School of Medicine

Showing 1-16 of 16 Results

  • Axel Brunger

    Axel Brunger

    Professor of Molecular and Cellular Physiology, of Neurology, of Photon Science and, by courtesy, of Structural Biology

    Current Research and Scholarly Interests One of Axel Brunger's major goals is to decipher the molecular mechanisms of synaptic neurotransmitter release by conducting imaging and single-molecule/particle reconstitution experiments, combined with near-atomic resolution structural studies of the synaptic vesicle fusion machinery.

  • Zev Bryant

    Zev Bryant

    Associate Professor of Bioengineering and, by courtesy, of Structural Biology

    Current Research and Scholarly Interests Molecular motors lie at the heart of biological processes from DNA replication to vesicle transport. My laboratory seeks to understand the physical mechanisms by which these nanoscale machines convert chemical energy into mechanical work.

  • Patricia Cross

    Patricia Cross

    Professor (Teaching) of Structural Biology, Emerita

    Current Research and Scholarly Interests I am not now actively involved in research, but my past endeavors remain central to my position in guiding medical students in their scholarship pursuits.
    The cited publications represent three areas of interest:
    (1) medical student research (Jacobs and Cross)
    (2) women in medicine (Cross and Steward)
    (3) the reproductive physiology of early development (Cross and Brinster)
    Only one publication is listed in this area since the research is not current, but others (in e.g. Nature, DevBiol, ExpCellRes) give a broader picture of my pursuit when at the University of Pennsylvania.

  • Adam de la Zerda

    Adam de la Zerda

    Associate Professor of Structural Biology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly Interests Molecular imaging technologies for studying cancer biology in vivo

  • Ron Dror

    Ron Dror

    Associate Professor of Computer Science and, by courtesy, of Molecular and Cellular Physiology and of Structural Biology

    Bio Ron Dror is an Associate Professor of Computer Science and, by courtesy, Molecular and Cellular Physiology and Structural Biology at Stanford University, where he is also affiliated with the Institute for Computational and Mathematical Engineering, the Stanford Artificial Intelligence Lab, Bio-X, ChEM-H, and the Biophysics and Biomedical Informatics Programs. Dr. Dror's research at Stanford addresses a broad set of computational biology problems related to the spatial organization and dynamics of biomolecules and cells.

    Before joining Stanford in March 2014, Dr. Dror served as second-in-command of D. E. Shaw Research, a hundred-person company, having joined in 2002 as its first hire. At DESRES, he focused on high-performance computing and biomolecular simulation—in particular, developing technology that accelerates molecular dynamics simulations by orders of magnitude, and applying these simulations to the study of protein function, protein folding, and protein-drug interactions (part of a project highlighted by Science as one of the top 10 scientific breakthroughs of 2010).

    Dr. Dror earned a PhD in Electrical Engineering and Computer Science at MIT, an MPhil in Biological Sciences as a Churchill Scholar at the University of Cambridge, and both a BA in Mathematics and a BS in Electrical and Computer Engineering at Rice University, summa cum laude. As a student, he worked in genomics, vision, image analysis, and neuroscience. He has been awarded a Fulbright Scholarship and fellowships from the National Science Foundation, the Department of Defense, and the Whitaker Foundation, as well as a Gordon Bell Prize and several Best Paper awards.

  • Chris Garcia

    Chris Garcia

    Younger Family Professor and Professor of Structural Biology

    Current Research and Scholarly Interests Structural and functional studies of transmembrane receptor interactions with their ligands in systems relevant to human health and disease - primarily in immunity, infection, and neurobiology. We study these problems using protein engineering, structural, biochemical, and combinatorial biology approaches.

  • Ted Jardetzky

    Ted Jardetzky

    Professor of Structural Biology

    Current Research and Scholarly Interests The Jardetzky laboratory is studying the structures and mechanisms of macromolecular complexes important in viral pathogenesis, allergic hypersensitivities and the regulation of cellular growth and differentiation, with an interest in uncovering novel conceptual approaches to intervening in disease processes. Ongoing research projects include studies of paramyxovirus and herpesvirus entry mechanisms, IgE-receptor structure and function and TGF-beta ligand signaling pathways.

  • Roger Kornberg

    Roger Kornberg

    Mrs. George A. Winzer Professor in Medicine

    Current Research and Scholarly Interests We study the regulation of transcription, the first step in gene expression. The main lines of our work are 1) reconstitution of the process with more than 50 pure proteins and mechanistic analysis, 2) structure determination of the 50 protein complex at atomic resolution, and 3) studies of chromatin remodelling, required for transcription of the DNA template in living cells

  • Michael Levitt

    Michael Levitt

    Robert W. and Vivian K. Cahill Professor in Cancer Research in the School of Medicine and Professor, by courtesy, of Computer Science

    Current Research and Scholarly Interests Stanford Professor of Biophysics and Computational Biology, Cambridge PhD and DSc, 2013 Chemistry Nobel Laureate (complex systems), FRS & US National Academy member, I code well for my age.

  • David B. McKay

    David B. McKay

    Professor of Structural Biology, Emeritus

    Current Research and Scholarly Interests Three-dimensional structure determination and biophysical studies of macromolecules.

  • Peter Parham

    Peter Parham

    Professor of Structural Biology and of Microbiology and Immunology

    Current Research and Scholarly Interests The Parham laboratory investigates the biology, genetics, and evolution of MHC class I molecules and NK cell receptors.

  • Joseph (Jody) Puglisi

    Joseph (Jody) Puglisi

    Jauch Professor and Professor of Structural Biology

    Current Research and Scholarly Interests The Puglisi group investigates the role of RNA in cellular processes and disease. We investigate dynamics using single-molecule approaches. Our goal is a unified picture of structure, dynamics and function. We are currently focused on the mechanism and regulation of translation, and the role of RNA in viral infections. A long-term goal is to target processes involving RNA with novel therapeutic strategies.

  • Georgios Skiniotis

    Georgios Skiniotis

    Professor of Molecular and Cellular Physiology, of Structural Biology and of Photon Science

    Bio The Skiniotis laboratory seeks to resolve structural and mechanistic questions underlying biological processes that are central to cellular physiology. Our investigations employ primarily cryo-electron microscopy (cryoEM) and 3D reconstruction techniques complemented by biochemistry, biophysics and simulation methods to obtain a dynamic view into the macromolecular complexes carrying out these processes. The main theme in the lab is the structural biology of cell surface receptors that mediate intracellular signaling and communication. Our current main focus is the exploration of the mechanisms responsible for transmembrane signal instigation in cytokine receptors and G protein coupled receptor (GPCR) complexes.

  • Soichi Wakatsuki

    Soichi Wakatsuki

    Professor of Photon Science and of Structural Biology

    Bio Soichi Wakatsuki is a Professor of Photon Science at the SLAC National Accelerator Laboratory where he recently initiated the Biociences Division, and Professor of Structural Biology, Stanford School of Medicine. He received his B.S and M.S. degrees in Chemical Engineering from University of Tokyo, and his Ph.D. degree in Chemistry from Stanford University in 1991. After postdoctoral studies on time-resolved x-ray crystallography of enzyme reactions in Oxford (1990 to 1994), he moved to Grenoble, France in 1994 to work at the European Synchrotron Radiation Facility (ESRF) where he led Joint Structural Biology Group to develop high-brilliance x-ray crystallography beamlines and instruments, as well as several structural biology projects on protein transport. In 2000, Soichi moved back to Japan to start a new Structural Biology Research Center at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan, and later served as Director of Photon Factory (national synchrotron radiation facility) from 2006 to 2012. There he further developed x-ray beamlines and a large scale protein crystallization system, led initiatives to start three national projects on structural proteomics. Fascinated by new research opportunities in integrative bioimaging at Stanford and the world’s first hard x-ray free electron laser (XFEL) at SLAC, Soichi returned to Stanford in 2013. Soichi’s research interests include structural biology of post-translational modification and vesicle transport, structural biology of polyubiquitin recognition, synchrotron radiation and XFEL instrumentation, protein crystallography and small angle X-ray scattering, integrative multi-scale bioimaging.

  • William Weis

    William Weis

    William M. Hume Professor in the School of Medicine, Professor of Structural Biology, of Molecular and Cellular Physiology and of Photon Science

    Current Research and Scholarly Interests Our laboratory studies molecular interactions that underlie the establishment and maintenance of cell and tissue structure. Our specific areas of interest are the architecture and dynamics of intercellular adhesion junctions, the molecular basis of cell polarity, and the Wnt signaling pathway. We also have a long-standing interest in carbohydrate-based cellular recognition and adhesion.

Latest information on COVID-19