School of Medicine


Showing 601-650 of 681 Results

  • William Talbot

    William Talbot

    Senior Associate Dean, Graduate Education & Postdoctoral Affairs and Professor of Developmental Biology

    Current Research and Scholarly Interests We use genetic and cellular approaches to investigate the molecular basis of glial development and myelination in the zebrafish.

  • Jean Y. Tang MD PhD

    Jean Y. Tang MD PhD

    Professor of Dermatology at the Stanford University Medical Center

    Current Research and Scholarly Interests My research focuses on 2 main areas:

    1. Skin cancer:
    - New therapeutics to treat and prevent non-melanoma skin cancer, especially by targeting the Hedgehog signaling pathway for BCC tumors
    - Genomic analysis of drug-resistant cancers
    - Identifying risk factors for skin cancer in the Women's Health Initiative

    2. Epidermolysis Bullosa: gene therapy and protein therapy to replace defective/absent Collagen 7 in children and adults with Recessive Dystrophic EB

  • Joyce Teng, MD, PhD

    Joyce Teng, MD, PhD

    Professor of Dermatology at the Lucile Salter Packard Children's Hospital

    Bio Joyce Teng, MD, PhD is a professor in dermatology at Stanford University. She is affiliated with multiple hospitals in the area, including Lucile Salter Packard Children's Hospital (LPCH) at Stanford and Stanford Hospital and Clinics (SHC). She received her medical degree from Vanderbilt University School of Medicine and has been in practice for more than 12 years. She is one of the 5 pediatric dermatologists practicing at LPCH and one of 72 at SHC who specialize in Dermatology. She sees patients with rare genetic disorders, birthmarks, vascular anomalies and a variety of inflammatory skin diseases. She is also an experienced pediatric dermatological surgeon. Her research interests are drug discovery and novel therapy for skin disorders.

  • Mary Frances Nunez Teruel

    Mary Frances Nunez Teruel

    Member, Bio-X

    Current Research and Scholarly Interests The Teruel Lab uses a combination of engineering and biological approaches including high-throughput screening of RNAi and DNA construct libraries, CRISPR libraries, targeted mass spectrometry, live-cell fluorescence microscopy, and bioinformatics to investigate the systems biology of cell differentiation and tissue renegeneration, with a particular focus on uncovering the molecular mechanisms underlying insulin resistance, diabetes, and obesity.

  • Avnesh Thakor

    Avnesh Thakor

    Assistant Professor of Radiology (Pediatric Radiology) at the Stanford University Medical Center

    Current Research and Scholarly Interests Over the past decade there has been tremendous advances in the field of Interventional Oncology with the clinical utilization of multiple new innovative locoregional therapies (i.e. chemoembolization, percutaneous ablation). Looking forward, our ability to superselectively deliver new therapies such as nanoparticles, stem cells and gene therapy will open new pathways for Interventional Radiology into the emerging field of Regenerative Medicine.

  • Suzanne Tharin

    Suzanne Tharin

    Assistant Professor of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly Interests The long-term goal of my research is the repair of damaged corticospinal circuitry. Therapeutic regeneration strategies will be informed by an understanding both of corticospinal motor neuron (CSMN) development and of events occurring in CSMN in the setting of spinal cord injury. MicroRNAs are small, non-coding RNAs that regulate the expression of “suites” of genes. The work in my lab seeks to identify microRNA controls over CSMN development and over the CSMN response to spinal cord injury.

  • Margo Thienemann

    Margo Thienemann

    Clinical Professor, Psychiatry and Behavioral Sciences - Child and Adolescent Psychiatry

    Current Research and Scholarly Interests Pediatric Acute-Onset Neuropsychiatric Disorder

  • Robert Tibshirani

    Robert Tibshirani

    Professor of Biomedical Data Science and of Statistics

    Current Research and Scholarly Interests My research is in applied statistics and biostatistics. I specialize in computer-intensive methods for regression and classification, bootstrap, cross-validation and statistical inference, and signal and image analysis for medical diagnosis.

  • Seda Tierney

    Seda Tierney

    Associate Professor of Pediatrics (Cardiology) at the Lucile Salter Packard Children's Hospital

    Current Research and Scholarly Interests Assessment of vascular health s in children by non-invasive modalities

    Echocardiography and outcomes in congenital heart disease

  • Alice Ting

    Alice Ting

    Professor of Genetics, of Biology and, by courtesy, of Chemistry

    Current Research and Scholarly Interests We develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from enzyme engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational analysis.

  • Katherine Travis

    Katherine Travis

    Assistant Professor (Research) of Pediatrics (Developmental-Behavioral Pediatrics)

    Bio Dr. Katherine Travis is an Assistant Professor in the Division of Developmental-Behavioral Pediatrics at Stanford University. Dr. Travis obtained her Ph.D. in Neuroscience from the University of California San Diego. Dr. Travis came to Stanford as a postdoctoral fellow to obtain training in clinical neuroscience and translational approaches to intervention. As part of her training, she was awarded a K99/R00 Pathway to Independence grant from the National Institutes of Health.

    Her research uses human neuroimaging and behavioral measures to examine the neural bases of early language learning in infants and young children. The goal of her research is to develop therapies and interventions to help promote language learning outcomes in children at-risk for learning disabilities. Currently, she directs an NIH-funded clinical trial that will use diffusion MRI to assess whether there are changes in brain structure following a language intervention in the Neonatal Intensive Care Unit for preterm infants.

  • Jennifer Tremmel

    Jennifer Tremmel

    Susan P. and Riley P. Bechtel Medical Director and Assistant Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center

    Current Research and Scholarly Interests Dr. Tremmel studies sex differences in cardiovascular disease. Current research projects include evaluating sex differences in coronary pathophysiology, young patients presenting with myocardial infarction, the impact of stress on anginal symptoms, chronic total coronary occlusions, and vascular access site complications.

  • Philip S. Tsao, PhD

    Philip S. Tsao, PhD

    Professor (Research) of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly Interests Our primary interests are in the molecular underpinnings of vascular disease as well as assessing disease risk. In addition to targeted investigation of specific signaling molecules, we utilize global genomic analysis to identify gene expression networks and regulatory units. We are particularly interested in the role of microRNAs in gene expression pathways associated with disease.

  • Chi-Ho Ban Tsui

    Chi-Ho Ban Tsui

    Professor of Anesthesiology, Perioperative and Pain Medicine (Adult-MSD) at the Stanford University Medical Center

    Bio Dr. Tsui completed his medical training at Dalhousie University, Halifax, in 1995 after obtaining his Masters of Science in Pharmacy in 1991. These degrees followed a Diploma in Engineering and Bachelors of Science in both Mathematics and Pharmacy. Dr. Tsui completed his anesthesia residency training at the University of Alberta Hospital in Edmonton in 2000, and he received further experience in pediatric anesthesia at British Columbia Children's Hospital in Vancouver. After 16 years of practice at the University of Alberta Hospital and Stollery Children’s Hospital, Dr. Tsui was recruited to Stanford University.

    Currently, Dr. Tsui is a Medical Center Line (MCL) Professor in the Department of Anesthesiology, Perioperative and Pain Medicine at Stanford University. In his position as an adult and pediatric anesthesiologist at the Stanford University Medical Center and the Lucile Packard Children’s Hospital, he specializes in regional anesthesia techniques.

    Dr. Tsui is an avid and internationally recognized researcher in many areas of regional anesthesia. During his residency, Dr. Tsui developed an interest in improving the accuracy of epidural catheter placement and was issued a U.S. patent in relation to his research. Dr. Tsui has expanded his research into the use of ultrasound in regional anesthesia, with particular relevance to peripheral nerve block performance. Dr. Tsui is also responsible for development of the E-Catheter catheter-over-needle kit for use during peripheral nerve blocks. The primary objective of his research is to transform regional anesthesia from an “art” into a reliable and reproducible “science” by further exploring the basic scientific and clinical aspects of electrophysiological signal monitoring and integrating this with the latest advances in ultrasound.

    Dr. Tsui has received the Alberta Heritage Foundation for Medical Research (AHFMR) Clinical Scholar award and has previously received research awards and grants from the Canadian Institutes of Health Research (CIHR), Canadian Anesthesiologists’ Society, AHFMR, and University of Alberta. In 2015, a prestigious award, the CAS Research Recognition Award, was presented by the Canadian Anesthesiologists’ Society to Dr. Tsui "in recognition of significant research contributions to regional anesthesia, acute pain management and pediatric anesthesia in Canada and around the world".

  • Alexander Eckehart Urban

    Alexander Eckehart Urban

    Assistant Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator) and of Genetics

    Current Research and Scholarly Interests Complex behavioral and neuropsychiatric phenotypes often have a strong genetic component. This genetic component is often extremely complex and difficult to dissect. The current revolution in genome technology means that we can avail ourselves to tools that make it possible for the first time to begin understanding the complex genetic and epigenetic interactions at the basis of the human mind.

  • PJ Utz

    PJ Utz

    Professor of Medicine (Immunology and Rheumatology)

    Current Research and Scholarly Interests The long-term research goal of Utz laboratory is (1) to develop a better understanding of the pathogenic mechanisms underlying systemic lupus erythematosus (SLE) and other autoimmune diseases by exploring signaling pathways that are activated during apoptosis; and (2) to better understand the complicated process of programmed cell death.

  • Tulio Valdez

    Tulio Valdez

    Associate Professor of Otolaryngology (Pediatric) and, by courtesy, of Pediatrics at the Lucile Salter Packard Children's Hospital

    Bio Dr. Tulio A Valdez is a surgeon scientist born and raised in Colombia with a subspecialty interest in Pediatric Otolaryngology. He attended medical school at Universidad Javeriana in Bogota Colombia before undertaking his residency in Otolaryngology, Head and Neck Surgery in Boston. He completed his Pediatric Otolaryngology Fellowship at Texas Children’s Hospital (2007), Houston and obtained his Master’s in Clinical and Translational Research at the University of Connecticut.

    Clinically, Dr. Valdez has an interest in airway surgery and swallowing disorders. He has a special interest in the management of sinus disease in cystic fibrosis. Dr. Valdez has co-authored one textbook and numerous book chapters and scientific manuscripts. Dr. Valdez continues his clinical research in these areas, particularly with a focus on aerodigestive disorders.

    Scientifically, Dr. Valdez has developed various imaging methods to diagnose otitis media and cholesteatoma a middle ear condition that can lead to hearing loss. He was part of the Laser Biomedical Research Center at Massachusetts Institute of Technology. His research includes novel imaging modalities to better diagnose ear infections one of the most common pediatric problems. His research has now expanded to include better intraoperative imaging modalities in pediatric patients to improve surgical outcomes without the need for radiation exposure. 

    Dr. Valdez believes in the multi-disciplinary collaborations to tackle medical problems and has co-invented various medical devices and surgical simulation models.

  • Matt van de Rijn

    Matt van de Rijn

    Sabine Kohler, MD, Professor in Pathology

    Current Research and Scholarly Interests Our research focuses on molecular analysis of human soft tissue tumors (sarcomas) with an emphasis on leiomyosarcoma and desmoid tumors. In addition we study the role of macrophages in range of malignant tumors.

  • Keith Van Haren, MD

    Keith Van Haren, MD

    Assistant Professor of Neurology and of Pediatrics at the Stanford University Medical Center

    Current Research and Scholarly Interests Our research group is dedicated to innovating care for children with degenerative brain disorders. We are particularly focused on genetic and autoimmune disorders that cause damage to the myelin (the fatty insulation around the nerves) of the brain and spinal cord. X-linked adrenoleukodystrophy (genetic) and multiple sclerosis (autoimmune) are the prototypical examples of degenerative disorders of myelin and are the two disorders we study most intensively.

  • Krisa Van Meurs

    Krisa Van Meurs

    Rosemarie Hess Professor in Neonatal and Developmental Medicine

    Current Research and Scholarly Interests My research interests include persistent pulmonary hypertension of the newborn, hypoxic respiratory failure, inhaled nitric oxide therapy, ECMO, congenital diaphragmatic hernia, neonatal clinical trials, and the use of aEEG and NIRS to detect brain injury.

  • Shreyas Vasanawala, MD/PhD

    Shreyas Vasanawala, MD/PhD

    Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly Interests Our group is focused on developing new fast and quantitative MRI techniques.

  • Anne Villeneuve

    Anne Villeneuve

    Professor of Developmental Biology and of Genetics

    Current Research and Scholarly Interests Mechanisms underlying homologous chromosome pairing, DNA recombination and chromosome remodeling during meiosis, using the nematode Caenorhabditis elegans as an experimental system. High-resolution 3-D imaging of dynamic reorganization of chromosome architecture. Role of protease inhibitors in regulating sperm activation.

  • David Vu

    David Vu

    Instructor, Pediatrics - Infectious Diseases

    Bio Dr. Vu is a pediatric infectious diseases specialist who is researching human responses to dengue virus and malaria infections. He performed his undergraduate studies at the University of California, San Diego, and obtained his medical doctorate at the University of Pennsylvania School of Medicine. He trained in general pediatrics at UCSF Benioff Children's Hospital Oakland, and in pediatric infectious diseases at Emory University School of Medicine. His present studies on pediatric dengue and malaria co-infection are supported by an NIAID Career Development Award (K23 AI127909) and a Instructor K Award Support Program Award from the Maternal & Child Health Research Institute and Department of Pediatrics.

  • Soichi Wakatsuki

    Soichi Wakatsuki

    Professor of Photon Science and of Structural Biology

    Current Research and Scholarly Interests Ubiquitin signaling: structure, function, and therapeutics
    Ubiquitin is a small protein modifier that is ubiquitously produced in the cells and takes part in the regulation of a wide range of cellular activities such as gene transcription and protein turnover. The key to the diversity of the ubiquitin roles in cells is that it is capable of interacting with other cellular proteins either as a single molecule or as different types of chains. Ubiquitin chains are produced through polymerization of ubiquitin molecules via any of their seven internal lysine residues or the N-terminal methionine residue. Covalent interaction of ubiquitin with other proteins is known as ubiquitination which is carried out through an enzymatic cascade composed of the ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The ubiquitin signals are decoded by the ubiquitin-binding domains (UBDs). These domains often specifically recognize and non-covalently bind to the different ubiquitin species, resulting in distinct signaling outcomes.
    We apply a combination of the structural (including protein crystallography, small angle x-ray scattering, cryo-electron microscopy (Cryo-EM) etc.), biocomputational and biochemical techniques to study the ubiquitylation and deubiquitination processes, and recognition of the ubiquitin chains by the proteins harboring ubiquitin-binding domains. Current research interests including SARS-COV2 proteases and their interactions with polyubiquitin chains and ubiquitin pathways in host cell responses, with an ultimate goal of providing strategies for effective therapeutics with reduced levels of side effects.

    Protein self-assembly processes and applications.
    The Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular, self-assembly by crystallizing when exposed to an environmental trigger. We have demonstrated that the Caulobacter crescentus SLP readily crystallizes into sheets both in vivo and in vitro via a calcium-triggered multistep assembly pathway. Observing crystallization using a time course of Cryo-EM imaging has revealed a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. In particular, this is inspiring designing robust novel platform for nano-scale protein scaffolds for structure-based drug design and nano-bioreactor design for the carbon-cycling enzyme pathway enzymes. Current research focuses on development of nano-scaffolds for high throughput in vitro assays and structure determination of small and flexible proteins and their interaction partners using Cryo-EM, and applying them to cancer and anti-viral therapeutics.

    Multiscale imaging and technology developments.
    Multimodal, multiscale imaging modalities will be developed and integrated to understand how molecular level events of key enzymes and protein network are connected to cellular and multi-cellular functions through intra-cellular organization and interactions of the key machineries in the cell. Larger scale organization of these proteins will be studied by solution X-ray scattering and Cryo-EM. Their spatio-temporal arrangements in the cell organelles, membranes, and cytosol will be further studied by X-ray fluorescence imaging and correlated with cryoEM and super-resolution optical microscopy. We apply these multiscale integrative imaging approaches to biomedical, and environmental and bioenergy research questions with Stanford, DOE national labs, and other domestic and international collaborators.

  • Rebecca D. Walker

    Rebecca D. Walker

    Clinical Associate Professor, Emergency Medicine

    Current Research and Scholarly Interests Interests include international development in emergency care, healthcare disparities, wilderness medicine, human rights, administration

  • Dennis Wall

    Dennis Wall

    Associate Professor of Pediatrics (Systems Medicine), of Biomedical Data Science and, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly Interests Systems biology for design of clinical solutions that detect and treat disease

  • Brian A. Wandell

    Brian A. Wandell

    Isaac and Madeline Stein Family Professor and Professor, by courtesy, of Electrical Engineering, of Ophthalmology and at the Graduate School of Education

    Current Research and Scholarly Interests Models and measures of the human visual system. The brain pathways essential for reading development. Diffusion tensor imaging, functional magnetic resonance imaging and computational modeling of visual perception and brain processes.

  • C. Jason Wang, MD, PhD

    C. Jason Wang, MD, PhD

    Associate Professor of Pediatrics (General Pediatrics) at the Lucile Salter Packard Children's Hospital and of Medicine (PCOR) and, by courtesy, of Health Research and Policy (Health Services Research)

    Bio Dr. Wang is the Director of Center for Policy, Outcomes and Prevention. Prior to coming to Stanford in 2011, he was a faculty member at Boston University Schools of Medicine and Public Health. His other professional experiences include working as a management consultant with McKinsey and Company and serving as the project manager for Taiwan's National Health Insurance Reform Task-force. His current interests include: 1) developing tools for assessing and improving the value of healthcare; 2) facilitating the use of mobile technology in improving quality of care; 3) supporting competency-based medical education curriculum, and 4) engaging in healthcare reform.

  • Kevin Wang, MD, PhD

    Kevin Wang, MD, PhD

    Assistant Professor of Dermatology

    Current Research and Scholarly Interests The Wang lab takes an interdisciplinary approach to studying fundamental mechanisms controlling gene expression in mammalian cells, and how epigenetic mechanisms such as DNA methylation, chromatin modifications, and RNA influence chromatin dynamics to affect gene regulation.

  • Marie Wang

    Marie Wang

    Clinical Associate Professor, Pediatrics

    Current Research and Scholarly Interests Evaluation and management of the febrile young infant and infections in hospitalized children (eg, UTIs, CNS infections, pneumonia); promotion of appropriate antibiotic use.

  • Nancy  Wang

    Nancy Wang

    Professor of Emergency Medicine and, by courtesy, of Pediatrics (Hospital Medicine) at the Stanford University Medical Center

    Current Research and Scholarly Interests - Disparities in Emergency Medical Services for children.
    - Efficacy of novel interventions for pediatric access to care.
    - Teaching and supporting community-initiated interventions and programs internationally.

  • Paul  J. Wang, MD

    Paul J. Wang, MD

    Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center and, by courtesy, of Bioengineering

    Current Research and Scholarly Interests Dr. Wang's research centers on the development of innovative approaches to the treatment of arrhythmias, including more effective catheter ablation techniques, more reliable implantable devices, and less invasive treatments. Dr. Wang's clinical research interests include atrial fibrillation, ventricular tachycardia, syncope, and hypertrophic cardiomyopathy. Dr. Wang has active collaborations with Bioengineering, Mechanical Engineering, and Electrical Engineering Departments at Stanford.

  • Shan X. Wang

    Shan X. Wang

    Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly Interests Shan Wang was named the Leland T. Edwards Professor in the School of Engineering in 2018. He directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.

  • Sui Wang, PhD

    Sui Wang, PhD

    Assistant Professor of Ophthalmology

    Current Research and Scholarly Interests Our research focuses on understanding the molecular mechanisms that underlie retinal development and diseases. We utilize genetic and genomic tools to uncover how different types of retinal cells, including retinal neurons, glia and the vasculature, respond to developmental cues and disease insults at the epigenomic and transcriptional levels, and how they interact and collectively contribute to the integrity of the retina.

    1. Retinal cell fate specification.
    We are using genetic tools and methods, such as in vivo plasmid electroporation and CRISPR, to dissect the roles of cis-regulatory elements and transcription factors in controlling retinal cell fate specification.

    2. The multicellular responses elicited by diabetes in the retina.
    Diabetes can induce multicellular responses in the retina, including vascular lesions, glial dysfunction and neurodegeneration, all of which contribute to retinopathy. We are using diabetic rats as models to investigate the detailed molecular mechanisms underlying the diabetes-induced multicellular responses, and the disease mechanisms of diabetic retinopathy.

    3. Molecular tools that allow for cell type-specific labeling and manipulation in vivo.
    Cis-regulatory elements, such as enhancers, play essential roles in directing tissue/cell type-specific and stage-specific expression. We are interested in identifying enhancers that can drive cell type-specific expression in the retina and brain, and incorporating them into plasmid or AAV based delivery systems.

  • Taia T. Wang, MD, PhD, MSCI

    Taia T. Wang, MD, PhD, MSCI

    Assistant Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly Interests Laboratory of Mechanisms in Human Immunity and Disease Pathogenesis

    Studies in our lab are aimed at defining mechanisms in human immunity and disease. We are particularly interested the hypothesis that IgG repertoire diversity leading to diversity in antibody-based signaling, is a central driver of heterogeneity in human immune functioning and susceptibility to infectious diseases. Our work is defining how diversity that exists in the IgG Fc domain repertoire among people, which we define by serum IgG subclass and Fc glycoform distributions, impacts immune processes such as vaccine responses and recruitment of effector cells. IgG subclass and Fc glycoform distributions are key regulators of immunity because these determine the structure of Fc domains within immune complexes that form during vaccination or infection. Fc structure, in turn, determines the affinity of immune complexes for various Fc receptors on effector cells. Thus, we are studying how the Fc domain repertoire of an individual impacts the quality of effector cell responses that can be recruited during immune activation and how selectivity of effector responses contributes to immunity and disease.

    Current clinical studies:
    Recruiting:

    An Open Label Study of IgG Fc Glycan Composition in Human Immunity
    Principal Investigator: Taia T. Wang, MD, PhD
    ClinicalTrials.gov Identifier:
    NCT01967238

  • Katja Gabriele Weinacht, MD, PhD

    Katja Gabriele Weinacht, MD, PhD

    Assistant Professor of Pediatrics (Stem Cell Transplantation and Regenerative Medicine)

    Current Research and Scholarly Interests Pediatric Hematopoietic Stem Cell Transplantation
    DiGeorge Syndrome
    Genetic Immune Diseases
    Immune Dysregulation

  • Dana Weintraub

    Dana Weintraub

    Clinical Associate Professor, Pediatrics - General Pediatrics

    Current Research and Scholarly Interests Research interests include: 1) Childhood obesity, community-based interventions to increase physical activity 2) Impact of medical-legal collaboration on child and family health.

  • Irving Weissman

    Irving Weissman

    Director, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Virginia & D.K. Ludwig Professor for Clinical Investigation in Cancer Research, Professor of Developmental Biology and, by courtesy, of Biology

    Current Research and Scholarly Interests Stem cell and cancer stem cell biology; development of T and B lymphocytes; cell-surface receptors for oncornaviruses in leukemia. Hematopoietic stem cells; Lymphocyte homing, lymphoma invasiveness and metastasis.

  • Marius Wernig

    Marius Wernig

    Professor of Pathology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Epigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine

  • Matthew Wheeler

    Matthew Wheeler

    Assistant Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center

    Current Research and Scholarly Interests Translational research in rare and undiagnosed diseases. Basic and clinical research in cardiomyopathy genetics, mechanisms, screening, and treatment. Investigating novel agents for treatment of hypertrophic cardiomyopathy and new mechanisms in heart failure. Cardiovascular screening and genetics in competitive athletes, disease gene discovery in cardiomyopathy and rare disease. Informatics approaches to rare disease and multiomics. Molecular transducers of physical activity bioinformatics.

Latest information on COVID-19