November 22 Nov 22
2022
11:00 AM - 12:00 PM
Tuesday Tue

Location

Loading Map...

Stanford University School of Medicine

291 Campus Dr
Stanford CA, 94305
Get Directions
Event

Medical Physics Seminar - Saad Nadeem

Building a comprehensive multimodal/multiscale patient snapshot for improved clinical outcomes

Location: Zoom
Zoom Details
Webinar URL: https://stanford.zoom.us/webinar/register/WN_j1zCOA3wTUaOW1k9ue6zHQ
Dial: US: +1 650 724 9799  or +1 833 302 1536 (Toll Free)
Webinar ID: 981 4830 1798
Passcode: 366874

12:00PM – 1:00PM Seminar & Discussion


Sponsored by the Radiation Oncology, Division of Medical Physics

Speaker

Dr. Saad Nadeem,  Assistant Professor in the Departments of Medical Physics and Pathology at Memorial Sloan Kettering Cancer Center.

 
 
Dr. Saad Nadeem is an Assistant Professor in the Departments of Medical Physics and Pathology at Memorial Sloan Kettering Cancer Center. His lab develops advanced mathematical and machine learning techniques for analyzing patient data at multiple scales (macro: radiology/surgery, meso: pathology, and micro: molecular - genomics/proteomics/transcriptomics/metabolomics) to improve patient outcomes. The lab is specifically focused on building user-friendly tools that seamlessly fit into the clinical workflows and facilitate accurate and timely diagnosis/prognosis/decision-making while aiding in novel biomarker discovery.

Abstract

Gleaning rigorous clinical insights from radiology scans, surgical videos, and pathology slides provides a comprehensive patient snapshot for more informed decision-making. In this talk, I will present our broader effort to weave information from these complementary modalities/scales to improve patient outcomes. Specifically, for radiology scans, I will introduce our work on (1) creating clinically-interpretable radiomics for screening and treatment response prediction, (2) artifacts: friends or foe?, (3) physically-realistic breathing motion induction in static scans, and (4) clinically-deliverable radiation dose prediction using AI and large-scale optimization. For surgery, I will briefly talk about our pioneering work in analyzing minimally invasive surgical videos. I will conclude with our work in pathology which aims to bridge hematoxylin-and-eosin (H&E), immunohistochemistry (IHC), and next-generation multiplex image analysis for improved biomarker quantification.