Deisseroth Lab

STARmap (Spatially-resolved Transcript Amplicon Readout mapping)

We developed and applied a technology for 3D intact-tissue RNA sequencing, termed STARmap (spatially-resolved transcript amplicon readout mapping), which integrates hydrogel-tissue chemistry, targeted signal amplification, and in situ sequencing.The capabilities of STARmap were tested by mapping 160 to 1020 genes simultaneously in sections of mouse brain at single-cell resolution with high efficiency, accuracy, and reproducibility. Moving to thick tissue blocks, we observed a molecularly defined gradient distribution of excitatory-neuron subtypes across cubic millimeter–scale volumes (>30,000 cells) and a short-range 3D self-clustering in many inhibitory-neuron subtypes that could be identified and described with 3D STARmap.

STARmap resources include detailed protocols, analysis code and dependencies, and data.



Opsin Characterization & Development

The naturally occurring channelrhodopsin variant anion channelrhodopsin-1 (ACR1), discovered in the cryptophyte algae Guillardia theta, exhibits large light-gated anion conductance and high anion selectivity when expressed in heterologous settings, properties that support its use as an optogenetic tool to inhibit neuronal firing with light. However, molecular insight into ACR1 is lacking owing to the absence of structural information underlying light-gated anion conductance. Here we present the crystal structure of G. theta ACR1 at 2.9 Å resolution. The structure reveals unusual architectural features that span the extracellular domain, retinal-binding pocket, Schiff-base region, and anion-conduction pathway. Together with electrophysiological and spectroscopic analyses, these findings reveal the fundamental molecular basis of naturally occurring light-gated anion conductance, and provide a framework for designing the next generation of optogenetic tools.


INTRSECT (INTronic Recombinase Sites Enabling Combinatorial Targeting)

As the power of genetically encoded interventional and observational tools for neuroscience expands, the boundaries of experimental design are increasingly defined by limits in selectively expressing these tools in relevant cell types. Single-recombinase-dependent expression systems have been widely used as a means to restrict gene expression based on single features by combining recombinase-dependent viruses with recombinase-expressing transgenic animals. This protocol details how to create INTRSECT constructs and use multiple recombinases to achieve targeting of a desired gene to subsets of neurons that are defined by multiple genetic and/or topological features. This method includes the design and utilization of both viruses and transgenic animals: these tools are inherently flexible and modular and may be used in different combinations to achieve the desired gene expression pattern.


For more on Deisseroth Lab research please visit the Deisseroth Lab website.