School of Medicine
Showing 1-10 of 21 Results
-
Philip Beachy
The Ernest and Amelia Gallo Professor in the School of Medicine, Professor of Urology, of Developmental Biology and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly Interests Function of Hedgehog proteins and other extracellular signals in morphogenesis (pattern formation), in injury repair and regeneration (pattern maintenance). We study how the distribution of such signals is regulated in tissues, how cells perceive and respond to distinct concentrations of signals, and how such signaling pathways arose in evolution. We also study the normal roles of such signals in stem-cell physiology and their abnormal roles in the formation and expansion of cancer stem cells.
-
Gill Bejerano
Professor of Developmental Biology, of Computer Science, of Pediatrics (Genetics) and of Biomedical Data Science
Current Research and Scholarly Interests Dr. Bejerano, co-discoverer of ultraconserved elements, studies the Human Genome. His research focuses on genome sequence and function in both humans and related primate, mammalian and vertebrate species. He is deeply interested in mapping both coding and non-coding genome sequence variation to phenotype differences, and in extracting specific genetic insights from high throughput sequencing measurements, in the contexts of development and developmental abnormalities.
-
Alistair Boettiger
Assistant Professor of Developmental Biology
Current Research and Scholarly Interests My lab focuses on investigating the role of three-dimensional genome organization in regulating gene expression and in shaping cell fate specification during development. We pursue this with advanced single-molecule imaging and transgenics.
-
James K. Chen
Jauch Professor and Professor of Chemical and Systems Biology, of Developmental Biology and of Chemistry
Current Research and Scholarly Interests Our laboratory combines chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.
-
Gerald Crabtree
Department of Pathology Professor in Experimental Pathology and Professor of Developmental Biology
Current Research and Scholarly Interests Chromatin regulation and its roles in human cancer and the development of the nervous system. Engineering new methods for studying and controlling chromatin in living cells.
-
Margaret T. Fuller
Reed-Hodgson Professor in Human Biology and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)
Current Research and Scholarly Interests Regulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.
-
Daniel Jarosz
Associate Professor of Chemical and Systems Biology and of Developmental Biology
Current Research and Scholarly Interests My laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.
-
Seung K. Kim M.D., Ph.D.
Professor of Developmental Biology and, by courtesy, of Medicine (Endocrinology)
Current Research and Scholarly Interests We study the development of pancreatic islet cells using molecular, embryologic and genetic methods in several model systems, including mice, pigs, human pancreas, embryonic stem cells, and Drosophila. Our work suggests that critical factors required for islet development are also needed to maintain essential functions of the mature islet. These approaches have informed efforts to generate replacement islets from renewable sources for diabetes.
-
Stuart Kim
Professor of Developmental Biology, Emeritus
Current Research and Scholarly Interests Mechanisms of Aging in C. elegans and humans.