Stanford ChEM-H


Showing 1-10 of 98 Results

  • Justin P. Annes M.D., Ph.D.

    Justin P. Annes M.D., Ph.D.

    Assistant Professor of Medicine (Endocrinology)

    Current Research and Scholarly Interests The ANNES LABORATORY of Molecular Endocrinology: Leveraging Chemical Biology to Treat Endocrine Disorders

    DIABETES
    The prevalence of diabetes is increasing at a staggering rate. By the year 2050 an astounding 25% of Americans will be diabetic. The goal of my research is to uncover therapeutic strategies to stymie the ensuing diabetes epidemic. To achieve this goal we have developed a variety of innovate experimental approaches to uncover novel approaches to curing diabetes.

    (1) Beta-Cell Regeneration: Diabetes results from either an absolute or relative deficiency in insulin production. Our therapeutic strategy is to stimulate the regeneration of insulin-producing beta-cells to enhance an individual’s insulin secretion capacity. We have developed a unique high-throughput chemical screening platform which we use to identify small molecules that promote beta-cell growth. This work has led to the identification of key molecular pathways (therapeutic targets) and candidate drugs that promote the growth and regeneration of islet beta-cells. Our goal is to utilize these discoveries to treat and prevent diabetes.

    (2) The Metabolic Syndrome: A major cause of the diabetes epidemic is the rise in obesity which leads to a cluster of diabetes- and cardiovascular disease-related metabolic abnormalities that shorten life expectancy. These physiologic aberrations are collectively termed the Metabolic Syndrome (MS). My laboratory has developed an original in vivo screening platform t to identify novel hormones that influence the behaviors (excess caloric consumption, deficient exercise and disrupted sleep-wake cycles) and the metabolic abnormalities caused by obesity. We aim to manipulate these hormone levels to prevent the development and detrimental consequences of the MS.

    HEREDIATY PARAGAGLIOMA SYNDROME
    The Hereditary Paraganglioma Syndrome (hPGL) is a rare genetic cancer syndrome that is most commonly caused by a defect in mitochondrial metabolism. Our goal is to understand how altered cellular metabolism leads to the development of cancer. Although hPGL is uncommon, it serves as an excellent model for the abnormal metabolic behavior displayed by nearly all cancers. Our goal is to develop novel therapeutic strategies that target the abnormal behavior of cancer cells. In the laboratory we have developed hPGL mouse models and use high throughput chemical screening to identify the therapeutic susceptibilities that result from the abnormal metabolic behavior of cancer cells.

    As a physician scientist trained in clinical genetics I have developed expertise in hereditary endocrine disorders and devoted my efforts to treating families affected by the hPGL syndrome. By leveraging our laboratory expertise in the hPGL syndrome, our care for individuals who have inherited the hPGL syndrome is at the forefront of medicine. Our goal is to translate our laboratory discoveries to the treatment of affected families.

  • Ben Barres

    Ben Barres

    Professor of Neurobiology, of Developmental Biology, of Neurology and, by courtesy, of Ophthalmology

    Current Research and Scholarly Interests Our lab is interested in the neuronal-glial interactions that underlie the development and function of the mammlian central nervous system.

  • Michael Bassik

    Michael Bassik

    Assistant Professor of Genetics

    Current Research and Scholarly Interests We are interested in the mechanism by which bacterial toxins, viruses, and protein aggregates hijack the secretory pathway and kill cells. More broadly, we investigate how diverse stresses (biological, chemical) signal to the apoptotic machinery.

    To pursue these interests, we develop widely applicable new technologies to screen and measure genetic interactions; these include high-complexity shRNA libraries, which have allowed the first systematic genetic interaction maps in mammalian cells.

  • Daniel Bernstein

    Daniel Bernstein

    Alfred Woodley Salter and Mabel Smith Salter Endowed Professor in Pediatrics

    Current Research and Scholarly Interests 1. Role of the G protein coupled receptors in regulating mitochondrial structure and function.
    2. Differences between R and L ventricular responses to stress, including gene expression and miR regulation.
    3. Using iPSC-derived myocytes to understand heart failure and congenital heart disease.
    4. Tools for evaluation of cardiac physiology in transgenic mice and isolated cardiomyocytes.
    5. Anti-body mediated rejection.
    6. Biomarkers for post-transplant lymphoproliferative disorder.

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Radiology and of Chemical and Systems Biology

    Bio Professor Carolyn Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface sugars important to human health and disease. Her research group profiles changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and uses this information to develop new diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Dr. Bertozzi completed her undergraduate degree in Chemistry at Harvard University and her Ph.D. at UC Berkeley, focusing on the chemical synthesis of oligosaccharide analogs. During postdoctoral work at UC San Francisco, she studied the activity of endothelial oligosaccharides in promoting cell adhesion at sites of inflammation. She joined the UC Berkeley faculty in 1996. A Howard Hughes Medical Institute Investigator since 2000, she came to Stanford University in June 2015, among the first faculty to join the interdisciplinary institute ChEM-H (Chemistry, Engineering & Medicine for Human Health). Named a MacArthur Fellow in 1999, Dr. Bertozzi has received many awards for her dedication to chemistry, and to training a new generation of scientists fluent in both chemistry and biology. She has been elected to the Institute of Medicine, National Academy of Sciences, and American Academy of Arts and Sciences; and received the Lemelson-MIT Prize, the Heinrich Wieland Prize, and the ACS Award in Pure Chemistry, among many others. Her efforts in undergraduate education have earned the UC Berkeley Distinguished Teaching Award and the Donald Sterling Noyce Prize for Excellence in Undergraduate Teaching.

    Today, the Bertozzi Group at Stanford studies the glycobiology underlying diseases such as cancer, inflammatory disorders such as arthritis, and infectious diseases such as tuberculosis. The work has advanced understanding of cell surface oligosaccharides involved in cell recognition and inter-cellular communication.

    Dr. Bertozzi's lab also develops new methods to perform controlled chemical reactions within living systems. The group has developed new tools for studying glycans in living systems, and more recently nanotechnologies for probing biological systems. Such "bioorthoganol" chemistries enable manipulation of biomolecules in their living environment.

    Several of the technologies developed in the Bertozzi lab have been adapted for commercial use. Actively engaged with several biotechnology start-ups, Dr. Bertozzi founded Redwood Bioscience of Emeryville, California, and has served on the research advisory board of GlaxoSmithKline.

  • Ami Bhatt

    Ami Bhatt

    Assistant Professor of Medicine (Hematology) and of Genetics

    Current Research and Scholarly Interests The Bhatt lab is exploring how the microbiota is intertwined with states of health and disease. We apply the most modern genetic tools in an effort to deconvolute the mechanism of human diseases.

  • Matthew Bogyo

    Matthew Bogyo

    Professor of Pathology and of Microbiology and Immunology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Our lab uses chemical, biochemical, and cell biological methods to study protease function in human disease. Projects include:

    1) Design and synthesis of novel chemical probes for each of the primary protease families.

    2) Understanding the role of proteolysis in the life cycle of the human parasites, Plasmodium falciparum and Toxoplasma gondii.

    3) Defining the specific functional roles of proteases during the process of tumorogenesis.

    4) In vivo imaging of protease activity

  • John  Boothroyd

    John Boothroyd

    Burt and Marion Avery Professor of Immunology

    Current Research and Scholarly Interests We are intereseted in the interaction between the protozoan parasite Toxoplasma gondii and its mammalian host. We use a combination of molecular and genetic tools to understand how this obligate intracellular parasite can invade almost any cell it encounters, how it co-opts a host cell once inside and how it evades the immune response to produce a life-long, persistent infection.

  • Jan Carette

    Jan Carette

    Assistant Professor of Microbiology and Immunology

    Current Research and Scholarly Interests Our research focuses on the identification of host genes that play critical roles in the pathogenesis of infectious agents including viruses. We use haploid genetic screens in human cells as an efficient approach to perform loss-of-function studies. Besides obtaining fundamental insights on how viruses hijack cellular processes and on host defense mechanisms, it may also facilitate the development of new therapeutic strategies.

  • Howard Y. Chang, MD PhD

    Howard Y. Chang, MD PhD

    Professor of Dermatology

    Current Research and Scholarly Interests Our research is focused on how the activities of hundreds or even thousands of genes (gene parties) are coordinated to achieve biological meaning. We have pioneered methods to predict, dissect, and control large-scale gene regulatory programs; these methods have provided insights into human development, cancer, and aging.