School of Medicine
Showing 251-277 of 277 Results
-
Paul J. Wang, MD
Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center and, by courtesy, of Bioengineering
Current Research and Scholarly Interests Dr. Wang's research centers on the development of innovative approaches to the treatment of arrhythmias, including more effective catheter ablation techniques, more reliable implantable devices, and less invasive treatments. Dr. Wang's clinical research interests include atrial fibrillation, ventricular tachycardia, syncope, and hypertrophic cardiomyopathy. Dr. Wang has active collaborations with Bioengineering, Mechanical Engineering, and Electrical Engineering Departments at Stanford.
-
Shan X. Wang
Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
Current Research and Scholarly Interests Shan Wang was named the Leland T. Edwards Professor in the School of Engineering in 2018. He directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.
-
Ann Weinacker
Professor of Medicine (Pulmonary and Critical Care) at the Stanford University Medical Center
Current Research and Scholarly Interests Dr. Weinacker's research interests center around ICU outcomes. Her specific interests include primary graft dysfunction in lung transplant recipients.
-
Irving Weissman
Director, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Virginia & D.K. Ludwig Professor for Clinical Investigation in Cancer Research, Professor of Developmental Biology and, by courtesy, of Biology
Current Research and Scholarly Interests Stem cell and cancer stem cell biology; development of T and B lymphocytes; cell-surface receptors for oncornaviruses in leukemia. Hematopoietic stem cells; Lymphocyte homing, lymphoma invasiveness and metastasis.
-
Marius Wernig
Professor of Pathology and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly Interests Epigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine
-
Lynn Marie Westphal, M.D.
Professor of Obstetrics and Gynecology (Reproductive Endocrinology and Infertility) at Stanford University Medical Center, Emerita
Current Research and Scholarly Interests Infertility, fertility preservation, oocyte cryopreservation
-
Cornelia Weyand
Professor of Medicine (Immunology and Rheumatology)
Current Research and Scholarly Interests Telomere biology and genomic stress in autoimmunity and inflammation
-
Jeffrey J. Wine
Benjamin Scott Crocker Professor of Human Biology
Current Research and Scholarly Interests The goal is to understand how a defective ion channel leads to the human genetic disease cystic fibrosis. Studies of ion channels and ion transport involved in gland fluid transport. Methods include SSCP mutation detection and DNA sequencing, protein analysis, patch-clamp recording, ion-selective microelectrodes, electrophysiological analyses of transmembrane ion flows, isotopic metho
-
Ronald Witteles
Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center
Current Research and Scholarly Interests 1) Amyloidosis -- Optimizing diagnosis/therapy and discovering new treatments
2) CardioOncology -- Understanding, treating, and preventing cancer therapy-induced cardiotoxicity
3) Sarcoidosis -- Exploring novel diagnostic modalities and determining optimal treatment, with a focus on cardiac sarcoidosis -
Joseph C. Wu
Director, Stanford Cardiovascular Institute, Simon H. Stertzer, MD, Professor and Professor of Radiology
Current Research and Scholarly Interests Drug discovery, drug screening, and disease modeling using biobank of cardiac iPSC lines.
-
Sean M. Wu
Associate Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Pediatrics
Current Research and Scholarly Interests My lab seeks to identify mechanisms regulating cardiac lineage commitment during embryonic development and the biology of cardiac progenitor cells in development and disease. We believe that by understanding the transcriptional and epigenetic basis of cardiomyocyte growth and differentiation, we can identify the most effective ways to repair diseased adult hearts. We employ mouse and human embryonic and induced pluripotent stem cells as well as rodents as our in vivo models for investigation.
-
Fan Yang
Associate Professor of Orthopaedic Surgery and of Bioengineering
Current Research and Scholarly Interests Our research seeks to understand how microenvironmental cues regulate stem cell fate, and to develop novel biomaterials and stem cell-based therapeutics for tissue engineering and regenerative medicine. Our work spans from fundamental science, technology development, to translational research.We are particularly interested in developing better therapies for treating musculoskeletal diseases, cardiovascular diseases and cancer.
-
Phillip C. Yang, MD
Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center
Current Research and Scholarly Interests Dr. Yang is a physician-scientist whose research interest focuses on clinical translation of the fundamental molecular and cellular processes of myocardial restoration. His research employs novel in vivo multi-modality molecular and cellular imaging technology to translate the basic innovation in cardiovascular pluripotent stem cell biologics. Dr. Yang is currently a PI on the NIH/NHLBI funded CCTRN UM1 grant, which is designed to conduct multi-center clinical trial on novel biological therapy.
-
Yunzhi Peter Yang
Professor of Orthopaedic Surgery and, by courtesy, of Materials Science and Engineering
Current Research and Scholarly Interests Yang lab's research interests are in the areas of bio-inspired biomaterials, medical devices, and 3D printing approaches for re-creating a suitable microenvironment for cell growth and tissue regeneration for musculoskeletal disease diagnosis and treatment, including multiple tissue healing such as rotator cuff injury, orthopedic diseases such as osteoporosis and osteonecrosis, and orthopedic traumas such as massive bone and muscle injuries.
-
Alan Yeung, MD
The Li Ka Shing Professor in Cardiology
Current Research and Scholarly Interests Coronary artery disease is the leading cause of death in men and women in the United States. Our group is interested in studying both the early and late phases of atherosclerosis so that we can better develop prevention and treatment strategies.
-
Paul Yock, MD
The Martha Meier Weiland Professor in the School of Medicine, Professor of Bioengineering and, by courtesy, of Mechanical Engineering
Current Research and Scholarly Interests Health technology innovation using the Biodesign process: a systematic approach to the design of biomedical technologies based on detailed clinical and economic needs characterization. New approaches for interdisciplinary training of health technology innovators, including processes for identifying value opportunities in creating new technology-based approaches to health care.
-
Richard Zare
Marguerite Blake Wilbur Professor in Natural Science and Professor, by courtesy, of Physics
Current Research and Scholarly Interests My research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.
Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.
Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:
The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.
Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells.