Home / News /  An intracortical brain-computer interface is making the dream of restoring speech a reality

An intracortical brain-computer interface is making the dream of restoring speech a reality

August 24, 2023

Jaimie Henderson, MD

Pat Bennett, now 68, is a former human resources director and onetime equestrian who jogged daily. In 2012, she was diagnosed with amyotrophic lateral sclerosis, a progressive neurodegenerative disease that attacks neurons controlling movement, causing physical weakness and eventual paralysis.

“When you think of ALS, you think of arm and leg impact,” Bennett wrote in an interview conducted by email. “But in a group of ALS patients, it begins with speech difficulties. I am unable to speak.”

While Bennett’s brain can still formulate directions for generating those phonemes, her muscles can’t carry out the commands.

Dr. Jaimie Henderson placed two tiny sensors apiece in two separate regions — both implicated in speech production — along the surface of Bennett’s brain. The sensors are components of an intracortical brain-computer interface, or iBCI. Combined with state-of-the-art decoding software, they’re designed to translate the brain activity accompanying attempts at speech into words on a screen.

About a month after the surgery, a team of Stanford scientists began twice-weekly research sessions to train the software that was interpreting her speech. After four months, Bennett’s attempted utterances were being converted into words on a computer screen at 62 words per minute — more than three times as fast as the previous record for BCI-assisted communication.