Bio

Honors & Awards


  • Beckman Scholar, Arnold and Mabel Beckman Foundation (2007-2008)
  • Phi Beta Kappa, University of California Los Angeles (2008)
  • Wasserman Scholar, Edith and Lew Wasserman Foundation (2007)
  • Gina Finzi Fellow, Gina Finzi Memorial Foundation (2007)
  • Irving Stone Research Award, University of California Los Angeles (2006)

Professional Affiliations and Activities


  • President, Stanford Medical Student Association (SMSA) (2013 - Present)
  • Vice President of Operations, Stanford Medical School Association (SMSA) (2011 - 2013)

Education & Certifications


  • Bachelor of Science, University of California Los Angeles, Microbio, Imm & Mol Gen (2008)

Stanford Advisors


Research & Scholarship

Lab Affiliations


Publications

Journal Articles


  • Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Chan, C. K., Lindau, P., Jiang, W., Chen, J. Y., Zhang, L. F., Chen, C., Seita, J., Sahoo, D., Kim, J., Lee, A., Park, S., Nag, D., Gong, Y., Kulkarni, S., Luppen, C. A., Theologis, A. A., Wan, D. C., DeBoer, A., Seo, E. Y., Vincent-Tompkins, J. D., Loh, K., Walmsley, G. G., Kraft, D. L., Wu, J. C., Longaker, M. T., Weissman, I. L. 2013; 110 (31): 12643-12648

    Abstract

    Organs are composites of tissue types with diverse developmental origins, and they rely on distinct stem and progenitor cells to meet physiological demands for cellular production and homeostasis. How diverse stem cell activity is coordinated within organs is not well understood. Here we describe a lineage-restricted, self-renewing common skeletal progenitor (bone, cartilage, stromal progenitor; BCSP) isolated from limb bones and bone marrow tissue of fetal, neonatal, and adult mice. The BCSP clonally produces chondrocytes (cartilage-forming) and osteogenic (bone-forming) cells and at least three subsets of stromal cells that exhibit differential expression of cell surface markers, including CD105 (or endoglin), Thy1 [or CD90 (cluster of differentiation 90)], and 6C3 [ENPEP glutamyl aminopeptidase (aminopeptidase A)]. These three stromal subsets exhibit differential capacities to support hematopoietic (blood-forming) stem and progenitor cells. Although the 6C3-expressing subset demonstrates functional stem cell niche activity by maintaining primitive hematopoietic stem cell (HSC) renewal in vitro, the other stromal populations promote HSC differentiation to more committed lines of hematopoiesis, such as the B-cell lineage. Gene expression analysis and microscopic studies further reveal a microenvironment in which CD105-, Thy1-, and 6C3-expressing marrow stroma collaborate to provide cytokine signaling to HSCs and more committed hematopoietic progenitors. As a result, within the context of bone as a blood-forming organ, the BCSP plays a critical role in supporting hematopoiesis through its generation of diverse osteogenic and hematopoietic-promoting stroma, including HSC supportive 6C3(+) niche cells.

    View details for DOI 10.1073/pnas.1310212110

    View details for Web of Science ID 000322441500042

    View details for PubMedID 23858471

  • Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem cell reports Miyanishi, M., Mori, Y., Seita, J., Chen, J. Y., Karten, S., Chan, C. K., Nakauchi, H., Weissman, I. L. 2013; 1 (2): 198-208

    Abstract

    Very small embryonic-like stem cells (VSELs) isolated from bone marrow (BM) have been reported to be pluripotent. Given their nonembryonic source, they could replace blastocyst-derived embryonic stem cells in research and medicine. However, their multiple-germ-layer potential has been incompletely studied. Here, we show that we cannot find VSELs in mouse BM with any of the reported stem cell potentials, specifically for hematopoiesis. We found that: (1) most events within the "VSEL" flow-cytometry gate had little DNA and the cells corresponding to these events (2) could not form spheres, (3) did not express Oct4, and (4) could not differentiate into blood cells. These results provide a failure to confirm the existence of pluripotent VSELs.

    View details for DOI 10.1016/j.stemcr.2013.07.001

    View details for PubMedID 24052953

  • Suppression of leukemia development caused by PTEN loss PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Guo, W., Schubbert, S., Chen, J. Y., Valamehr, B., Mosessian, S., Shi, H., Dang, N. H., Garcia, C., Theodoro, M. F., Varella-Garcia, M., Wu, H. 2011; 108 (4): 1409-1414

    Abstract

    Multiple genetic or molecular alterations are known to be associated with cancer stem cell formation and cancer development. Targeting such alterations, therefore, may lead to cancer prevention. By crossing our previously established phosphatase and tensin homolog (Pten)-null acute T-lymphoblastic leukemia (T-ALL) model onto the recombination-activating gene 1(-/-) background, we show that the lack of variable, diversity and joining [V(D)J] recombination completely abolishes the Tcr?/?-c-myc translocation and T-ALL development, regardless of ?-catenin activation. We identify mammalian target of rapamycin (mTOR) as a regulator of ?-selection. Rapamycin, an mTOR-specific inhibitor, alters nutrient sensing and blocks T-cell differentiation from CD4(-)CD8(-) to CD4(+)CD8(+), the stage where the Tcr?/?-c-myc translocation occurs. Long-term rapamycin treatment of preleukemic Pten-null mice prevents Tcr?/?-c-myc translocation and leukemia stem cell (LSC) formation, and it halts T-ALL development. However, rapamycin alone fails to inhibit mTOR signaling in the c-Kit(mid)CD3(+)Lin(-) population enriched for LSCs and eliminate these cells. Our results support the idea that preventing LSC formation and selectively targeting LSCs are promising approaches for antileukemia therapies.

    View details for DOI 10.1073/pnas.1006937108

    View details for Web of Science ID 000286594800040

    View details for PubMedID 21212363

  • Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation NATURE Guo, W., Lasky, J. L., Chang, C., Mosessian, S., Lewis, X., Xiao, Y., Yeh, J. E., Chen, J. Y., Iruela-Arispe, M. L., Varella-Garcia, M., Wu, H. 2008; 453 (7194): 529-U7

    Abstract

    Cancer stem cells, which share many common properties and regulatory machineries with normal stem cells, have recently been proposed to be responsible for tumorigenesis and to contribute to cancer resistance. The main challenges in cancer biology are to identify cancer stem cells and to define the molecular events required for transforming normal cells to cancer stem cells. Here we show that Pten deletion in mouse haematopoietic stem cells leads to a myeloproliferative disorder, followed by acute T-lymphoblastic leukaemia (T-ALL). Self-renewable leukaemia stem cells (LSCs) are enriched in the c-Kit(mid)CD3(+)Lin(-) compartment, where unphosphorylated beta-catenin is significantly increased. Conditional ablation of one allele of the beta-catenin gene substantially decreases the incidence and delays the occurrence of T-ALL caused by Pten loss, indicating that activation of the beta-catenin pathway may contribute to the formation or expansion of the LSC population. Moreover, a recurring chromosomal translocation, T(14;15), results in aberrant overexpression of the c-myc oncogene in c-Kit(mid)CD3(+)Lin(-) LSCs and CD3(+) leukaemic blasts, recapitulating a subset of human T-ALL. No alterations in Notch1 signalling are detected in this model, suggesting that Pten inactivation and c-myc overexpression may substitute functionally for Notch1 abnormalities, leading to T-ALL development. Our study indicates that multiple genetic or molecular alterations contribute cooperatively to LSC transformation.

    View details for DOI 10.1038/nature06933

    View details for Web of Science ID 000256023700044

    View details for PubMedID 18463637

Stanford Medicine Resources: