Current Research and Scholarly Interests
The overarching goal of our lab is to understand the genetic mechanisms of aging and longevity. Aging is a highly plastic process regulated by a combination of genetic and environmental factors.
We have a long-standing interest in the genetic pathway that connects insulin to FOXO transcription factors, a central pathway to regulate lifespan from worms to humans. We use a combination of genetic, molecular, and cellular approaches to analyze the regulation and importance of FOXO transcription factors, and more generally 'longevity genes' in mammals. We are particularly interested in the role of longevity genes in the maintenance of the pool of adult neural stem cells and intact cognitive function during aging. We also use ultra-high throughput sequencing technologies to study epigenetic changes and transcriptional networks during aging.
In parallel, our goal is to identify novel longevity genes using short-lived animal models. Our lab uses unbiased approaches in the nematode C. elegans to identify novel pathways that control organismal longevity, particularly in response to dietary restriction. We are particularly interested in the role of chromatin modifiers in the regulation of lifespan and metabolism.
Finally, we are developing the extremely short-lived African killifish N. furzeri as a new vertebrate model for aging studies. We are taking advantage of this fish to explore the genetic architecture of longevity in vertebrates.