School of Medicine


Showing 1-50 of 256 Results

  • Russ B. Altman

    Russ B. Altman

    Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine (General Medical Discipline), of Biomedical Data Science and, by courtesy, of Computer Science

    Current Research and Scholarly Interests I refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/

  • Cristina M. Alvira

    Cristina M. Alvira

    Assistant Professor of Pediatrics (Critical Care)

    Current Research and Scholarly Interests The overall objective of the Alvira Laboratory is to elucidate the mechanisms that promote postnatal lung development and repair, by focusing on three main scientific goals: (i) identification of the signaling pathways that direct the transition between the saccular and alveolar stages of lung development; (ii) exploration of the interplay between postnatal vascular and alveolar development; and (iii) determination of developmentally regulated pathways that mediate lung repair after injury.

  • Katrin Andreasson

    Katrin Andreasson

    Professor of Neurology at the Stanford University Medical Center

    Current Research and Scholarly Interests Our research focuses on understanding how immune responses initiate and accelerate synaptic and neuronal injury in age-related neurodegeneration, including models of Alzheimer's disease and Parkinson's disease. We also focus on the role of immune responses in aggravating brain injury in models of stroke. Our goal is the identification of critical immune pathways that function in neurologic disorders and that can be targeted to elicit disease modifying effects.

  • Timothy Angelotti MD, PhD

    Timothy Angelotti MD, PhD

    Associate Professor of Anesthesiology, Perioperative and Pain Medicine (ICU) at the Stanford University Medical Center

    Current Research and Scholarly Interests My research efforts are focused on investigating the pharmacological and physiological interface of the autonomic nervous system with effector organs. Utilizing molecular, cellular, and electrophysiological techniques, we are examining alpha2 adrenergic receptor function in cultured sympathetic neurons. Future research aims will be directed toward understanding neurotransmitter release in general.

  • Eric Andrew Appel

    Eric Andrew Appel

    Assistant Professor of Material Science and Engineering and, by courtesy, of Bioengineering

    Current Research and Scholarly Interests The underlying theme of the Appel Lab at Stanford University integrates concepts and approaches from supramolecular chemistry, natural/synthetic materials, and biology. We aim to develop supramolecular biomaterials that exploit a diverse design toolbox and take advantage of the beautiful synergism between physical properties, aesthetics, and low energy consumption typical of natural systems. Our vision is to use these materials to solve fundamental biological questions and to engineer advanced healthcare solutions.

  • Amin Arbabian

    Amin Arbabian

    Assistant Professor of Electrical Engineering

    Current Research and Scholarly Interests My group's research covers RF circuits and system design for (1) biomedical, (2) sensing, and (3) Internet of Things (IoT) applications.

  • Euan A. Ashley

    Euan A. Ashley

    Professor of Medicine (Cardiovascular) and, by courtesy, of Pathology at the Stanford University Medical Center

    Current Research and Scholarly Interests The Ashley lab is focused on precision medicine. We develop methods for the interpretation of whole genome sequencing data to improve diagnosis of genetic disease and to personalize the practice of medicine. We also use network approaches to characterize biology. The wet bench is where we take advantage of cell systems, transgenic models and microsurgical models of disease to prove causality of our favorite targets.

  • Tim L. Assimes, MD PhD

    Tim L. Assimes, MD PhD

    Associate Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Health Research and Policy (Epidemiology)

    Current Research and Scholarly Interests Genetic Epidemiology, Genetic Determinants of Complex Traits related to Cardiovasular Medicine, Coronary Artery Disease related pathway analyses and integrative genomics, Mendelian randomization studies, risk prediction for major adverse cardiovascular events, cardiovascular medicine related pharmacogenomics, ethnic differences in the determinants of Insulin Mediated Glucose Uptake, pharmacoepidemiology of cardiovascular drugs & outcomes

  • Leah Backhus, MD, MPH, FACS

    Leah Backhus, MD, MPH, FACS

    Associate Professor of Cardiothoracic Surgery (Thoracic Surgery) at the Palo Alto Veterans Affairs Health Care System

    Bio Leah Backhus trained in general surgery at the University of Southern California and cardiothoracic surgery at the University of California Los Angeles. She practices at Stanford Hospital and is Chief of Thoracic Surgery at the VA Palo Alto. Her surgical practice consists of general thoracic surgery with special emphasis on thoracic oncology and minimally invasive surgical techniques. She is also involved in research with the Thoracic Surgical Health Services Research group, and has grant funding through the Veterans Affairs Administration. Her current research interests are in imaging surveillance following treatment for lung cancer and cancer survivorship. She is a member of the National Lung Cancer Roundtable of the American Cancer Society serving as Chair of the Task Group on Lung Cancer in Women. She also serves as a professional member of the Patient Centered Outcomes Research Institute (PCORI) Advisory Panel on Improving Healthcare Systems. As an educator, Dr. Backhus is the Associate Program Director for the Thoracic Track Residency and serves on the ACGME Residency Review Committee for Thoracic Surgery which is the accrediting body for all cardiothoracic surgery training programs in the US.

  • Philip Beachy

    Philip Beachy

    The Ernest and Amelia Gallo Professor in the School of Medicine, Professor of Developmental Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Function of Hedgehog proteins and other extracellular signals in morphogenesis (pattern formation), in injury repair and regeneration (pattern maintenance). We study how the distribution of such signals is regulated in tissues, how cells perceive and respond to distinct concentrations of signals, and how such signaling pathways arose in evolution. We also study the normal roles of such signals in stem-cell physiology and their abnormal roles in the formation and expansion of cancer stem cells.

  • Hans-Christoph Becker

    Hans-Christoph Becker

    Professor of Radiology (General Radiology) at the Stanford University Medical Center

    Current Research and Scholarly Interests Myocardial bridges (MB) with associated upfront atherosclerotic lesions are common findings on coronary computed tomography angiography (CTA). Abnormal septal wall motion in exercise echocardiography (EE) may to be associated with MB. Intravascular ultrasound (IVUS) is considered the gold standard for the detection of MB. We investigate whether CTA is comparable to IVUS for the assessment of MB and upstream plaques in symptomatic patients with suspicion for MB raised by EE.

  • Gill Bejerano

    Gill Bejerano

    Associate Professor of Developmental Biology, of Computer Science and of Pediatrics (Genetics)

    Current Research and Scholarly Interests Dr. Bejerano, co-discoverer of ultraconserved elements, studies the Human Genome. His research focuses on genome sequence and function in both humans and related primate, mammalian and vertebrate species. He is deeply interested in mapping both coding and non-coding genome sequence variation to phenotype differences, and in extracting specific genetic insights from high throughput sequencing measurements, in the contexts of development and developmental abnormalities.

  • Daniel Bernstein

    Daniel Bernstein

    Alfred Woodley Salter and Mabel Smith Salter Endowed Professor in Pediatrics

    Current Research and Scholarly Interests 1. Role of the G protein coupled receptors in regulating mitochondrial structure and function.
    2. Differences between R and L ventricular responses to stress, including gene expression and miR regulation.
    3. Using iPSC-derived myocytes to understand heart failure and congenital heart disease.
    4. Tools for evaluation of cardiac physiology in transgenic mice and isolated cardiomyocytes.
    5. Anti-body mediated rejection.
    6. Biomarkers for post-transplant lymphoproliferative disorder.

  • Gerald Berry

    Gerald Berry

    Professor of Pathology at the Stanford University Medical Center

    Current Research and Scholarly Interests Cardiopulmonary and pulmonary transplant medicine; diagnostic surgical pathology

  • Vivek Bhalla, MD, FASN, FAHA

    Vivek Bhalla, MD, FASN, FAHA

    Assistant Professor of Medicine (Nephrology) at the Stanford University Medical Center

    Current Research and Scholarly Interests Dr. Bhalla's two primary research interests are in the interaction of the kidney in diabetes and hypertension. We use molecular, biochemical, and transgenic approaches to study mechanisms of physiologic and aberrant ion handling and its implications for hypertension in obesity and insulin resistance. We also study mechanisms of susceptibility to diabetic kidney disease including the role of the endothelium to regulate inflammation and kidney injury.

  • Sandip Biswal, MD

    Sandip Biswal, MD

    Associate Professor of Radiology (General Radiology) at the Stanford University Medical Center

    Current Research and Scholarly Interests The management of individuals suffering from chronic pain is unfortunately limited by poor diagnostic tests and therapies. Our research group is interested in 'imaging pain' by using novel imaging techniques to study peripheral nociception and inflammation with the goal of accurately identifying the location of pain generators. We are developing new approaches with positron emission tomography (PET) and magnetic resonance imaging (MRI) (PET/MRI) and are currently in clinical trials.

  • Richard Bland

    Richard Bland

    Professor (Research) of Pediatrics (Neonatology), Emeritus

    Current Research and Scholarly Interests Our research focuses on the pathogenesis and treatment of acute and chronic neonatal lung injury and the mechanisms that regulate lung fluid balance and alveolar & pulmonary vascular development after premature birth.

  • Helen M. Blau

    Helen M. Blau

    The Donald E. and Delia B. Baxter Foundation Professor and Director, Baxter Laboratory for Stem Cell Biology

    Current Research and Scholarly Interests Prof. Helen Blau's research area is regenerative medicine with a focus on stem cells. Her research on nuclear reprogramming and demonstrating the plasticity of cell fate using cell fusion is well known and her laboratory has also pioneered the design of biomaterials to mimic the in vivo microenvironment and direct stem cell fate. Current findings are leading to more efficient iPS generation, cell based therapies by dedifferentiation a la newts, and discovery of novel molecules and therapies.

  • Anne Brunet

    Anne Brunet

    Michele and Timothy Barakett Endowed Professor

    Current Research and Scholarly Interests Our lab studies the molecular basis of longevity. We are interested in the mechanism of action of known longevity genes, including FOXO and SIRT, in the mammalian nervous system. We are particularly interested in the role of these longevity genes in neural stem cells. We are also discovering novel genes and processes involved in aging using two short-lived model systems, the invertebrate C. elegans and an extremely short-lived vertebrate, the African killifish N. furzeri.

  • Carlos Bustamante

    Carlos Bustamante

    Professor of Biomedical Data Science, of Genetics and, by courtesy, of Biology

    Current Research and Scholarly Interests My research focuses on analyzing genome wide patterns of variation within and between species to address fundamental questions in biology, anthropology, and medicine. My group works on a variety of organisms and model systems ranging from humans and other primates to domesticated plant and animals. Much of our research is at the interface of computational biology, mathematical genetics, and evolutionary genomics.

  • Eugene Butcher

    Eugene Butcher

    Klaus Bensch Professor in Pathology

    Current Research and Scholarly Interests Our interests include:
    1) The physiology and significance of lymphocyte homing in local and systemic immunity;
    2) biochemical and genetic studies of molecules that direct leukocyte recruitment;
    3) cellular and molecular genetic studies of leukocyte chemotaxis and the role of chemokines;
    4) vascular differentiation in normal and pathologic inflammatory states;
    5) systems and chemical biology approaches to understanding the regulation of lymphocyte trafficking programs.

  • Steven D. Chang, MD

    Steven D. Chang, MD

    Robert C. and Jeannette Powell Neurosciences Professor and, by courtesy, of Otolaryngology-Head and Neck Surgery

    Current Research and Scholarly Interests Clinical research includes studies in the treatment of cerebrovascular disorders, such as aneurysms and AVMs, as well as the use of radiosurgery to treat tumors and vascular malformations of the brain and spine.

    Dr. Chang is C0-Director of the Cyberknife Radiosurgery Program.

    Dr. Chang is also the head of the The Stanford Neuromolecular Innovation Program with the goal of developing new technologies to improve the diagnosis and treatment of patients affected by neurological conditions.

  • Tara I. Chang, MD, MS, FASN

    Tara I. Chang, MD, MS, FASN

    Assistant Professor of Medicine (Nephrology) at the Stanford University Medical Center

    Current Research and Scholarly Interests My research focuses on issues such as blood pressure control, coronary revascularization, and the comparative effectiveness of cardioprotective medications in patients with chronic kidney disease, with the long-term goal of improving cardiovascular outcomes in these high-risk patients.

  • Jennifer R. Cochran

    Jennifer R. Cochran

    Shriram Chair of Bioengineering, Associate Professor of Bioengineering and, by courtesy, of Chemical Engineering

    Current Research and Scholarly Interests Molecular Bioengineering, Protein Biochemistry, Biotechnology, Cell and Tissue Engineering, Molecular Imaging, Chemical Biology

  • Carol Conrad

    Carol Conrad

    Associate Professor of Pediatrics (Pulmonary Medicine) at Lucile Salter Packard Children's Hospital

    Current Research and Scholarly Interests I am interested in studying the effects of inflammation in the lung, in particular, how N-acetylcysteine may affect and decrease that in CF patients. I am the PI of a multi-center study researching this question. Additionally, in a separate study involving children who have received lung transplants, I am a participating site in an NIH-sponsored observational and mechanistic multi-center study that will examine the role of viral infections in causing chronic graft rejection.

  • Gerald Crabtree

    Gerald Crabtree

    Department of Pathology Professor in Experimental Pathology and Professor of Developmental Biology

    Current Research and Scholarly Interests Chromatin regulation and its roles in human cancer and the development of the nervous system. Engineering new methods for studying and controlling chromatin in living cells.

  • Martha S. Cyert

    Martha S. Cyert

    Professor of Biology

    Current Research and Scholarly Interests The Cyert lab is identifying signaling networks for calcineurin, the conserved Ca2+/calmodulin-dependent phosphatase, and target of immunosuppressants FK506 and cyclosporin A, in yeast and mammals. Cell biological investigations of target dephosphorylation reveal calcineurin’s many physiological functions. Roles for short linear peptide motifs, or SLiMs, in substrate recognition, network evolution, and regulation of calcineurin activity are being studied.

  • Jeremy Dahl

    Jeremy Dahl

    Associate Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly Interests Ultrasonic beamforming, imaging methods, systems, and devices.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor in Chemistry

    Bio Professor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. in Beijing (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). His doctoral work under Dr. Charles Lieber at Harvard U. (Ph.D. 1994) focused on charge-density waves and superconductivity. During postdoctoral research at Rice U. with Dr. Richard Smalley, he developed carbon nanotube probes for atomic force microscopy. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, AAAS and National Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Michael D. Dake, MD

    Michael D. Dake, MD

    Thelma and Henry Doelger Professor of Cardiovascular Surgery

    Current Research and Scholarly Interests Improved endovascular procedures and devices to treat aortic lesions, peripheral arterial disease and venous abnormalities. Focused interest in drug-eluting stents and balloons, endovascular stent-grafts, including branched aortic devices and techniques for the endovascular management of aortic dissection. Current clinical research projects include drug-eluting stents for superficial femoral arterial disease and multiple device trials to evaluate stent-grafts for the treatment of aortic lesions.

  • Ronald L. Dalman MD

    Ronald L. Dalman MD

    Walter Clifford Chidester and Elsa Rooney Chidester Professor of Surgery

    Current Research and Scholarly Interests Vascular biology, arterial remodeling, aneurysm development; innovative treatment strategies for AAA, animal models of arterial disease, arterial remodeling and flow changes in spinal cord injury, genetic regulation of arterial aneurysm formation

  • Rajesh Dash, MD, PhD, Medical & Scientific Director, SSATHI

    Rajesh Dash, MD, PhD, Medical & Scientific Director, SSATHI

    Assistant Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center

    Current Research and Scholarly Interests My research focuses on imaging cell signaling in the heart. I am developing molecular imaging probes that track to injured heart tissue, such that non-invasive imaging techniques, like cardiac MRI, can visualize these probe signals in real-time. The translational goal of my research is to develop new ways to detect early cardiac injury before permanent damage occurs, so that preventive medical therapy can be started.

  • Mark M. Davis

    Mark M. Davis

    The Burt and Marion Avery Family Professor

    Current Research and Scholarly Interests Molecular mechanisms of lymphocyte recognition and differentiation; Systems immunology and human immunology; vaccination and infection.

  • Vinicio de Jesus Perez MD

    Vinicio de Jesus Perez MD

    Assistant Professor of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly Interests My work is aimed at understanding the molecular mechanisms involved in the development and progression of pulmonary arterial hypertension (PAH). I am interested in understanding the role that the BMP and Wnt pathways play in regulating functions of pulmonary endothelial and smooth muscle cells both in health and disease.

  • Utkan Demirci

    Utkan Demirci

    Professor of Radiology (Canary Cancer Center) and, by courtesy, of Electrical Engineering

    Bio Dr. Demirci is currently a Professor at Stanford University School of Medicine with tenure at the Canary Center for Early Cancer Detection. Prior to his Stanford appointment, he was an Associate Professor of Medicine at Brigham and Women's Hospital, Harvard Medical School and at Harvard-MIT Division of Health Sciences and Technology serving at the Division of Biomedical Engineering, Division of Infectious Diseases and Renal Division. He leads a group of 20+ researchers focusing on micro- and nano-scale technologies. He received his B.S. degree in Electrical Engineering in 1999 as a James B. Angell Scholar (summa cum laude) from University of Michigan, Ann Arbor. He received his M.S. degree in 2001 in Electrical Engineering, M.S. degree in Management Science and Engineering in 2005, and Ph.D. in Electrical Engineering in 2005, all from Stanford University.

    The Demirci Bio-Acoustic MEMS in Medicine Lab (BAMM) specializes in applying micro- and nanoscale technologies to problems in medicine at the interface between micro/nanoscale engineering and medicine. Our goal is to apply innovative technologies to clinical problems. Our major research theme focuses on creating new microfluidic technology platforms targeting broad applications in medicine. In this interdisciplinary space at the convergence of engineering, biology and materials science, we create novel technologies for disposable point-of-care (POC) diagnostics and monitoring of infectious diseases, cancer and controlling cellular microenvironment in nanoliter droplets for biopreservation and microscale tissue engineering applications. These applications are unified around our expertise to test the limits of cell manipulation by establishing microfluidic platforms to provide solutions to real world problems at the clinic.

    Our lab creates technologies to manipulate cells in nanoliter volumes to enable solutions for real world problems in medicine including applications in infectious disease diagnostics and monitoring for global health, cancer early detection, cell encapsulation in nanoliter droplets for cryobiology, and bottom-up tissue engineering. Dr. Demirci has published over 120 peer reviewed publications in journals including PNAS, Nature Communications, Advanced Materials, Small, Trends in Biotechnology, Chemical Society Reviews and Lab-chip, over 150 conference abstracts and proceedings, 10+ book chapters, and an edited book. His work was highlighted in Wired Magazine, Nature Photonics, Nature Medicine, MIT Technology Review, Reuters Health News, Science Daily, AIP News, BioTechniques, and Biophotonics. He is fellow-elect of the American Institute of Biological and Medical Engineering (AIMBE, 2017). His scientific work has been recognized by numerous national and international awards including the NSF Faculty Early Career Development (CAREER) Award (2012), the IEEE-EMBS Early Career Achievement Award (2012), Scientist of the year award from Stanford radiology Department (2017). He was selected as one of the world’s top 35 young innovators under the age of 35 (TR-35) by the MIT Technology Review at the age of 28. In 2004, he led a team that won the Stanford University Entrepreneur’s Challenge Competition and Global Start-up Competition in Singapore. His work has been translated to start-up companies including DxNow, KOEK Biotechnology and LEVITAS. There has been over 10,000 live births in the US, Europe and Turkey using the sperm selection technology that came out of Dr. Demirci's lab. He has been cited over 2500 times within the last two years (H index, 48).

  • Gundeep Dhillon, MD, MPH

    Gundeep Dhillon, MD, MPH

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine) at the Stanford University Medical Center

    Current Research and Scholarly Interests 1. Use of an administrative database (UNOS) to study lung transplant outcomes.
    2. Expression of the plasminogen activator inhibitor (PAI) 1 antibody in peripheral blood after lung transplantation and its association with bronchiolitis obliterans syndrome (chronic rejection).
    3. Impact of airway hypoxia, due to lack of bronchial circulation, on long-term lung transplant outcomes.
    4. CMV specific T-cell immunity in lung transplant recipients and its impact on acute rejection.

  • Anne Dubin

    Anne Dubin

    Professor of Pediatrics (Pediatric Cardiology) at the Lucile Salter Packard Children's Hospital

    Current Research and Scholarly Interests Arrhythmia management in pediatric heart failure, especially resynchronization therapy in congenital heart disease,Radio frequency catheter ablation of pediatric arrhythmias,