School of Medicine


Showing 1-9 of 9 Results

  • Sanjiv Sam Gambhir, MD, PhD

    Sanjiv Sam Gambhir, MD, PhD

    Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly Interests My laboratory focuses on merging advances in molecular biology with those in biomedical imaging to advance the field of molecular imaging. Imaging for the purpose of better understanding cancer biology and applications in gene and cell therapy, as well as immunotherapy are all being studied. A key long-term focus is the earlier detection of cancer by combining in vitro diagnostics and molecular imaging.

  • Christopher Gardner

    Christopher Gardner

    Rehnborg Farquhar Professor

    Current Research and Scholarly Interests The role of nutrition in individual and societal health, with particular interests in: plant-based diets, differential response to low-carb vs. low-fat weight loss diets by insulin resistance status, chronic disease prevention, randomized controlled trials, human nutrition, community based studies, Community Based Participatory Research, sustainable food movement (animal rights and welfare, global warming, human labor practices), stealth health, nutrition policy, nutrition guidelines

  • Paul George, MD, PhD

    Paul George, MD, PhD

    Assistant Professor of Neurology and, by courtesy, of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly Interests CONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
    We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.

    BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
    The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.

    APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
    The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes.

  • John Giacomini, MD

    John Giacomini, MD

    Professor of Medicine (Cardiovascular Medicine) at the Palo Alto Veterans Affairs Health Care System

    Current Research and Scholarly Interests Calcium channel blockers; membrane pharmacology;, coronary physiology; antiarrhythmic drugs; cardiac hemodynamics;, cellular mechanisms of myocyte hypertrophy.

  • Mary Kane Goldstein

    Mary Kane Goldstein

    Professor of Medicine (Center for Primary Care and Outcomes Research) and, by courtesy, of Health Research and Policy at the Palo Alto Veterans Affairs Health Care System

    Current Research and Scholarly Interests Health services research in primary care and geriatrics: developing, implementing, and evaluating methods for clinical quality improvement. Current work includes applying health information technology to quality improvement through clinical decision support (CDS) integrated with electronic health records; encoding clinical knowledge into computable formats in automated knowledge bases; natural language processing of free text in electronic health records; analyzing multiple comorbidities

  • James Gross

    James Gross

    Professor of Psychology

    Current Research and Scholarly Interests I am interested in emotion and emotion regulation. My research employs behavioral, physiological, and brain measures to examine emotion-related personality processes and individual differences. My current interests include emotion coherence, specific emotion regulation strategies (reappraisal, suppression), automatic emotion regulation, and social anxiety.

  • Geoffrey Gurtner

    Geoffrey Gurtner

    Johnson & Johnson Professor of Surgery and Professor, by courtesy, of Bioengineering and of Materials Science and Engineering

    Current Research and Scholarly Interests Geoffrey Gurtner's Lab is interested in understanding the mecahnism of new blood vessel growth following injury and how pathways of tissue regeneration and fibrosis interact in wound healing.