effect of medication on SOT scores. However, this could not explain the detrimental effect of medication on SOT scores in at least 40% of patients. On the other hand, pallidotomy improved both PIGD and SOT scores in both groups. A predictor of good outcome from pallidotomy concerning PI was the degree of worsening of the effect that medication had on SOT5 scores. PI in IPD appears to be multifactorial. We propose that the PIGD score reflects sensory and motor aspects of postural control, with normal sensory feedback, while the SOT equilibrium scores measure the sensory organizational process of postural control in the presence of altered sensory inputs. There is a dissociation between the effects of medication and pallidotomy on motor and sensory components of postural control, which may reflect the underlying pathophysiological mechanism responsible for these different components of PI. We suggest that patients with advanced IPD and PI on medication should consider adjuvant surgical treatment for better postural control.

    View details for Web of Science ID 000177504900017

    View details for PubMedID 12183355

  • The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer's type NEUROLOGY Silverberg, G. D., Heit, G., Huhn, S., Jaffe, R. A., Chang, S. D., Bronte-Stewart, H., Rubenstein, E., Possin, K., Saul, T. A. 2001; 57 (10): 1763-1766

    Abstract

    To evaluate the production rate of CSF in patients with differing disease states.The authors measured the production rate of CSF in three groups of patients: five patients with PD below age 60 (aged 51 +/- 4 years, mean +/- SD), nine with PD over age 60 (aged 69 +/- 6 years, mean +/- SD), and seven with dementia of the Alzheimer's type (AD) (aged 72 +/- 9 years, mean +/- SD). This method, based on the Masserman technique, employs ventricular rather than a lumbar access to the CSF space. Furthermore, the volume of CSF removed during the procedure is only 3 mL rather than 10 mL.These measurements indicate that the mean rate of CSF production in patients with PD under age 60 was 0.47 +/- 0.13 mL/minute, in patients with PD aged 60 or older the mean rate was 0.40 +/- 0.12 mL/minute, and in patients with AD the mean rate was 0.20 +/- 0.06 mL/minute.These results indicate that the rate of CSF production in patients with PD is normal, and that the rate of CSF production in patients with AD is markedly reduced.

    View details for Web of Science ID 000172334700006

    View details for PubMedID 11723260

  • Postural instability in Parkinson?s Disease: Opposing effects of treatment on sensory and motor components Control of Posture and Gait Nashner LM, Minn AY, Rodrigues K, Buckley EL, Bront-Stewart HM 2001: 737 - 741
  • A physiological model of the effects of surgery on postural instability in Parkinson?s Disease and in Essential Tremor Control of Posture and Gait Bront-Stewart HM, Minn AY, Nashner LM 2001: 720 - 724
  • Concurrent Parkinson tremors JOURNAL OF PHYSIOLOGY-LONDON Moore, G. P., Ding, L., Bronte-Stewart, H. M. 2000; 529 (1): 273-281

    Abstract

    1. Concurrent resting and postural tremors of patients with idiopathic Parkinson's disease were monitored using transducers responding to angular velocity of rotation. Spectra and correlation functions were calculated for each pair of records. 2. When concurrent tremor spectra share indistinguishable fundamental frequencies, have statistically significant peaks in their coherence spectra at those fundamental frequencies, and show significant peaks in their cross-correlation functions near zero delay, they are classified as linearly dependent. When such tremor records are superimposed, their phase-locked behaviour is evident. 3. Pairs of correlated concurrent tremors, of varying duration, have been observed in both hands, both feet and in either hand and the contralateral or ipsilateral foot. Correlated tremors may be concurrent with other tremors that are independent. We hypothesize that correlated Parkinson tremors arise from one or more common (and possibly unilateral) central sources.

    View details for Web of Science ID 000165589300025

    View details for PubMedID 11080268

  • Quantitative digitography (QDG): A sensitive measure of digital motor control in idiopathic Parkinson's disease MOVEMENT DISORDERS Bronte-Stewart, H. M., Ding, L., Alexander, C., Zhou, Y., Moore, G. P. 2000; 15 (1): 36-47

    Abstract

    This study introduces a new method for studying, quantitatively, the dynamics of finger movement using data obtained from sequences of key strikes on a computer-interfaced piano keyboard. We have called this quantitative digitography (QDG). This initial article introduces the method in a group of patients with Parkinson's disease and in a group of healthy subjects using simple, repetitive, alternating finger-tapping for 60 seconds. Patients with idiopathic Parkinson's disease (IPD) were studied "ON" and "OFF" dopaminergic medication before and after pallidotomy. Customized software allowed the independent analysis of key strike velocity, duration of key strike, and frequency of tapping along with a quantitative measure of the regularity of performance. Quantitative measures of the improvement in performance after medication are presented for each parameter of movement. The technique also reveals correlates of some clinical phenomena of the temporal disturbances of repetitive motion in IPD, such as fatigue, tremor, freezing, and festination. We demonstrate that the performance of 60 seconds of alternating finger tapping on a computerized keyboard yields objective measures of motor performance that are significantly different in patients with IPD "OFF" when compared with "ON" medication and when compared with healthy subjects. This is the first time that such a method has been used in the measurement of specific kinematics of digital motion in Parkinson's disease. The equipment is inexpensive and portable and the data are rapidly and easily collected, making it suitable for the outpatient setting.

    View details for Web of Science ID 000084500600007

    View details for PubMedID 10634240

  • Rhythmic coritcal activity and its relation to movement in normal subjects and patients with movement disorders Journal of Physiology Conway BA, Halliday DA, Farmer SF, Bront-Stewart HM, Rosenberg JR 1999; 518: 32 - 33
  • NEURAL BASIS FOR MOTOR LEARNING IN THE VESTIBULOOCULAR REFLEX OF PRIMATES .2. CHANGES IN THE RESPONSES OF HORIZONTAL GAZE VELOCITY PURKINJE-CELLS IN THE CEREBELLAR FLOCCULUS AND VENTRAL PARAFLOCCULUS JOURNAL OF NEUROPHYSIOLOGY Lisberger, S. G., PAVELKO, T. A., BRONTESTEWART, H. M., Stone, L. S. 1994; 72 (2): 954-973

    Abstract

    1. We made extracellular recordings from Purkinje cells in the flocculus and ventral paraflocculus of awake monkeys before and after motor learning in the vestibuloocular reflex (VOR). Three samples were recorded 1) after miniaturizing spectacles had reduced the gain of the VOR (eye speed divided by head speed) to 0.4; 2) when the gain of the VOR was near 1.0; and 3) after magnifying spectacles had increased the gain of the VOR to 1.6. 2. We studied Purkinje cells that showed stronger modulation of simple-spike firing rate during horizontal than during vertical pursuit. These cells corresponded to the previously identified "horizontal gaze velocity Purkinje cells" or HGVP-cells. During pursuit of smooth target motion with the head stationary, HGVP-cells showed strong modulation of firing rate with increases for ipsiversive eye motion (toward the side of recording). When the monkey canceled his VOR by tracking a target that moved exactly with him during sinusoidal head rotation in the horizontal plane, HGVP-cells again showed strong modulation of firing rate with increases for ipsiversive head motion. 3. The responses of HGVP-cells during pursuit with the head stationary and during cancellation of the VOR reveal separate components of firing rate related to eye and head velocity. We used these two behavioral conditions to test for effects of motor learning on the head and eye velocity components of the simple-spike firing of HGVP-cells. Our data confirm the previous observation that motor learning causes the sensitivity to head velocity to be larger when the gain of the VOR is high and smaller when the gain of the VOR is low. Thus we agree with the previous conclusion that changes in the vestibular sensitivity of HGVP-cells, measured during sinusoidal head motion at low frequencies, are in the wrong direction to cause changes in the gain of the VOR. 4. To determine whether the simple-spike output from the HGVP-cells plays a role in the VOR after motor learning, we recorded simple-spike firing during the VOR evoked by transient, rapid changes in head velocity in darkness. When the gain of the VOR was low, firing rate increased during the VOR evoked by ipsiversive head motion and decreased during the VOR evoked by contraversive head motion. When the gain of the VOR was high, the direction selectivity of the responses was reversed.(ABSTRACT TRUNCATED AT 400 WORDS)

    View details for Web of Science ID A1994PC60700039

    View details for PubMedID 7983548

  • PHYSIOLOGICAL-PROPERTIES OF VESTIBULAR PRIMARY AFFERENTS THAT MEDIATE MOTOR LEARNING AND NORMAL PERFORMANCE OF THE VESTIBULOOCULAR REFLEX IN MONKEYS JOURNAL OF NEUROSCIENCE BRONTESTEWART, H. M., Lisberger, S. G. 1994; 14 (3): 1290-1308

    Abstract

    We have used electrical stimulation of the vestibular apparatus to reveal parallels between the physiological responses of the vestibular afferents activated at different currents and the properties of the evoked eye movements before and after magnifying spectacles had been used to cause motor learning in the vestibulo-ocular reflex (VOR). Stimulation with the lowest currents caused little or no eye motion, but activated all the afferents with irregular spontaneous discharge, low sensitivities to head velocity, and highly phasic responses during rapid head turns. Stimulation with moderate currents caused substantial eye motion that was weakly affected by motor learning; these currents activated afferents with a wide range of physiological properties, including many that had intermediate discharge regularity, high sensitivity to head velocity, and clear phasic responses during rapid head turns. Stimulation at still higher currents caused still larger eye movements that were strongly altered by motor learning; these currents activated primarily afferents that had regular spontaneous discharge, lower sensitivities to head velocity, and tonic responses during rapid head turns. Stimulation at the highest currents did not cause any further increment in the amplitude of the evoked eye movement, but activated the afferents with the most regular spontaneous discharge and the lowest sensitivities to head velocity. The data imply that the VOR pathways receive substantial vestibular inputs from afferents with a middle range of thresholds for electrical stimulation. These afferents have a wide range of physiological properties, including a large group that shows substantial phasic responses during rapid head turns. The data also suggest that only a subset of these afferents, primarily those with more regular spontaneous discharge, project into the VOR pathways that are modified in association with motor learning.

    View details for Web of Science ID A1994MZ40500030

    View details for PubMedID 8120625

  • EXPRESSION OF MOTOR LEARNING IN THE RESPONSE OF THE PRIMATE VESTIBULOOCULAR REFLEX PATHWAY TO ELECTRICAL-STIMULATION JOURNAL OF NEUROPHYSIOLOGY Broussard, D. M., BRONTESTEWART, H. M., Lisberger, S. G. 1992; 67 (6): 1493-1508

    Abstract

    1. The vestibuloocular reflex (VOR) undergoes long-term adaptive changes in the presence of persistent retinal image motion during head turns. Previous experiments using natural stimuli have provided evidence that the VOR is subserved by parallel pathways, including some that are modified during learning and some that are not. We have used electrical stimulation of the vestibular labyrinth to investigate the temporal properties of the signals that are transmitted through the modified pathways. 2. Electrodes were implanted chronically in the superior semi-circular canal, the horizontal canal, or the vestibule for electrical activation of the vestibular afferents. Learning was induced by fitting the monkeys with spectacles that magnified or miniaturized vision. Before, during, and after motor learning, we measured the eye movements evoked by electrical stimulation of the labyrinth as well as the gain of the VOR, defined as eye speed divided by head speed during natural vestibular stimulation in the dark. 3. Trains of pulses applied to the labyrinth caused the eyes to move away from the side of stimulation with an initial rapid change in eye velocity followed by a steady-state plateau. Changes in the gain of the VOR caused large changes in the trajectory and magnitude of eye velocity during the plateau, showing that our stimulating electrodes had access to the modified pathways. 4. A single, brief current pulse applied to the labyrinth evoked an eye movement that had a latency of 5 ms and consisted of a pulse of eye velocity away from the side of the stimulation followed by a rebound toward the side of stimulation. To quantify the effect of motor learning on these eye movements, we pooled the data across different VOR gains and computed the slope of the relationship between eye velocity and VOR gain at each millisecond after the stimulus. We refer to the slope as the "modification index." 5. In comparison with the evoked eye velocity, the modification index took longer to return to baseline and showed a large peak at the time of the rebound in eye velocity. Increases in stimulus current increased both the amplitude and the duration of the modification index and revealed several later peaks. These observations suggest that the full expression of motor learning requires activation of multisynaptic pathways and recruitment of primary vestibular afferents with higher thresholds for electrical stimulation. 6. The modification index was almost always positive during the initial deflection in eye velocity, and the latency of the first change in the modification index was usually the same as the latency of the evoked eye movement.(ABSTRACT TRUNCATED AT 400 WORDS)

    View details for Web of Science ID A1992HZ90100007

    View details for PubMedID 1629760

  • LACUNAR INFARCTION OF THE BASAL GANGLIA AS A COMPLICATION OF HEMOLYTIC-UREMIC SYNDROME - MRI AND CLINICAL CORRELATIONS CLINICAL PEDIATRICS DiMario, F. J., BRONTESTEWART, H., Sherbotie, J., Turner, M. E. 1987; 26 (11): 586-590

    Abstract

    Central nervous system (CNS) complications of hemolytic-uremic syndrome (HUS) commonly consist of alterations in mental status, seizures, and rarely hemiparesis. The authors report the clinical evolution of left hemiparesis and later choreo-athetoid movements in a patient who sustained a right lacunar infarction as a complication of HUS. The infarction is demonstrated on magnetic resonance imaging (MRI).

    View details for Web of Science ID A1987K862000006

    View details for PubMedID 3665330

Conference Proceedings


  • PROPERTIES OF PATHWAYS THAT MEDIATE MOTOR LEARNING IN THE VESTIBULOOCULAR REFLEX OF MONKEYS Lisberger, S. G., Broussard, D. M., BRONTESTEWART, H. M. COLD SPRING HARBOR LABORATORY PRESS. 1990: 813-822

Footer Links:

Stanford Medicine Resources: