School of Medicine


Showing 1-20 of 27 Results

  • Philip Beachy

    Philip Beachy

    The Ernest and Amelia Gallo Professor in the School of Medicine, Professor of Urology, of Developmental Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Function of Hedgehog proteins and other extracellular signals in morphogenesis (pattern formation), in injury repair and regeneration (pattern maintenance). We study how the distribution of such signals is regulated in tissues, how cells perceive and respond to distinct concentrations of signals, and how such signaling pathways arose in evolution. We also study the normal roles of such signals in stem-cell physiology and their abnormal roles in the formation and expansion of cancer stem cells.

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Director, ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Radiology and of Chemical and Systems Biology

    Bio Professor Carolyn Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface sugars important to human health and disease. Her research group profiles changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and uses this information to develop new diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Dr. Bertozzi completed her undergraduate degree in Chemistry at Harvard University and her Ph.D. at UC Berkeley, focusing on the chemical synthesis of oligosaccharide analogs. During postdoctoral work at UC San Francisco, she studied the activity of endothelial oligosaccharides in promoting cell adhesion at sites of inflammation. She joined the UC Berkeley faculty in 1996. A Howard Hughes Medical Institute Investigator since 2000, she came to Stanford University in June 2015, among the first faculty to join the interdisciplinary institute ChEM-H (Chemistry, Engineering & Medicine for Human Health). Named a MacArthur Fellow in 1999, Dr. Bertozzi has received many awards for her dedication to chemistry, and to training a new generation of scientists fluent in both chemistry and biology. She has been elected to the Institute of Medicine, National Academy of Sciences, and American Academy of Arts and Sciences; and received the Lemelson-MIT Prize, the Heinrich Wieland Prize, and the ACS Award in Pure Chemistry, among many others. Her efforts in undergraduate education have earned the UC Berkeley Distinguished Teaching Award and the Donald Sterling Noyce Prize for Excellence in Undergraduate Teaching.

    Today, the Bertozzi Group at Stanford studies the glycobiology underlying diseases such as cancer, inflammatory disorders such as arthritis, and infectious diseases such as tuberculosis. The work has advanced understanding of cell surface oligosaccharides involved in cell recognition and inter-cellular communication.

    Dr. Bertozzi's lab also develops new methods to perform controlled chemical reactions within living systems. The group has developed new tools for studying glycans in living systems, and more recently nanotechnologies for probing biological systems. Such "bioorthogonal" chemistries enable manipulation of biomolecules in their living environment.

    Several of the technologies developed in the Bertozzi lab have been adapted for commercial use. Actively engaged with several biotechnology start-ups, Dr. Bertozzi founded Redwood Bioscience of Emeryville, California, and has served on the research advisory board of GlaxoSmithKline.

  • Matthew Bogyo

    Matthew Bogyo

    Professor of Pathology and of Microbiology and Immunology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Our lab uses chemical, biochemical, and cell biological methods to study protease function in human disease. Projects include:

    1) Design and synthesis of novel chemical probes for serine and cysteine hydrolases.

    2) Understanding the role of hydrolases in bacterial pathogenesis and the human parasites, Plasmodium falciparum and Toxoplasma gondii.

    3) Defining the specific functional roles of proteases during the process of tumorogenesis.

    4) In vivo imaging of protease activity

  • James K. Chen

    James K. Chen

    Professor of Chemical and Systems Biology and of Developmental Biology and, by courtesy, of Chemistry

    Current Research and Scholarly Interests Our laboratory combines synthetic chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.

  • Karlene Cimprich

    Karlene Cimprich

    Professor of Chemical and Systems Biology

    Current Research and Scholarly Interests Genomic instability contributes to many diseases, but it also underlies many natural processes. The Cimprich lab is focused on understanding how mammalian cells maintain genomic stability in the context of DNA replication stress and DNA damage. We are interested in the molecular mechanisms underlying the cellular response to replication stress and DNA damage as well as the links between DNA damage and replication stress to human disease.

  • Markus Covert

    Markus Covert

    Associate Professor of Bioengineering and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Our focus is on building computational models of complex biological processes, and using them to guide an experimental program. Such an approach leads to a relatively rapid identification and validation of previously unknown components and interactions. Biological systems of interest include metabolic, regulatory and signaling networks as well as cell-cell interactions. Current research involves the dynamic behavior of NF-kappaB, an important family of transcription factors.

  • Justin Du Bois

    Justin Du Bois

    Henry Dreyfus Professor in Chemistry and Professor, by courtesy, of Chemical and Systems Biology

    Bio Research and Scholarship

    Research in the Du Bois laboratory spans reaction methods development, natural product synthesis, and chemical biology, and draws on expertise in molecular design, molecular recognition, and physical organic chemistry. An outstanding goal of our program has been to develop C–H bond functionalization processes as general methods for organic chemistry, and to demonstrate how such tools can impact the logic of chemical synthesis. A second area of interest focuses on the role of ion channels in electrical conduction and the specific involvement of channel subtypes in the sensation of pain. This work is enabled in part through the advent of small molecule modulators of channel function.

    The Du Bois group has described new tactics for the selective conversion of saturated C–H to C–N and C–O bonds. These methods have general utility in synthesis, making possible the single-step incorporation of nitrogen and oxygen functional groups and thus simplifying the process of assembling complex molecules. To date, lab members have employed these versatile oxidation technologies to prepare natural products that include manzacidin A and C, agelastatin, tetrodotoxin, and saxitoxin. Detailed mechanistic studies of metal-catalyzed C–H functionalization reactions are performed in parallel with process development and chemical synthesis. These efforts ultimately give way to advances in catalyst design. A long-standing goal of this program is to identify robust catalyst systems that afford absolute control of reaction selectivity.

    In a second program area, the Du Bois group is exploring voltage-gated ion channel structure and function using the tools of chemistry in combination with those of molecular biology, electrophysiology, microscopy and mass spectrometry. Much of this work has focused on studies of eukaryotic Na and Cl ion channels. The Du Bois lab is interested in understanding the biochemical mechanisms that underlie channel subtype regulation and how such processes may be altered following nerve injury. Small molecule toxins serve as lead compounds for the design of isoform-selective channel modulators, affinity reagents, and fluorescence imaging probes. Access to toxins and modified forms thereof (including saxitoxin, gonyautoxin, batrachotoxin, and veratridine) through de novo synthesis drives studies to elucidate toxin-receptor interactions and to develop new pharmacologic tools to study ion channel function in primary cells and murine pain models.

  • James Ferrell

    James Ferrell

    Professor of Chemical and Systems Biology and of Biochemistry

    Current Research and Scholarly Interests My lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.

  • Daniel Jarosz

    Daniel Jarosz

    Assistant Professor of Chemical and Systems Biology and of Developmental Biology

    Current Research and Scholarly Interests My laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.

  • Michael Lin

    Michael Lin

    Associate Professor of Neurobiology, of Bioengineering and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Our lab applies biochemical and engineering principles to the development of protein-based tools for investigating biology in living animals. Topics of investigation include fluorescent protein-based voltage indicators, synthetic light-controllable proteins, bioluminescent reporters, and applications to studying animal models of disease.

  • Tobias Meyer

    Tobias Meyer

    Mrs. George A. Winzer Professor in Cell Biology

    Current Research and Scholarly Interests CELLULAR INFORMATION PROCESSING. We are using live single-cell microscopy approaches to understand the design principles of cell signaling circuits. Mammalian signaling processes have a unique logic due to the large number of signaling proteins, second messengers and chromatin modifiers involved in each decision process. We are particularly interested in understanding how cells make decisions to enter and exit the cell cycle and how they decide to polarize and move.

  • Beverly S. Mitchell, M.D.

    Beverly S. Mitchell, M.D.

    George E. Becker Professor in Medicine and Professor, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Beverly Mitchell's research relates to the development of new therapies for hematologic malignancies, including leukemias and myelodsyplastic syndromes. She is interested in preclinical proof of principle studies on mechanisms inducing cell death and on metabolic targets involving nucleic acid biosynthesis in malignant cells. She is also interested in the translation of these studies into clinical trials.

  • Daria Mochly-Rosen

    Daria Mochly-Rosen

    The George D. Smith Professor in Translational Medicine

    Current Research and Scholarly Interests Two areas: 1. Using rationally-designed peptide inhibitors to study protein-protein interactions in cell signaling. Focus: protein kinase C in heart and large GTPases regulating mitochondrial dynamics in neurodegdenration. 2. Using small molecules (identified in a high throughput screens and synthetic chemistry) as activators and inhibitors of aldehyde dehydrogenases, a family of detoxifying enzymes, and glucose-6-phoshate dehydrogenase, in normal cells and in models of human diseases.

  • Lei Stanley Qi

    Lei Stanley Qi

    Assistant Professor of Bioengineering and of Chemical and Systems Biology

    Bio Dr. Lei Qi (Stanley) is Assistant Professor in the Department of Bioengineering (School of Engineering), Department of Chemical and Systems Biology (School of Medicine), and a core faculty member in Stanford ChEM-H Institute. He is one pioneer in the CRISPR technology development for genome engineering. He has developed the CRISPRi/a technologies for purposes beyond gene editing: gene regulation using CRISPR interference (CRISPRi, gene repression) and CRISPR activation (CRISPRa, gene activation), CRISPR dynamic imaging of chromatin in living cells, and CRISPRi/a high-throughput single or combinatorial genetic screens. He is also active in the field of Synthetic Biology and has developed synthetic noncoding RNAs for controlling transcription and translation. He obtained his Ph.D. in Bioengineering from the University of California Berkeley/UCSF in 2012. He joined UCSF as faculty fellow between 2012 to 2014, and joined the faculty at Stanford University since 2014. His lab currently is applying genetic engineering to rational cell design for understanding genomics and cell therapy.

  • Richard Roth

    Richard Roth

    Professor of Chemical and Systems Biology, Emeritus

    Current Research and Scholarly Interests Insulin is one of the primary regulators of rapid anabolic responses in the body. Defects in the synthesis and/or ability of cells to respond to insulin results in the condition known as diabetes mellitus. To better design methods of treatment for this disorder, we have been focusing our research on how insulin elicits its various biological responses.

  • Jan Skotheim

    Jan Skotheim

    Associate Professor of Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests A central aim of the burgeoning field of systems biology is to understand the principles governing genetic control networks. I believe finding the principles underlying genetic circuits will occur through detailed studies and then comparisons of several natural systems. Due to its extensive development as an experimental system, our favorite model, the budding yeast cell cycle, is poised to become central to this enterprise.