School of Medicine


Showing 11-20 of 32 Results

  • Richard J. Reimer, MD

    Richard J. Reimer, MD

    Associate Professor of Neurology and, by courtesy, of Molecular and Cellular Physiology at the Palo Alto Veterans Administration Health Care System

    Current Research and Scholarly Interests Reimer Lab interests

    A primary interest of our lab is to understand how nerve cells make and recycle neurotransmitters, the small molecules that they use to communicate with each other. In better defining these processes we hope to achieve our long-term goal of identifying novel sites for treatment of diseases such as epilepsy and Parkinson Disease. In our studies on neurotransmitter metabolism we have focused our efforts on transporters, a functional class of proteins that move neurotransmitters and other small molecules across membranes in cells. Transporters have many characteristics that make them excellent pharmacological targets, and not surprisingly some of the most effective treatments for neuropsychiatric disorders are directed at transporters. We are specifically focusing on two groups of transporters – vesicular neurotransmitter transporters that package neurotransmitters into vesicles for release, and glutamine transporters that shuttle glutamine, a precursor for two major neurotransmitters glutamate and GABA, to neurons from glia, the supporting cells that surround them. We are pursuing these goals through molecular and biochemical studies, and, in collaboration with the Huguenard and Prince labs, through physiological and biosensor based imaging studies to better understand how pharmacological targeting of these molecules will influence neurological disorders.

    A second interest of our lab is to define mechanism underlying the pathology of lysosomal storage disorders. Lysosomes are membrane bound acidic intracellular organelles filled with hydrolytic enzymes that normally function as recycling centers within cells by breaking down damaged cellular macromolecules. Several degenerative diseases designated as lysosomal storage disorders (LSDs) are associated with the accumulation of material within lysosomes. Tay-Sachs disease, Neimann-Pick disease and Gaucher disease are some of the more common LSDs. For reasons that remain incompletely understood, these diseases often affect the nervous system out of proportion to other organs. As a model for LSDs we are studying the lysosomal free sialic acid storage disorders. These diseases are the result of a defect in transport of sialic acid across lysosomal membranes and are associated with mutations in the gene encoding the sialic acid transporter sialin. We are using molecular, genetic and biochemical approaches to better define the normal function of sialin and to determine how loss of sialin function leads to neurodevelopmental defects and neurodegeneration associated with the lysosomal free sialic acid storage disorders.

  • Allan L. Reiss

    Allan L. Reiss

    Howard C. Robbins Professor of Psychiatry and Behavioral Sciences and Professor of Radiology

    Current Research and Scholarly Interests My laboratory, the Center for Interdisciplinary Brain Sciences Research (CIBSR), focuses on multi-level scientific study of individuals with typical and atypical brain structure and function. Data are obtained from genetic analyses, structural and functional neuroimaging studies, assessment of endocrinological status, neurobehavioral assessment, and analysis of pertinent environmental factors. Our overarching focus is to model how brain disorders arise and to develop disease-specific treatments.

  • David A. Relman

    David A. Relman

    Thomas C. and Joan M. Merigan Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly Interests My investigative program focuses on human-microbe interactions and human microbial ecology, and primarily concerns the ecology of human indigenous microbial communities; a secondary interest concerns the classification of humans with systemic infectious diseases, based on features of genome-wide gene transcript abundance patterns and pther aspects of the host response.

  • Anthony Ricci

    Anthony Ricci

    Edward C. and Amy H. Sewall Professor in the School of Medicine and Professor, by courtesy, of Molecular and Cellular Physiology

    Current Research and Scholarly Interests The auditory sensory cell, the hair cell, detects mechanical stimulation at the atomic level and conveys information regarding frequency and intensity to the brain with high fidelity. Our interests are in identifying specializations associated with mechanotransduction and synaptic transmission leading to the amazing sensitivities of the auditory system. We are also interested in the developmental process, particularly in how development gives insight into repair and regenerative mechanisms.

  • Thalia Robakis

    Thalia Robakis

    Clinical Associate Professor, Psychiatry and Behavioral Sciences

    Current Research and Scholarly Interests Epigenetic correlates of attachment insecurity in mothers and infants
    Maternal attachment style in relation to postpartum depression and child outcomes
    Metabolic and psychiatric effects of early life stress

  • Laura Roberts, MD, MA

    Laura Roberts, MD, MA

    Katharine Dexter McCormick and Stanley McCormick Memorial Professor in the School of Medicine

    Current Research and Scholarly Interests Dr. Roberts has performed numerous empirical studies of contemporary ethics issues in medicine and health policy and has been funded by the National Institutes of Health, the Department of Energy, the National Alliance of Schizophrenia and Depression, the Arnold P. Gold Foundation, and other private and public foundations.

  • Terry Robinson

    Terry Robinson

    Associate Professor of Pediatrics (Pulmonary) at the Lucile Salter Packard Children's Hospital, Emeritus

    Current Research and Scholarly Interests My research interests focus on detection of early and progressive Cystic fibrosis (CF) structural lung disease by utilizing chest CT imaging and CT post-processing methodology. Current research efforts involve utilization of low dose infant & children CT imaging protocols and quantitative airway and air trapping algorithms to evaluate early and progressive CF disease.

  • Thomas Robinson

    Thomas Robinson

    The Irving Schulman, M.D. Endowed Professor in Child Health, Professor of Medicine (Stanford Prevention Research Center) and, by courtesy, of Health Research and Policy (Epidemiology)

    Current Research and Scholarly Interests Dr. Robinson originated the solution-oriented research paradigm and directs the Stanford Solutions Science Lab. He is known for his pioneering obesity prevention and treatment research, including the concept of stealth interventions. His research applies social cognitive models of behavior change to behavioral, social, environmental and policy interventions for children and families in real world settings, making the results relevant for informing clinical and public health practice and policy.