Bio

Professional Education


  • Doctor of Philosophy, University of California Berkeley (2015)
  • Bachelor of Arts, University of California Berkeley (2009)

Stanford Advisors


Publications

All Publications


  • Bad wrap: Myelin and myelin plasticity in health and disease DEVELOPMENTAL NEUROBIOLOGY Gibson, E. M., Geraghty, A. C., Monje, M. 2018; 78 (2): 123–35

    Abstract

    Human central nervous system myelin development extends well into the fourth decade of life, and this protracted period underscores the potential for experience to modulate myelination. The concept of myelin plasticity implies adaptability in myelin structure and function in response to experiences during development and beyond. Mounting evidence supports this concept of neuronal activity-regulated changes in myelin-forming cells, including oligodendrocyte precursor cell proliferation, oligodendrogenesis and modulation of myelin microstructure. In healthy individuals, myelin plasticity in associative white matter structures of the brain is implicated in learning and motor function in both rodents and humans. Activity-dependent changes in myelin-forming cells may influence the function of neural networks that depend on the convergence of numerous neural signals on both a temporal and spatial scale. However, dysregulation of myelin plasticity can disadvantageously alter myelin microstructure and result in aberrant circuit function or contribute to pathological cell proliferation. Emerging roles for myelin plasticity in normal neurological function and in disease are discussed. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 123-135, 2018.

    View details for PubMedID 28986960

    View details for PubMedCentralID PMC5788316

  • The Role of RFamide-Related Peptide-3 in Age-Related Reproductive Decline in Female Rats FRONTIERS IN ENDOCRINOLOGY Geraghty, A. C., Muroy, S. E., Kriegsfeld, L. J., Bentley, G. E., Kaufer, D. 2016; 7

    Abstract

    Reproductive senescence, the point in time when females cease to show estrous cyclicity, is associated with endocrine changes in the hypothalamus, pituitary, and gonads. However, the mechanisms triggering this transition are not well understood. To gain a better understanding of the top-down control of the transition from reproductive competence to a state of reproductive senescence, we investigated middle-aged female rats exhibiting varying degrees of reproductive decline, including individuals with normal cycles, irregular cycles, and complete cessation of cycles. We identified hormonal changes in the brain that manifest before ovarian cycles exhibit any deterioration. We found that females exhibit an increase in RFamide-related peptide-3 (RFRP3) mRNA expression in the hypothalamus in middle age prior to changes in estrous cycle length. This increase is transient and followed by subsequent decreases in kisspeptin (KiSS1) and gonadotropin-releasing hormone (GnRH) mRNA expression. Expression of RFRP3 and its receptor also increased locally in the ovaries with advancing age. While it is well known that aging is associated with decreased GnRH release and downstream disruption of the hypothalamic-pituitary-gonadal (HPG) axis, herein, we provide evidence that reproductive senescence is likely triggered by alterations in a network of regulatory neuropeptides upstream of the GnRH system.

    View details for DOI 10.3389/fendo.2016.00071

    View details for Web of Science ID 000378513700001

    View details for PubMedID 27445974

    View details for PubMedCentralID PMC4914494