School of Medicine


Showing 1-5 of 5 Results

  • Xinnan Wang

    Xinnan Wang

    Associate Professor of Neurosurgery

    Current Research and Scholarly Interests Mechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.

  • Thomas J. Wilson

    Thomas J. Wilson

    Clinical Assistant Professor, Neurosurgery

    Bio Dr. Thomas J. Wilson was born in Omaha, Nebraska. He attended the University of Nebraska College of Medicine, earning his MD with highest distinction. While a medical student, he was awarded a Howard Hughes Medical Institute Research Training Fellowship and spent a year in the lab of Dr. Rakesh Singh at the University of Nebraska. He was also elected to the prestigious Alpha Omega Alpha Honor Medical Society. He completed his residency training in neurological surgery at the University of Michigan and was mentored by Dr. Lynda Yang and Dr. John McGillicuddy in peripheral nerve surgery. Following his residency, he completed a fellowship in peripheral nerve surgery at the Mayo Clinic in Rochester, Minnesota, working with Dr. Robert Spinner. He is now Clinical Assistant Professor and Co-Director of the Center for Peripheral Nerve Surgery at Stanford University. He is also currently endeavoring to earn a Master of Public Health (MPH) degree from the Bloomberg School of Public Health at Johns Hopkins University. His research interests include peripheral nerve outcomes research using large data sets and multi-institutional registries, clinical trials advancing options for patients with peripheral nerve pathologies, and translational research focused on deriving methods for data-driven intraoperative decision-making using intraoperative electrophysiology, advanced imaging techniques, and genetic expression information. His wife, Dr. Monique Wilson, is a practicing dermatologist in the Bay Area.

  • Albert J. Wong, M.D.

    Albert J. Wong, M.D.

    Professor of Neurosurgery

    Current Research and Scholarly Interests Our goal is to define targets for cancer therapeutics by identifying alterations in signal transduction proteins. We first identified a naturally occurring mutant EGF receptor (EGFRvIII) and then delineated its unique signal transduction pathway. This work led to the identification of Gab1 followed by the discovery that JNK is constitutively active in tumors. We intiated using altered proteins as the target for vaccination, where an EGFRvIII based vaccine appears to be highly effective.

Latest information on COVID-19