Palmer Lab Select Publications

Professor of Neurosurgery

Publications

  • Human 3D cellular model of hypoxic brain injury of prematurity NATURE MEDICINE Pasca, A. M., Park, J., Shin, H., Qi, Q., Revah, O., Krasnoff, R., O'Hara, R., Willsey, A., Palmer, T. D., Pascz, S. P. 2019; 25 (5): 784-+
  • An Immune Atlas of Mid to Late Mouse Gestation. Moore, A. R., Vivanco-Gonzalez, N., Plummer, K., Kaur, H., Mitchel, O., Rivera, M., Bendall, S. C., Palmer, T. D. SAGE PUBLICATIONS INC. 2019: 345A–346A
  • Human 3D cellular model of hypoxic brain injury of prematurity. Nature medicine Pașca, A. M., Park, J. Y., Shin, H. W., Qi, Q., Revah, O., Krasnoff, R., O'Hara, R., Willsey, A. J., Palmer, T. D., Pașca, S. P. 2019

    Abstract

    Owing to recent medical and technological advances in neonatal care, infants born extremely premature have increased survival rates1,2. After birth, these infants are at high risk of hypoxic episodes because of lung immaturity, hypotension and lack of cerebral-flow regulation, and can develop a severe condition called encephalopathy of prematurity3. Over 80% of infants born before post-conception week 25 have moderate-to-severe long-term neurodevelopmental impairments4. The susceptible cell types in the cerebral cortex and the molecular mechanisms underlying associated gray-matter defects in premature infants remain unknown. Here we used human three-dimensional brain-region-specific organoids to study the effect of oxygen deprivation on corticogenesis. We identified specific defects in intermediate progenitors, a cortical cell type associated with the expansion of the human cerebral cortex, and showed that these are related to the unfolded protein response and changes. Moreover, we verified these findings in human primary cortical tissue and demonstrated that a small-molecule modulator of the unfolded protein response pathway can prevent the reduction in intermediate progenitors following hypoxia. We anticipate that this human cellular platform will be valuable for studying the environmental and genetic factors underlying injury in the developing human brain.

    View details for PubMedID 31061540

  • Characterization of Brain Dysfunction Induced by Bacterial Lipopeptides That Alter Neuronal Activity and Network in Rodent Brains JOURNAL OF NEUROSCIENCE Kim, K., Zamaleeva, A. I., Lee, Y., Ahmed, M., Kim, E., Lee, H., Pothineni, V., Tao, J., Rhee, S., Jayakumar, M., Inayathullah, M., Sivanesan, S., Red-Horse, K., Palmer, T. D., Park, J., Madison, D. V., Lee, H., Rajadas, J. 2018; 38 (50): 10672–91
  • Characterization of brain dysfunction induced by bacterial lipopeptides that alter neuronal activity and network in rodent brains. The Journal of neuroscience : the official journal of the Society for Neuroscience Kim, K., Zamaleeva, A. I., Woo Lee, Y., Ahmed, M. R., Kim, E., Lee, H., Raveendra Pothineni, V., Tao, J., Rhee, S., Jayakumar, M., Inayathullah, M., Sivanesan, S., Red-Horse, K., Palmer, T. D., Park, J., Madison, D. V., Lee, H., Rajadas, J. 2018

    Abstract

    The immunopathological states of the brain induced by bacterial lipoproteins have been well-characterized by employing biochemical and histological assays. However, these studies have limitations in determining functional states of damaged brains involving aberrant synaptic activity and network, which makes it difficult to diagnose brain disorders during bacterial infection. To address this, we investigated the effect of Pam3CSK4 (PAM), a synthetic bacterial lipopeptide, on synaptic dysfunction of female mice brains and cultured neurons in parallel. Our functional brain imaging using PET with [18F]-FDG and [18F]-FMZ revealed the brain dysfunction induced by PAM is closely aligned to disruption of neurotransmitter-related neuronal activity and functional correlation in the region of the limbic system rather than to decrease of metabolic activity of neurons in the injection area. This finding was verified by in vivo tissue experiments that analyzed synaptic and dendritic alterations in the regions where PET imaging showed abnormal neuronal activity and network. Recording of synaptic activity also revealed that PAM reorganized synaptic distribution and decreased synaptic plasticity in hippocampus. Further study using in vitro neuron cultures demonstrated that PAM decreased the number of presynapses and the frequency of mEPSC, which suggests PAM disrupts neuronal function by damaging presynapses exclusively. We also showed PAM caused aggregation of synapses around dendrites, which may have caused no significant change in expression level of synaptic proteins while synaptic number and function was impaired by PAM. New findings of this study could provide a useful guide for diagnosis and treatment of brain disorders specific to bacterial infection.SIGNIFICANCE STATEMENTIt is challenging to diagnose brain disorders caused by bacterial infection because neural damage induced by bacterial products involves non-specific neurological symptoms, which is rarely detected by laboratory tests with low spatiotemporal resolution. To better understand brain pathology, it is essential to detect functional abnormalities of brain over time. To this end, we investigated characteristic patterns of altered neuronal integrity and functional correlation between various regions in mice brains injected with bacterial lipopeptides by using PET with a goal to apply new findings to diagnosis of brain disorder specific to bacterial infection. In addition, we analyzed altered synaptic density and function using both in vivo and in vitro experimental models to understand how bacterial lipopeptides impair brain function and network.

    View details for PubMedID 30381406

  • microRNAs Refine Cortical Projection Neuron Subtype during Mammalian Development Siththanandan, V., Diaz, J., Lu, V., Gonzalez-Nava, N., Pasquina, L., MacDonald, J., Woodworth, M., Sahni, V., Sarnow, P., Palmer, T., Macklis, J., Tharin, S. WILEY. 2018: S276–S277
  • Adult-generated neurons born during chronic social stress are uniquely adapted to respond to subsequent chronic social stress. Molecular psychiatry De Miguel, Z., Haditsch, U., Palmer, T. D., Azpiroz, A., Sapolsky, R. M. 2018

    Abstract

    Chronic stress is a recognized risk factor for psychiatric and psychological disorders and a potent modulator of adult neurogenesis. Numerous studies have shown that during stress, neurogenesis decreases; however, during the recovery from the stress, neurogenesis increases. Despite the increased number of neurons born after stress, it is unknown if the function and morphology of those neurons are altered. Here we asked whether neurons in adult mice, born during the final 5 days of chronic social stress and matured during recovery from chronic social stress, are similar to neurons born with no stress conditions from a quantitative, functional and morphological perspective, and whether those neurons are uniquely adapted to respond to a subsequent stressful challenge. We observed an increased number of newborn neurons incorporated in the dentate gyrus of the hippocampus during the 10-week post-stress recovery phase. Interestingly, those new neurons were more responsive to subsequent chronic stress, as they showed more of a stress-induced decrease in spine density and branching nodes than in neurons born during a non-stress period. Our results replicate findings that the neuronal survival and incorporation of neurons in the adult dentate gyrus increases after chronic stress and suggest that such neurons are uniquely adapted in the response to future social stressors. This finding provides a potential mechanism for some of the long-term hippocampal effects of stress.

    View details for PubMedID 29311652

  • RNA-protein interaction detection in living cells. Nature methods Ramanathan, M., Majzoub, K., Rao, D. S., Neela, P. H., Zarnegar, B. J., Mondal, S., Roth, J. G., Gai, H., Kovalski, J. R., Siprashvili, Z., Palmer, T. D., Carette, J. E., Khavari, P. A. 2018

    Abstract

    RNA-protein interactions play numerous roles in cellular function and disease. Here we describe RNA-protein interaction detection (RaPID), which uses proximity-dependent protein labeling, based on the BirA* biotin ligase, to rapidly identify the proteins that bind RNA sequences of interest in living cells. RaPID displays utility in multiple applications, including in evaluating protein binding to mutant RNA motifs in human genetic disorders, in uncovering potential post-transcriptional networks in breast cancer, and in discovering essential host proteins that interact with Zika virus RNA. To improve the BirA*-labeling component of RaPID, moreover, a new mutant BirA* was engineered from Bacillus subtilis, termed BASU, that enables >1,000-fold faster kinetics and >30-fold increased signal-to-noise ratio over the prior standard Escherichia coli BirA*, thereby enabling direct study of RNA-protein interactions in living cells on a timescale as short as 1 min.

    View details for PubMedID 29400715

  • A Knockin Reporter Allows Purification and Characterization of mDA Neurons from Heterogeneous Populations CELL REPORTS Xia, N., Fang, F., Zhang, P., Cui, J., Tep-Cullison, C., Hamerley, T., Lee, H. J., Palmer, T., Bothner, B., Lee, J. H., Pera, R. R. 2017; 18 (10): 2533-2546

    Abstract

    Generation of midbrain dopaminergic (mDA) neurons from human pluripotent stem cells provides a platform for inquiry into basic and translational studies of Parkinson's disease (PD). However, heterogeneity in differentiation in vitro makes it difficult to identify mDA neurons in culture or in vivo following transplantation. Here, we report the generation of a human embryonic stem cell (hESC) line with a tyrosine hydroxylase (TH)-RFP (red fluorescent protein) reporter. We validated that RFP faithfully mimicked TH expression during differentiation. Use of this TH-RFP reporter cell line enabled purification of mDA-like neurons from heterogeneous cultures with subsequent characterization of neuron transcriptional and epigenetic programs (global binding profiles of H3K27ac, H3K4me1, and 5-hydroxymethylcytosine [5hmC]) at four different stages of development. We anticipate that the tools and data described here will contribute to the development of mDA neurons for applications in disease modeling and/or drug screening and cell replacement therapies for PD.

    View details for DOI 10.1016/j.celrep.2017.02.023

    View details for PubMedID 28273465

  • Phosphorylation of aB-crystallin supports reactive astrogliosis in demyelination. Proceedings of the National Academy of Sciences of the United States of America Kuipers, H. F., Yoon, J., van Horssen, J., Han, M. H., Bollyky, P. L., Palmer, T. D., Steinman, L. 2017; 114 (9): E1745-E1754

    Abstract

    The small heat shock protein αB-crystallin (CRYAB) has been implicated in multiple sclerosis (MS) pathogenesis. Earlier studies have indicated that CRYAB inhibits inflammation and attenuates clinical disease when administered in the experimental autoimmune encephalomyelitis model of MS. In this study, we evaluated the role of CRYAB in primary demyelinating events. Using the cuprizone model of demyelination, a noninflammatory model that allows the analysis of glial responses in MS, we show that endogenous CRYAB expression is associated with increased severity of demyelination. Moreover, we demonstrate a strong correlation between the expression of CRYAB and the extent of reactive astrogliosis in demyelinating areas and in in vitro assays. In addition, we reveal that CRYAB is differentially phosphorylated in astrocytes in active demyelinating MS lesions, as well as in cuprizone-induced lesions, and that this phosphorylation is required for the reactive astrocyte response associated with demyelination. Furthermore, taking a proteomics approach to identify proteins that are bound by the phosphorylated forms of CRYAB in primary cultured astrocytes, we show that there is clear differential binding of protein targets due to the specific phosphorylation of CRYAB. Subsequent Ingenuity Pathway Analysis of these targets reveals implications for intracellular pathways and biological processes that could be affected by these modifications. Together, these findings demonstrate that astrocytes play a pivotal role in demyelination, making them a potential target for therapeutic intervention, and that phosphorylation of CRYAB is a key factor supporting the pathogenic response of astrocytes to oligodendrocyte injury.

    View details for DOI 10.1073/pnas.1621314114

    View details for PubMedID 28196893

    View details for PubMedCentralID PMC5338510

  • Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease CELL STEM CELL Hsieh, C., Shaltouki, A., Gonzalez, A. E., Da Cruz, A. B., Burbulla, L. F., St Lawrence, E., Schule, B., Krainc, D., Palmer, T. D., Wang, X. 2016; 19 (6): 709-724

    Abstract

    Mitochondrial movements are tightly controlled to maintain energy homeostasis and prevent oxidative stress. Miro is an outer mitochondrial membrane protein that anchors mitochondria to microtubule motors and is removed to stop mitochondrial motility as an early step in the clearance of dysfunctional mitochondria. Here, using human induced pluripotent stem cell (iPSC)-derived neurons and other complementary models, we build on a previous connection of Parkinson's disease (PD)-linked PINK1 and Parkin to Miro by showing that a third PD-related protein, LRRK2, promotes Miro removal by forming a complex with Miro. Pathogenic LRRK2G2019S disrupts this function, delaying the arrest of damaged mitochondria and consequently slowing the initiation of mitophagy. Remarkably, partial reduction of Miro levels in LRRK2G2019S human neuron and Drosophila PD models rescues neurodegeneration. Miro degradation and mitochondrial motility are also impaired in sporadic PD patients. We reveal that prolonged retention of Miro, and the downstream consequences that ensue, may constitute a central component of PD pathogenesis.

    View details for DOI 10.1016/j.stem.2016.08.002

    View details for Web of Science ID 000389474900010

    View details for PubMedCentralID PMC5135570

  • Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease. Cell stem cell Hsieh, C., Shaltouki, A., Gonzalez, A. E., Bettencourt Da Cruz, A., Burbulla, L. F., St Lawrence, E., Schüle, B., Krainc, D., Palmer, T. D., Wang, X. 2016

    Abstract

    Mitochondrial movements are tightly controlled to maintain energy homeostasis and prevent oxidative stress. Miro is an outer mitochondrial membrane protein that anchors mitochondria to microtubule motors and is removed to stop mitochondrial motility as an early step in the clearance of dysfunctional mitochondria. Here, using human induced pluripotent stem cell (iPSC)-derived neurons and other complementary models, we build on a previous connection of Parkinson's disease (PD)-linked PINK1 and Parkin to Miro by showing that a third PD-related protein, LRRK2, promotes Miro removal by forming a complex with Miro. Pathogenic LRRK2G2019S disrupts this function, delaying the arrest of damaged mitochondria and consequently slowing the initiation of mitophagy. Remarkably, partial reduction of Miro levels in LRRK2G2019S human neuron and Drosophila PD models rescues neurodegeneration. Miro degradation and mitochondrial motility are also impaired in sporadic PD patients. We reveal that prolonged retention of Miro, and the downstream consequences that ensue, may constitute a central component of PD pathogenesis.

    View details for DOI 10.1016/j.stem.2016.08.002

    View details for PubMedID 27618216

    View details for PubMedCentralID PMC5135570

  • The Role of the Microenvironmental Niche in Declining Stem-Cell Functions Associated with Biological Aging COLD SPRING HARBOR PERSPECTIVES IN MEDICINE DeCarolis, N. A., Kirby, E. D., Wyss-Coray, T., Palmer, T. D. 2015; 5 (12)
  • Aging-Like Changes in the Transcriptome of Irradiated Microglia GLIA Li, M. D., Burns, T. C., Kumar, S., Morgan, A. A., Sloan, S. A., Palmer, T. D. 2015; 63 (5): 754-767

    Abstract

    Whole brain irradiation remains important in the management of brain tumors. Although necessary for improving survival outcomes, cranial irradiation also results in cognitive decline in long-term survivors. A chronic inflammatory state characterized by microglial activation has been implicated in radiation-induced brain injury. We here provide the first comprehensive transcriptional profile of irradiated microglia. Fluorescence-activated cell sorting was used to isolate CD11b+ microglia from the hippocampi of C57BL/6 and Balb/c mice 1 month after 10 Gy cranial irradiation. Affymetrix gene expression profiles were evaluated using linear modeling and rank product analyses. One month after irradiation, a conserved irradiation signature across strains was identified, comprising 448 and 85 differentially up- and downregulated genes, respectively. Gene set enrichment analysis demonstrated enrichment for inflammation, including M1 macrophage-associated genes, but also an unexpected enrichment for extracellular matrix and blood coagulation-related gene sets, in contrast previously described microglial states. Weighted gene coexpression network analysis confirmed these findings and further revealed alterations in mitochondrial function. The RNA-seq transcriptome of microglia 24-h postradiation proved similar to the 1-month transcriptome, but additionally featured alterations in apoptotic and lysosomal gene expression. Reanalysis of published aging mouse microglia transcriptome data demonstrated striking similarity to the 1-month irradiated microglia transcriptome, suggesting that shared mechanisms may underlie aging and chronic irradiation-induced cognitive decline. GLIA 2015;63:754-767.

    View details for DOI 10.1002/glia.22782

    View details for Web of Science ID 000351622600003

    View details for PubMedID 25690519

    View details for PubMedCentralID PMC4625786

  • The Role of the Microenvironmental Niche in Declining Stem-Cell Functions Associated with Biological Aging. Cold Spring Harbor perspectives in medicine DeCarolis, N. A., Kirby, E. D., Wyss-Coray, T., Palmer, T. D. 2015; 5 (12)

    Abstract

    Aging is strongly correlated with decreases in neurogenesis, the process by which neural stem and progenitor cells proliferate and differentiate into new neurons. In addition to stem-cell-intrinsic factors that change within the aging stem-cell pool, recent evidence emphasizes new roles for systemic and microenvironmental factors in modulating the neurogenic niche. This article focuses on new insights gained through the use of heterochronic parabiosis models, in which an old mouse and a young circulatory system are joined. By studying the brains of both young and old mice, researchers are beginning to uncover circulating proneurogenic "youthful" factors and "aging" factors that decrease stem-cell activity and neurogenesis. Ultimately, the identification of factors that influence stem-cell aging may lead to strategies that slow or even reverse age-related decreases in neural-stem-cell (NSC) function and neurogenesis.

    View details for DOI 10.1101/cshperspect.a025874

    View details for PubMedID 26627453

  • The relationship between serial [(18)?F]PBR06 PET imaging of microglial activation and motor function following stroke in mice. Molecular imaging and biology Lartey, F. M., Ahn, G., Ali, R., Rosenblum, S., Miao, Z., Arksey, N., Shen, B., Colomer, M. V., Rafat, M., Liu, H., Alejandre-Alcazar, M. A., Chen, J. W., Palmer, T., Chin, F. T., Guzman, R., Loo, B. W., Graves, E. 2014; 16 (6): 821-829

    Abstract

    Using [(18) F]PBR06 positron emission tomography (PET) to characterize the time course of stroke-associated neuroinflammation (SAN) in mice, to evaluate whether brain microglia influences motor function after stroke, and to demonstrate the use of [(18) F]PBR06 PET as a therapeutic assessment tool.Stroke was induced by transient middle cerebral artery occlusion (MCAO) in Balb/c mice (control, stroke, and stroke with poststroke minocycline treatment). [18 F]PBR06 PET/CT imaging, rotarod tests, and immunohistochemistry (IHC) were performed 3, 11, and 22 days poststroke induction (PSI).The stroke group exhibited significantly increased microglial activation, and impaired motor function. Peak microglial activation was 11 days PSI. There was a strong association between microglial activation, motor function, and microglial protein expression on IHC. Minocycline significantly reduced microglial activation and improved motor function by day 22 PSI.[18 F]PBR06 PET imaging noninvasively characterizes the time course of SAN, and shows increased microglial activation is associated with decreased motor function.

    View details for DOI 10.1007/s11307-014-0745-0

    View details for PubMedID 24865401

  • Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus MOLECULAR PSYCHIATRY Chetty, S., Friedman, A. R., Taravosh-Lahn, K., Kirby, E. D., Mirescu, C., Guo, F., Krupik, D., Nicholas, A., Geraghty, C., Krishnamurthy, A., Tsai, M., Covarrubias, D., Wong, A. T., Francis, D. D., Sapolsky, R. M., Palmer, T. D., PLEASURE, D., Kaufer, D. 2014; 19 (12): 1275-1283

    Abstract

    Stress can exert long-lasting changes on the brain that contribute to vulnerability to mental illness, yet mechanisms underlying this long-term vulnerability are not well understood. We hypothesized that stress may alter the production of oligodendrocytes in the adult brain, providing a cellular and structural basis for stress-related disorders. We found that immobilization stress decreased neurogenesis and increased oligodendrogenesis in the dentate gyrus (DG) of the adult rat hippocampus and that injections of the rat glucocorticoid stress hormone corticosterone (cort) were sufficient to replicate this effect. The DG contains a unique population of multipotent neural stem cells (NSCs) that give rise to adult newborn neurons, but oligodendrogenic potential has not been demonstrated in vivo. We used a nestin-CreER/YFP transgenic mouse line for lineage tracing and found that cort induces oligodendrogenesis from nestin-expressing NSCs in vivo. Using hippocampal NSCs cultured in vitro, we further showed that exposure to cort induced a pro-oligodendrogenic transcriptional program and resulted in an increase in oligodendrogenesis and decrease in neurogenesis, which was prevented by genetic blockade of glucocorticoid receptor (GR). Together, these results suggest a novel model in which stress may alter hippocampal function by promoting oligodendrogenesis, thereby altering the cellular composition and white matter structure.

    View details for DOI 10.1038/mp.2013.190

    View details for PubMedID 24514565

  • The Relationship Between Serial [(18) F]PBR06 PET Imaging of Microglial Activation and Motor Function Following Stroke in Mice MOLECULAR IMAGING AND BIOLOGY Lartey, F. M., Ahn, G., Ali, R., Rosenblum, S., Miao, Z., Arksey, N., Shen, B., Colomer, M. V., Rafat, M., Liu, H., Alejandre-Alcazar, M. A., Chen, J. W., Palmer, T., Chin, F. T., Guzman, R., Loo, B. W., Graves, E. 2014; 16 (6): 821-829

    Abstract

    Using [(18) F]PBR06 positron emission tomography (PET) to characterize the time course of stroke-associated neuroinflammation (SAN) in mice, to evaluate whether brain microglia influences motor function after stroke, and to demonstrate the use of [(18) F]PBR06 PET as a therapeutic assessment tool.Stroke was induced by transient middle cerebral artery occlusion (MCAO) in Balb/c mice (control, stroke, and stroke with poststroke minocycline treatment). [18 F]PBR06 PET/CT imaging, rotarod tests, and immunohistochemistry (IHC) were performed 3, 11, and 22 days poststroke induction (PSI).The stroke group exhibited significantly increased microglial activation, and impaired motor function. Peak microglial activation was 11 days PSI. There was a strong association between microglial activation, motor function, and microglial protein expression on IHC. Minocycline significantly reduced microglial activation and improved motor function by day 22 PSI.[18 F]PBR06 PET imaging noninvasively characterizes the time course of SAN, and shows increased microglial activation is associated with decreased motor function.

    View details for DOI 10.1007/s11307-014-0745-0

    View details for Web of Science ID 000345281600009

  • PET Imaging of Stroke-Induced Neuroinflammation in Mice Using [F-18]PBR06 MOLECULAR IMAGING AND BIOLOGY Lartey, F. M., Ahn, G., Shen, B., Cord, K., Smith, T., Chua, J. Y., Rosenblum, S., Liu, H., James, M. L., Chernikova, S., Lee, S. W., Pisani, L. J., Tirouvanziam, R., Chen, J. W., Palmer, T. D., Chin, F. T., Guzman, R., Graves, E. E., Loo, B. W. 2014; 16 (1): 109-117

    Abstract

    The purpose of this study is to evaluate the 18 kDa translocator protein (TSPO) radioligand [(18)F]N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline ([(18)F]PBR06) as a positron emission tomography (PET) imaging biomarker of stroke-induced neuroinflammation in a rodent model.Stroke was induced by transient middle cerebral artery occlusion in Balb/c mice. Dynamic PET/CT imaging with displacement and preblocking using PK111195 was performed 3 days later. PET data were correlated with immunohistochemistry (IHC) for the activated microglial markers TSPO and CD68 and with autoradiography.[(18)F]PBR06 accumulation peaked within the first 5 min postinjection, then decreased gradually, remaining significantly higher in infarct compared to noninfarct regions. Displacement or preblocking with PK11195 eliminated the difference in [(18)F]PBR06 uptake between infarct and noninfarct regions. Autoradiography and IHC correlated well spatially with uptake on PET.[(18)F]PBR06 PET specifically images TSPO in microglial neuroinflammation in a mouse model of stroke and shows promise for imaging and monitoring microglial activation/neuroinflammation in other disease models.

    View details for DOI 10.1007/s11307-013-0664-5

    View details for PubMedID 23836504

  • Stereotypical alterations in cortical patterning are associated with maternal illness-induced placental dysfunction. journal of neuroscience Carpentier, P. A., Haditsch, U., Braun, A. E., Cantu, A. V., Moon, H. M., Price, R. O., Anderson, M. P., Saravanapandian, V., Ismail, K., Rivera, M., Weimann, J. M., Palmer, T. D. 2013; 33 (43): 16874-16888

    Abstract

    We have previously shown in mice that cytokine-mediated damage to the placenta can temporarily limit the flow of nutrients and oxygen to the fetus. The placental vulnerability is pronounced before embryonic day 11, when even mild immune challenge results in fetal loss. As gestation progresses, the placenta becomes increasingly resilient to maternal inflammation, but there is a narrow window in gestation when the placenta is still vulnerable to immune challenge yet resistant enough to allow for fetal survival. This gestational window correlates with early cortical neurogenesis in the fetal brain. Here, we show that maternal illness during this period selectively alters the abundance and laminar positioning of neuronal subtypes influenced by the Tbr1, Satb2, and Ctip2/Fezf2 patterning axis. The disturbances also lead to a laminar imbalance in the proportions of projection neurons and interneurons in the adult and are sufficient to cause changes in social behavior and cognition. These data illustrate how the timing of an illness-related placental vulnerability causes developmental alterations in neuroanatomical systems and behaviors that are relevant to autism spectrum disorders.

    View details for DOI 10.1523/JNEUROSCI.4654-12.2013

    View details for PubMedID 24155294

    View details for PubMedCentralID PMC3807021

  • Natural Killer Cell-Activating Receptor NKG2D Mediates Innate Immune Targeting of Allogeneic Neural Progenitor Cell Grafts STEM CELLS Phillips, L. K., Gould, E. A., Babu, H., Krams, S. M., Palmer, T. D., Martinez, O. M. 2013; 31 (9): 1829-1839

    Abstract

    Cell replacement therapy holds promise for a number of untreatable neurological or psychiatric diseases but the immunogenicity of cellular grafts remains controversial. Emerging stem cell and reprogramming technologies can be used to generate autologous grafts that minimize immunological concerns but autologous grafts may carry an underlying genetic vulnerability that reduces graft efficacy or survival. Healthy allogeneic grafts are an attractive and commercially scalable alternative if immunological variables can be controlled. Stem cells and immature neural progenitor cells (NPC) do not express major histocompatibility complex (MHC) antigens and can evade adaptive immune surveillance. Nevertheless, in an experimental murine model, allogeneic NPCs do not survive and differentiate as well as syngeneic grafts, even when traditional immunosuppressive treatments are used. In this study, we show that natural killer (NK) cells recognize the lack of self-MHC antigens on NPCs and pose a barrier to NPC transplantation. NK cells readily target both syngeneic and allogeneic NPC, and killing is modulated primarily by NK-inhibiting "self" class I MHC and NK-activating NKG2D-ligand expression. The absence of NKG2D signaling in NK cells significantly improves NPC-derived neuron survival and differentiation. These data illustrate the importance of innate immune mechanisms in graft outcome and the potential value of identifying and targeting NK cell-activating ligands that may be expressed by stem cell derived grafts.

    View details for DOI 10.1002/stem.1422

    View details for Web of Science ID 000325255700010

    View details for PubMedID 23733329

  • Neuronal Rac1 is required for learning-evoked neurogenesis. journal of neuroscience Haditsch, U., Anderson, M. P., Freewoman, J., Cord, B., Babu, H., Brakebusch, C., Palmer, T. D. 2013; 33 (30): 12229-12241

    Abstract

    Hippocampus-dependent learning and memory relies on synaptic plasticity as well as network adaptations provided by the addition of adult-born neurons. We have previously shown that activity-induced intracellular signaling through the Rho family small GTPase Rac1 is necessary in forebrain projection neurons for normal synaptic plasticity in vivo, and here we show that selective loss of neuronal Rac1 also impairs the learning-evoked increase in neurogenesis in the adult mouse hippocampus. Earlier work has indicated that experience elevates the abundance of adult-born neurons in the hippocampus primarily by enhancing the survival of neurons produced just before the learning event. Loss of Rac1 in mature projection neurons did reduce learning-evoked neurogenesis but, contrary to our expectations, these effects were not mediated by altering the survival of young neurons in the hippocampus. Instead, loss of neuronal Rac1 activation selectively impaired a learning-evoked increase in the proliferation and accumulation of neural precursors generated during the learning event itself. This indicates that experience-induced alterations in neurogenesis can be mechanistically resolved into two effects: (1) the well documented but Rac1-independent signaling cascade that enhances the survival of young postmitotic neurons; and (2) a previously unrecognized Rac1-dependent signaling cascade that stimulates the proliferative production and retention of new neurons generated during learning itself.

    View details for DOI 10.1523/JNEUROSCI.2939-12.2013

    View details for PubMedID 23884931

    View details for PubMedCentralID PMC3721836

  • Neuronal Rac1 Is Required for Learning-Evoked Neurogenesis JOURNAL OF NEUROSCIENCE Haditsch, U., Anderson, M. P., Freewoman, J., Cord, B., Babu, H., Brakebusch, C., Palmer, T. D. 2013; 33 (30): 12229-12241

    Abstract

    Hippocampus-dependent learning and memory relies on synaptic plasticity as well as network adaptations provided by the addition of adult-born neurons. We have previously shown that activity-induced intracellular signaling through the Rho family small GTPase Rac1 is necessary in forebrain projection neurons for normal synaptic plasticity in vivo, and here we show that selective loss of neuronal Rac1 also impairs the learning-evoked increase in neurogenesis in the adult mouse hippocampus. Earlier work has indicated that experience elevates the abundance of adult-born neurons in the hippocampus primarily by enhancing the survival of neurons produced just before the learning event. Loss of Rac1 in mature projection neurons did reduce learning-evoked neurogenesis but, contrary to our expectations, these effects were not mediated by altering the survival of young neurons in the hippocampus. Instead, loss of neuronal Rac1 activation selectively impaired a learning-evoked increase in the proliferation and accumulation of neural precursors generated during the learning event itself. This indicates that experience-induced alterations in neurogenesis can be mechanistically resolved into two effects: (1) the well documented but Rac1-independent signaling cascade that enhances the survival of young postmitotic neurons; and (2) a previously unrecognized Rac1-dependent signaling cascade that stimulates the proliferative production and retention of new neurons generated during learning itself.

    View details for DOI 10.1523/JNEUROSCI.2939-12.2013

    View details for Web of Science ID 000322168600010

    View details for PubMedID 23884931

    View details for PubMedCentralID PMC3721836

  • DIFFERENTIAL ROLES FOR THE SMALL HEAT SHOCK PROTEIN ALPHA B-CRYSTALLIN IN DE- & REMYELINATION 11th European Meeting on Glial Cell Function in Health and Disease Kuipers, H., Yoon, J., Winderl, J., van Horssen, J., Palmer, T., Steinman, L. WILEY-BLACKWELL. 2013: S185–S185
  • Differential roles of TNFR1 and TNFR2 signaling in adult hippocampal neurogenesis. Brain, behavior, and immunity Chen, Z., Palmer, T. D. 2013; 30: 45-53

    Abstract

    Tumor necrosis factor alpha (TNFα) is a potent inhibitor of neurogenesis in vitro but here we show that TNFα signaling has both positive and negative effects on neurogenesis in vivo and is required to moderate the negative impact of cranial irradiation on hippocampal neurogenesis. In vitro, basal levels of TNFα signaling through TNFR2 are required for normal neural progenitor cell proliferation while basal signaling through TNFR1 impairs neural progenitor proliferation. TNFR1 also mediates further reductions in proliferation and elevated cell death following exposure to recombinant TNFα. In vivo, TNFR1(-/-) and TNFα(-/-) animals have elevated baseline neurogenesis in the hippocampus, whereas absence of TNFR2 decreases baseline neurogenesis. TNFα is also implicated in defects in neurogenesis that follow radiation injury but we find that loss of TNFR1 has no protective effects on neurogenesis and loss of TNFα or TNFR2 worsened the effects of radiation injury on neurogenesis. We conclude that the immunomodulatory signaling of TNFα mediated by TNFR2 is more significant to radiation injury outcome than the proinflammatory signaling mediated through TNFR1.

    View details for DOI 10.1016/j.bbi.2013.01.083

    View details for PubMedID 23402793

    View details for PubMedCentralID PMC3641155

  • Absence of CCL2 is sufficient to restore hippocampal neurogenesis following cranial irradiation. Brain, behavior, and immunity Lee, S. W., Haditsch, U., Cord, B. J., Guzman, R., Kim, S. J., Boettcher, C., Priller, J., Ormerod, B. K., Palmer, T. D. 2013; 30: 33-44

    Abstract

    Cranial irradiation for the treatment of brain tumors causes a delayed and progressive cognitive decline that is pronounced in young patients. Dysregulation of neural stem and progenitor cells is thought to contribute to these effects by altering early childhood brain development. Earlier work has shown that irradiation creates a chronic neuroinflammatory state that severely and selectively impairs postnatal and adult neurogenesis. Here we show that irradiation induces a transient non-classical cytokine response with selective upregulation of CCL2/monocyte chemoattractant protein-1 (MCP-1). Absence of CCL2 signaling in the hours after irradiation is alone sufficient to attenuate chronic microglia activation and allow the recovery of neurogenesis in the weeks following irradiation. This identifies CCL2 signaling as a potential clinical target for moderating the long-term defects in neural stem cell function following cranial radiation in children.

    View details for DOI 10.1016/j.bbi.2012.09.010

    View details for PubMedID 23041279

  • Lineage tracing with Axin2 reveals distinct developmental and adult populations of Wnt/ß-catenin-responsive neural stem cells. Proceedings of the National Academy of Sciences of the United States of America Bowman, A. N., van Amerongen, R., Palmer, T. D., Nusse, R. 2013; 110 (18): 7324-7329

    Abstract

    Since the discovery of neural stem cells in the mammalian brain, there has been significant interest in understanding their contribution to tissue homeostasis at both the cellular and molecular level. Wnt/β-catenin signaling is crucial for development of the central nervous system and has been implicated in stem cell maintenance in multiple tissues. Based on this, we hypothesized that the Wnt pathway likely controls neural stem cell maintenance and differentiation along the entire developmental continuum. To test this, we performed lineage tracing experiments using the recently developed tamoxifen-inducible Cre at Axin2 mouse strain to follow the developmental fate of Wnt/β-catenin-responsive cells in both the embryonic and postnatal mouse brain. From as early as embryonic day 8.5 onwards, Axin2(+) cells can give rise to spatially and functionally restricted populations of adult neural stem cells in the subventricular zone. Similarly, progeny from Axin2(+) cells labeled from E12.5 contribute to both the subventricular zone and the dentate gyrus of the hippocampus. Labeling in the postnatal brain, in turn, demonstrates the persistence of long-lived, Wnt/β-catenin-responsive stem cells in both of these sites. These results demonstrate the continued importance of Wnt/β-catenin signaling for neural stem and progenitor cell formation and function throughout developmental time.

    View details for DOI 10.1073/pnas.1305411110

    View details for PubMedID 23589866

    View details for PubMedCentralID PMC3645553

  • PPAR gamma activation prevents impairments in spatial memory and neurogenesis following transient illness BRAIN BEHAVIOR AND IMMUNITY Ormerod, B. K., Hanft, S. J., Asokan, A., Haditsch, U., Lee, S. W., Palmer, T. D. 2013; 29: 28-38

    Abstract

    The detrimental effects of illness on cognition are familiar to virtually everyone. Some effects resolve quickly while others may linger after the illness resolves. We found that a transient immune response stimulated by lipopolysaccharide (LPS) compromised hippocampal neurogenesis and impaired hippocampus-dependent spatial memory. The immune event caused an ∼50% reduction in the number of neurons generated during the illness and the onset of the memory impairment was delayed and coincided with the time when neurons generated during the illness would have become functional within the hippocampus. Broad spectrum non-steroidal anti-inflammatory drugs attenuated these effects but selective Cox-2 inhibition was ineffective while PPARγ activation was surprisingly effective at protecting both neurogenesis and memory from the effects of LPS-produced transient illness. These data may highlight novel mechanisms behind chronic inflammatory and neuroinflammatory episodes that are known to compromise hippocampus-dependent forms of learning and memory.

    View details for DOI 10.1016/j.bbi.2012.10.017

    View details for Web of Science ID 000315365400004

    View details for PubMedID 23108061

    View details for PubMedCentralID PMC3570721

  • LIPOPOLYSACCHARIDE EXPOSURE IN EARLY PREGNANCY IS ASSOCIATED WITH LATE PREGNANCY COMPLICATIONS Western Regional Meeting of the American-Federation-for-Medical-Research Ozen, M., Rivera, M., Saravanapandian, V., Palmer, T. D. LIPPINCOTT WILLIAMS & WILKINS. 2013: 191–91
  • The small heat shock protein Alpha B-Crystallin rescues oligodendrocyte progenitors from cuprizone-induced demyelination and promotes remyelination 11th International Congress of Neuroimmunology (ISNI) Kuipers, H. F., Yoon, J., Vister, J., Palmer, T. D., Steinman, L. ELSEVIER SCIENCE BV. 2012: 128–29
  • The small heat shock protein alpha B-crystallin reveals a prominent role for astrogliosis in cuprizone-induced demyelination 11th International Congress of Neuroimmunology (ISNI) Kuipers, H. F., Yoon, J., Vister, J., Palmer, T. D., Steinman, L. ELSEVIER SCIENCE BV. 2012: 64–64
  • Adult neural progenitor cells reactivate superbursting in mature neural networks EXPERIMENTAL NEUROLOGY Stephens, C. L., Toda, H., Palmer, T. D., DeMarse, T. B., Ormerod, B. K. 2012; 234 (1): 20-30

    Abstract

    Behavioral recovery in animal models of human CNS syndromes suggests that transplanted stem cell derivatives can augment damaged neural networks but the mechanisms behind potentiated recovery remain elusive. Here we use microelectrode array (MEA) technology to document neural activity and network integration as rat primary neurons and rat hippocampal neural progenitor cells (NPCs) differentiate and mature. The natural transition from neuroblast to functional excitatory neuron consists of intermediate phases of differentiation characterized by coupled activity. High-frequency network-wide bursting or "superbursting" is a hallmark of early plasticity that is ultimately refined into mature stable neural network activity. Microelectrode array (MEA)-plated neurons transition through this stage of coupled superbursting before establishing mature neuronal phenotypes in vitro. When plated alone, adult rat hippocampal NPC-derived neurons fail to establish the synchronized bursting activity that neurons in primary and embryonic stem cell-derived cultures readily form. However, adult rat hippocampal NPCs evoke re-emergent superbursting in electrophysiologically mature rat primary neural cultures. Developmental superbursting is thought to accompany transient states of heightened plasticity both in culture preparations and across brain regions. Future work exploring whether NPCs can re-stimulate developmental states in injury models would be an interesting test of their regenerative potential.

    View details for DOI 10.1016/j.expneurol.2011.12.009

    View details for Web of Science ID 000301617500004

    View details for PubMedID 22198136

  • Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome NATURE MEDICINE Pasca, S. P., Portmann, T., Voineagu, I., Yazawa, M., Shcheglovitov, A., Pasca, A. M., Cord, B., Palmer, T. D., Chikahisa, S., Nishino, S., Bernstein, J. A., Hallmayer, J., Geschwind, D. H., Dolmetsch, R. E. 2011; 17 (12): 1657-U176

    Abstract

    Monogenic neurodevelopmental disorders provide key insights into the pathogenesis of disease and help us understand how specific genes control the development of the human brain. Timothy syndrome is caused by a missense mutation in the L-type calcium channel Ca(v)1.2 that is associated with developmental delay and autism. We generated cortical neuronal precursor cells and neurons from induced pluripotent stem cells derived from individuals with Timothy syndrome. Cells from these individuals have defects in calcium (Ca(2+)) signaling and activity-dependent gene expression. They also show abnormalities in differentiation, including decreased expression of genes that are expressed in lower cortical layers and in callosal projection neurons. In addition, neurons derived from individuals with Timothy syndrome show abnormal expression of tyrosine hydroxylase and increased production of norepinephrine and dopamine. This phenotype can be reversed by treatment with roscovitine, a cyclin-dependent kinase inhibitor and atypical L-type-channel blocker. These findings provide strong evidence that Ca(v)1.2 regulates the differentiation of cortical neurons in humans and offer new insights into the causes of autism in individuals with Timothy syndrome.

    View details for DOI 10.1038/nm.2576

    View details for PubMedID 22120178

  • SNCA Triplication Parkinson's Patient's iPSC-derived DA Neurons Accumulate alpha-Synuclein and Are Susceptible to Oxidative Stress PLOS ONE Byers, B., Cord, B., Ha Nam Nguyen, H. N., Schuele, B., Fenno, L., Lee, P. C., Deisseroth, K., Langston, J. W., Pera, R. R., Palmer, T. D. 2011; 6 (11)

    Abstract

    Parkinson's disease (PD) is an incurable age-related neurodegenerative disorder affecting both the central and peripheral nervous systems. Although common, the etiology of PD remains poorly understood. Genetic studies infer that the disease results from a complex interaction between genetics and environment and there is growing evidence that PD may represent a constellation of diseases with overlapping yet distinct underlying mechanisms. Novel clinical approaches will require a better understanding of the mechanisms at work within an individual as well as methods to identify the specific array of mechanisms that have contributed to the disease. Induced pluripotent stem cell (iPSC) strategies provide an opportunity to directly study the affected neuronal subtypes in a given patient. Here we report the generation of iPSC-derived midbrain dopaminergic neurons from a patient with a triplication in the α-synuclein gene (SNCA). We observed that the iPSCs readily differentiated into functional neurons. Importantly, the PD-affected line exhibited disease-related phenotypes in culture: accumulation of α-synuclein, inherent overexpression of markers of oxidative stress, and sensitivity to peroxide induced oxidative stress. These findings show that the dominantly-acting PD mutation is intrinsically capable of perturbing normal cell function in culture and confirm that these features reflect, at least in part, a cell autonomous disease process that is independent of exposure to the entire complexity of the diseased brain.

    View details for DOI 10.1371/journal.pone.0026159

    View details for Web of Science ID 000297555400007

    View details for PubMedID 22110584

    View details for PubMedCentralID PMC3217921

  • The CCR2/CCL2 Interaction Mediates the Transendothelial Recruitment of Intravascularly Delivered Neural Stem Cells to the Ischemic Brain STROKE Andres, R. H., Choi, R., Pendharkar, A. V., Gaeta, X., Wang, N., Nathan, J. K., Chua, J. Y., Lee, S. W., Palmer, T. D., Steinberg, G. K., Guzman, R. 2011; 42 (10): 2923-U387

    Abstract

    The inflammatory response is a critical component of ischemic stroke. In addition to its physiological role, the mechanisms behind transendothelial recruitment of immune cells also offer a unique therapeutic opportunity for translational stem cell therapies. Recent reports have demonstrated homing of neural stem cells (NSC) into the injured brain areas after intravascular delivery. However, the mechanisms underlying the process of transendothelial recruitment remain largely unknown. Here we describe the critical role of the chemokine CCL2 and its receptor CCR2 in targeted homing of NSC after ischemia.Twenty-four hours after induction of stroke using the hypoxia-ischemia model in mice CCR2+/+ and CCR2-/- reporter NSC were intra-arterially delivered. Histology and bioluminescence imaging were used to investigate NSC homing to the ischemic brain. Functional outcome was assessed with the horizontal ladder test.Using NSC isolated from CCR2+/+ and CCR2-/- mice, we show that receptor deficiency significantly impaired transendothelial diapedesis specifically in response to CCL2. Accordingly, wild-type NSC injected into CCL2-/- mice exhibited significantly decreased homing. Bioluminescence imaging showed robust recruitment of CCR2+/+ cells within 6 hours after transplantation in contrast to CCR2-/- cells. Mice receiving CCR2+/+ grafts after ischemic injury showed a significantly improved recovery of neurological deficits as compared to animals with transplantation of CCR2-/- NSC.The CCL2/CCR2 interaction is critical for transendothelial recruitment of intravascularly delivered NSC in response to ischemic injury. This finding could have significant implications in advancing minimally invasive intravascular therapeutics for regenerative medicine or cell-based drug delivery systems for central nervous system diseases.

    View details for DOI 10.1161/STROKEAHA.110.606368

    View details for PubMedID 21836091

  • ALPHA B-CRYSTALLIN PLAYS DIFFERENTIAL ROLES IN CUPRIZONE-INDUCED DEMYELINATION AND REMYELINATION 10th European Meeting on Glial Cells in Health and Disease Kuipers, H. F., Brownell, S., Kurnellas, M., Palmer, T., Steinman, L. WILEY-BLACKWELL. 2011: S142–S142
  • Placental TNF-alpha Signaling in Illness-Induced Complications of Pregnancy AMERICAN JOURNAL OF PATHOLOGY Carpentier, P. A., Dingman, A. L., Palmer, T. D. 2011; 178 (6): 2802-2810

    Abstract

    Maternal infections are implicated in a variety of complications during pregnancy, including pregnancy loss, prematurity, and increased risk of neurodevelopmental disorders in the child. Here, we show in mice that even mild innate immune activation by low-dose lipopolysaccharide in early pregnancy causes hemorrhages in the placenta and increases the risk of pregnancy loss. Surviving fetuses exhibit hypoxia in the brain and impaired fetal neurogenesis. Maternal Toll-like receptor 4 signaling is a critical mediator of this process, and its activation is accompanied by elevated proinflammatory cytokines in the placenta. We evaluated the role of tumor necrosis factor-α (TNF-α) signaling and show that TNF receptor 1 (TNFR1) is necessary for the illness-induced placental pathology, accompanying fetal hypoxia, and neuroproliferative defects in the fetal brain. We also show that placental TNFR1 in the absence of maternal TNFR1 is sufficient for placental pathology to develop and that a clinically relevant TNF-α antagonist prevents placental pathology and fetal loss. Our observations suggest that the placenta is highly sensitive to proinflammatory signaling in early pregnancy and that TNF-α is an effective target for preventing illness-related placental defects and related risks to the fetus and fetal brain development.

    View details for DOI 10.1016/j.ajpath.2011.02.042

    View details for Web of Science ID 000298306900035

    View details for PubMedID 21641402

    View details for PubMedCentralID PMC3124299

  • Neural Stem/Progenitor Cells Are Targets for Natural Killer Cell-Mediated Killing American Transplant Congress Phillips, L. K., GOULD, E. A., Palmer, T. D., Krams, S. M., Martinez, O. M. WILEY-BLACKWELL. 2011: 439–439
  • MHC Mismatch Inhibits Neurogenesis and Neuron Maturation in Stem Cell Allografts PLOS ONE Chen, Z., Phillips, L. K., Gould, E., Campisi, J., Lee, S. W., Ormerod, B. K., Zwierzchoniewska, M., Martinez, O. M., Palmer, T. D. 2011; 6 (3)

    Abstract

    The role of histocompatibility and immune recognition in stem cell transplant therapy has been controversial, with many reports arguing that undifferentiated stem cells are protected from immune recognition due to the absence of major histocompatibility complex (MHC) markers. This argument is even more persuasive in transplantation into the central nervous system (CNS) where the graft rejection response is minimal.In this study, we evaluate graft survival and neuron production in perfectly matched vs. strongly mismatched neural stem cells transplanted into the hippocampus in mice. Although allogeneic cells survive, we observe that MHC-mismatch decreases surviving cell numbers and strongly inhibits the differentiation and retention of graft-derived as well as endogenously produced new neurons. Immune suppression with cyclosporine-A did not improve outcome but non-steroidal anti-inflammatory drugs, indomethacin or rosiglitazone, were able to restore allogeneic neuron production, integration and retention to the level of syngeneic grafts.These results suggest an important but unsuspected role for innate, rather than adaptive, immunity in the survival and function of MHC-mismatched cellular grafts in the CNS.

    View details for DOI 10.1371/journal.pone.0014787

    View details for Web of Science ID 000289055700001

    View details for PubMedID 21479168

    View details for PubMedCentralID PMC3068158

  • LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell stem cell Nguyen, H. N., Byers, B., Cord, B., Shcheglovitov, A., Byrne, J., Gujar, P., Kee, K., Schüle, B., Dolmetsch, R. E., Langston, W., Palmer, T. D., Pera, R. R. 2011; 8 (3): 267-280

    Abstract

    Studies of Parkinson's disease (PD) have been hindered by lack of access to affected human dopaminergic (DA) neurons. Here, we report generation of induced pluripotent stem cells that carry the p.G2019S mutation (G2019S-iPSCs) in the Leucine-Rich Repeat Kinase-2 (LRRK2) gene, the most common PD-related mutation, and their differentiation into DA neurons. The high penetrance of the LRRK2 mutation and its clinical resemblance to sporadic PD suggest that these cells could provide a valuable platform for disease analysis and drug development. We found that DA neurons derived from G2019S-iPSCs showed increased expression of key oxidative stress-response genes and α-synuclein protein. The mutant neurons were also more sensitive to caspase-3 activation and cell death caused by exposure to stress agents, such as hydrogen peroxide, MG-132, and 6-hydroxydopamine, than control DA neurons. This enhanced stress sensitivity is consistent with existing understanding of early PD phenotypes and represents a potential therapeutic target.

    View details for DOI 10.1016/j.stem.2011.01.013

    View details for PubMedID 21362567

    View details for PubMedCentralID PMC3578553