School of Medicine
Showing 1-20 of 33 Results
-
Gary Dahl
Professor of Pediatrics (Hematology/Oncology) at the Lucile Salter Packard Children's Hospital
Current Research and Scholarly Interests Hematology/Oncology, Phase I drug studies for childhood cancer, overcoming multidrug resistance in leukemia and solid tumors, biology and treatment of acute nonlymphocytic leukemia, early detection of central nervous system leukemia by measuring growth, factor binding proteins.
-
Katharine Dahl
Clinical Assistant Professor, Pediatrics - General Pediatrics
Bio Dr. Kate Dahl specializes in working with children and families who are affected by medical illness. She has practiced at Stanford since 2014 and is the primary pediatric psychologist for the dialysis, kidney transplant, and liver transplant medical teams. Her work often focuses on adjustment to new diagnosis, coping with illness and treatment, and adherence to the medical regimen. She is particularly interested in the experience of adolescents with chronic medical conditions and leads groups for teens who have received kidney and liver transplants.
-
Heike Daldrup-Link
Professor of Radiology (General Radiology) and, by courtesy, of Pediatrics (Hematology/Oncology)
Current Research and Scholarly Interests As a physician-scientist involved in the care of pediatric patients and developing novel pediatric molecular imaging technologies, my goal is to link the fields of nanotechnology and medical imaging towards more efficient diagnoses and image-guided therapies. Our research team develops novel imaging techniques for improved cancer diagnosis, for image-guided-drug delivery and for in vivo monitoring of cell therapies in children and young adults.
-
Mihaela Damian MD
Clinical Assistant Professor, Pediatrics - Critical Care
Current Research and Scholarly Interests Clinical Pharmacology
Sedation
Solid Organ Transplantation -
Bernard Dannenberg
Clinical Professor, Emergency Medicine
Current Research and Scholarly Interests Pediatric Pain Management and Sedation
-
Gary Darmstadt
Professor (Teaching) of Pediatrics (Neonatology) and, by courtesy, of Obstetrics and Gynecology
Bio Gary L. Darmstadt, MD, MS, is Associate Dean for Maternal and Child Health, and Professor of Neonatal and Developmental Pediatrics in the Department of Pediatrics at the Stanford University School of Medicine. Previously Dr. Darmstadt was Senior Fellow in the Global Development Program at the Bill & Melinda Gates Foundation (BMGF), where he led a cross-foundation initiative on Women, Girls and Gender, assessing how addressing gender inequalities and empowering women and girls leads to improved gender equality as well as improved health and development outcomes. Prior to this role, he served as BMGF Director of Family Health, leading strategy development and implementation across nutrition, family planning and maternal, newborn and child health.
Darmstadt was formerly Associate Professor and Founding Director of the International Center for Advancing Neonatal Health in the Department of International Health at the Johns Hopkins Bloomberg School of Public Health. He has trained in Pediatrics at Johns Hopkins University, in Dermatology at Stanford University, and in Pediatric Infectious Disease as a fellow at the University of Washington, Seattle, where he was Assistant Professor in the Departments of Pediatrics and Medicine. Dr. Darmstadt left the University of Washington to serve as Senior Research Advisor for the Saving Newborn Lives program of Save the Children-US, where he led the development and implementation of the global research strategy for newborn health and survival, before joining Johns Hopkins. -
Kara Davis
Assistant Professor of Pediatrics (Hematology/Oncology) at the Lucile Salter Packard Children's Hospital
Current Research and Scholarly Interests Childhood cancers can be considered aberrations of normal tissue development. We are interested in understanding childhood cancers through the lens of normal development. Further, individual tumors are composed of heterogeneous cell populations, not all cells being equal in their ability to respond to treatment or to repopulate a tumor. Thus, we take single cell approach to determine populations of clinical relevance.
-
John W. Day, MD, PhD
Professor of Neurology, of Pediatrics (Genetics) and, by courtesy, of Pathology at the Stanford University Medical Center
Current Research and Scholarly Interests Our Neuromuscular Division coordinates a comprehensive effort to conquer peripheral nerve and muscle disorders, including the muscular dystrophies, motor neuron disorders, neuromuscular junction abnormalities, and peripheral neuropathies. With patients and families foremost in mind, we have had success defining and combating these diseases, with research focused on identifying genetic causes, developing novel treatment, and maximizing patient function by optimizing current management.
-
Cornelia L. Dekker, M.D.
Professor (Research) of Pediatrics (Infectious Diseases), Emerita
Current Research and Scholarly Interests The Stanford-LPCH Vaccine Program provides an infrastructure for conducting clinical studies of vaccines in children and adults. We conduct immunology studies of seasonal influenza vaccines in twins, in a longitudinal cohort of young and elderly adults and studies of various vaccine candidates for NIH and industry. Additionally, we were a CDC Clinical Immunization Safety Assessment site for 10 years working on safety issues concerning licensed vaccines.
-
Lauren Destino
Clinical Associate Professor, Pediatrics
Bio Lauren Destino, MD, is the Associate Medical Director of the Pediatric Hospital Medicine Division and Associate Medical Director of the acute care floor at Lucile Packard Children’s Hospital (LPCH) Stanford and a clinical assistant professor at Stanford Univeristy. She was a site co-Investigator for the I-PASS study at Stanford and is the site Principal Investigator for the PCORI grant, Bringing I-PASS to the Bedside: A Communication Bundle to Improve Patient Safety and Experience. She is involved in a number of quality and process improvement related activities at LPCH. She is the director for a required quality improvement rotation for residents and co-directs the scholarly concentration for quality and process improvement. She is also the MOC portfolio manager for LPCH Stanford’s MOC part IV portfolio. Her research interests include communication among the care team (inclusive of patients and families) as well as quality and quantity of time trainees spend in patient/family communication.
-
Daniel Dever
Instructor, Pediatrics - Stem Cell Transplantation
Bio Dr. Daniel Dever is a Research Instructor in the laboratory of Dr. Matthew Porteus at Stanford University, in the Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine. He completed his PhD in molecular toxicology at the University of Rochester where he studied the mechanisms of the aryl hydrocarbon receptor in mediating cerebellar transcriptional programs. During his postdoctoral work in the Porteus group, he (with others) developed a CRISPR/Cas9-based beta-globin (HBB) gene editing by homologous recombination methodology (gene targeting) in CD34+ hematopoietic stem cells as a potential therapeutic strategy to treat severe sickle cell disease. Dr. Dever (along with collaborators) has now successfully used this methodology to efficiently target >15 genes in primary blood cells that are associated with hematopoiesis, hematopoietic genetic diseases, hematopoietic malignancies, or safe harbor sites. Dr. Dever's primary research interests are to continue to leverage CRISPR/Cas9-based genome editing technologies to study the molecular mechanisms of gene targeting in human hematopoietic stem cells with the ultimate goal of optimizing and further developing novel cell and gene therapies for disease of the blood and the immune system. Currently, he is leading IND-enabling preclinical efficacy, feasibility, safety and tumorigenicity studies for FDA approval of a first-in-human clinical trial at Stanford in 2018 for the treatment of severe sickle cell disease using CRISPR/Cas9-based HBB gene targeting in autologous hematopoietic stem cells.