School of Medicine


Showing 1-10 of 20 Results

  • Matthew Bogyo

    Matthew Bogyo

    Professor of Pathology and of Microbiology and Immunology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Our lab uses chemical, biochemical, and cell biological methods to study protease function in human disease. Projects include:

    1) Design and synthesis of novel chemical probes for each of the primary protease families.

    2) Understanding the role of proteolysis in the life cycle of the human parasites, Plasmodium falciparum and Toxoplasma gondii.

    3) Defining the specific functional roles of proteases during the process of tumorogenesis.

    4) In vivo imaging of protease activity

  • James K. Chen

    James K. Chen

    Associate Professor of Chemical and Systems Biology and of Developmental Biology and, by courtesy, of Chemistry

    Current Research and Scholarly Interests Our laboratory combines synthetic chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.

  • Karlene Cimprich

    Karlene Cimprich

    Professor of Chemical and Systems Biology and, by courtesy, of Chemistry

    Current Research and Scholarly Interests Genomic instability contributes to many diseases, but it also underlies many natural processes. The Cimprich lab is focused on understanding how mammalian cells maintain genomic stability in the context of DNA replication stress and DNA damage. We are interested in the molecular mechanisms underlying the cellular response to replication stress and DNA damage as well as the links between DNA damage and replication stress to human disease.

  • Joshua Elias

    Joshua Elias

    Assistant Professor of Chemical and Systems Biology

    Current Research and Scholarly Interests Developing new mass spectrometry-based experimental and computational tools that advance the field of proteomics, and applying them to a variety of important biomedical paradigms, including cancer, aging, and stem cell biology.

  • James Ferrell

    James Ferrell

    Professor of Chemical and Systems Biology and of Biochemistry

    Current Research and Scholarly Interests My lab has two main goals: to understand mitotic regulation and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at identifying the design principles of regulatory circuits.

  • Oleg Jardetzky

    Oleg Jardetzky

    Professor of Molecular Pharmacology, Emeritus

    Current Research and Scholarly Interests Structure, dynamics and function of proteins involved in transport and regulatory processes; high resolution nuclear magnetic resonance studies of conformational transitions and protein folding; study of the mechanism of action of the trp-repressor, ankyrin-domain proteins and the development of programs to calculate protein solution structure

  • Daniel Jarosz

    Daniel Jarosz

    Assistant Professor of Chemical and Systems Biology and of Developmental Biology

    Current Research and Scholarly Interests My laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.

  • Stuart Kim

    Stuart Kim

    Professor of Developmental Biology and of Genetics and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Mechanisms of Aging in C. elegans and humans.

  • Calvin Kuo

    Calvin Kuo

    Professor of Medicine (Hematology) and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests We explore angiogenesis, cancer genomics, intestinal stem cells, and hepatic glucose metabolism. Angiogenesis projects include endothelial miRNA and GPCR ko mice, blood-brain barrier regulation, stroke therapeutics and anti-angiogenic cancer therapy. Intestinal stem cell projects use primary intestinal culture and mouse genetics to study injury-inducible vs homeostatic stem cells. We use primary organoid cultures of diverse tissues for oncogene functional screening and therapeutics discovery.

  • Tobias Meyer

    Tobias Meyer

    Mrs. George A. Winzer Professor in Cell Biology

    Current Research and Scholarly Interests CELLULAR INFORMATION PROCESSING The main problem in signal transduction is to understand how different receptor-stimuli specifically control diverse cell functions. We are using automated microscopy, live-cell fluorescent biosensors and perturbations of predicted signaling proteins to systematically dissect signaling networks. This allows us to identify signaling modules and to elucidate and ultimately model the flow of cellular information.

Stanford Medicine Resources: