Current Research and Scholarly Interests
The consistent focus of Anna’s research has been using naturally occurring mutations in humans as tools to identity critical regulatory pathways and insights into normal physiology. Her early post-doctoral research led to the identification a new genetic aetiology for permanent and transient neonatal diabetes due to KCNJ11 mutations and resulted in one of the first examples of precision medicine, where the determination of the molecular genetic aetiology lead to improved treatment options for patients. Whilst in Oxford, Anna's team discovered a novel genetic cause of constitutive insulin sensitivity in humans due to mutations in the PTEN gene highlighting the complex interplay between pathways involved in cell-growth and metabolism.
Her early independent work focused on the clinical and functional characterization of glucokinase mutations in monogenic forms of hyperinsulinemia of infancy, hyperglycemia and neonatal diabetes. Anna maintains an active research program in monogenic forms of diabetes and how genetics can be used to assist diabetes diagnosis and treatment. Her lab has expertise in variant characterization for multiple genes involved in monogenic diabetes and she supports clinicians with the interpretation of variants of unknown significance from genetic testing. A major focus of her current work is focused on how deep mutational scanning and maps of variant effects for diabetes relevant genes can be incorporated into guidelines for variant interpretation for monogenic diabetes through her involvement in the Clin Gen Monogenic Diabetes Variant Expert Review Panel and the Atlas of Variant Effects (AVE) consortium. Recently she has co-led the working group on Precision Diagnostics in monogenic diabetes for the and the ADA/EASD Precision Medicines Initiative which has uncovered a number of gaps in our knowledge.
Anna's research is not limited to monogenic forms of diabetes she is also an active member of multiple international consortia for genetic discovery for type 2 diabetes including the Accelerated Medicines Partnership for Common Metabolic Disease (AMP-CMD) where she uses her expertise in islet biology, functional genomics and cell and molecular physiology to bridge the gap between genetic discovery and biological and clinical insight. One of her areas of interest is in how genetics can be used for stratified medicine. Dr Gloyn is involved in several efforts to integrate genetic data on diabetes heterogeneity into human islet research within the Human Islet Research Network (HIRN). She is currently responsible for the genetic characterization of human islet donors for both the Integrated Islet Distribution Program (IIDP) where she heads the Human Genotyping Initiative (HIGI) and the Human Pancreas Atlas Program (HPAP) where she is responsible for the genotyping all donors. She has developed tools and methods to make genetic data available to islet users on ancestry and genetic risk for type 1 and type 2 diabetes.
Anna is an active member of multiple internal genetic discovery efforts including: NIH/Pharma funded Accelerated Medicines Partnership, DIAGRAM (Diabetes Genetics Replication and Meta-analysis), MAGIC (Meta-analysis of Glucose and Insulin traits Consortium), Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) and the Genetics of Type 2 Diabetes (GoT2D). She was also involved in the IMI funded STEMBANCC project which focused on delivering human IPS cell derived beta-cell models for drug discovery efforts.