Publications

Hélène Irwin Fagan Chair of Cardiology

Publications

  • Structure and dynamics determine G protein coupling specificity at a class A GPCR. Science advances Casiraghi, M., Wang, H., Brennan, P. C., Habrian, C., Hübner, H., Schmidt, M. F., Maul, L., Pani, B., Bahriz, S. M., Xu, B., Staffen, N., Assafa, T. E., Chen, B., White, E., Sunahara, R. K., Inoue, A., Xiang, Y. K., Lefkowitz, R. J., Isacoff, E. Y., Nucci, N., Gmeiner, P., Lerch, M. T., Kobilka, B. K. 2025; 11 (12): eadq3971

    Abstract

    G protein-coupled receptors (GPCRs) exhibit varying degrees of selectivity for different G protein isoforms. Despite the abundant structures of GPCR-G protein complexes, little is known about the mechanism of G protein coupling specificity. The β2-adrenergic receptor is an example of GPCR with high selectivity for Gαs, the stimulatory G protein for adenylyl cyclase, and much weaker for the Gαi family of G proteins inhibiting adenylyl cyclase. By developing a Gαi-biased agonist (LM189), we provide structural and biophysical evidence supporting that distinct conformations at ICL2 and TM6 are required for coupling of the different G protein subtypes Gαs and Gαi. These results deepen our understanding of G protein specificity and bias and can accelerate the design of ligands that select for preferred signaling pathways.

    View details for DOI 10.1126/sciadv.adq3971

    View details for PubMedID 40106559

  • A cryptic pocket in CB1 drives peripheral and functional selectivity NATURE Rangari, V., O'Brien, E. S., Powers, A. S., Slivicki, R. A., Bertels, Z., Appourchaux, K., Aydin, D., Ramos-Gonzalez, N., Mwirigi, J., Lin, L., Mangutov, E., Sobecks, B. L., Awad-Agbaria, Y., Uphade, M. B., Aguilar, J., Peddada, T., Shiimura, Y., Huang, X., Folarin-Hines, J., Payne, M., Kalathil, A., Varga, B. R., Kobilka, B. K., Pradhan, A. A., Cameron, M. D., Kumar, K., Dror, R. O., Gereau, R. W., Majumdar, S. 2025

    Abstract

    The current opioid overdose epidemic highlights the urgent need to develop safer and more effective treatments for chronic pain1. Cannabinoid receptor type 1 (CB1) is a promising non-opioid target for pain relief, but its clinical use has been limited by centrally mediated psychoactivity and tolerance. We overcame both issues by designing peripherally restricted CB1 agonists that minimize arrestin recruitment. We achieved these goals by computationally designing positively charged derivatives of the potent CB1 agonist MDMB-Fubinaca2. We designed these ligands to occupy a cryptic pocket identified through molecular dynamics simulations-an extended binding pocket that opens rarely and leads to the conserved signalling residue D2.50 (ref. 3). We used structure determination, pharmacological assays and molecular dynamics simulations to verify the binding modes of these ligands and to determine the molecular mechanism by which they achieve this dampening of arrestin recruitment. Our lead ligand, VIP36, is highly peripherally restricted and demonstrates notable efficacy in three mouse pain models, with 100-fold dose separation between analgesic efficacy and centrally mediated side effects. VIP36 exerts analgesic efficacy through peripheral CB1 receptors and shows limited analgesic tolerance. These results show how targeting a cryptic pocket in a G-protein-coupled receptor can lead to enhanced peripheral selectivity, biased signalling, desired in vivo pharmacology and reduced adverse effects. This has substantial implications for chronic pain treatment but could also revolutionize the design of drugs targeting other G-protein-coupled receptors.

    View details for DOI 10.1038/s41586-025-08618-7

    View details for Web of Science ID 001437495800001

    View details for PubMedID 40044849

    View details for PubMedCentralID 8154745

  • Calcineurin-fusion facilitates cryo-EM structure determination of a Family A GPCR. Proceedings of the National Academy of Sciences of the United States of America Xu, J., Chen, G., Wang, H., Cao, S., Heng, J., Deupi, X., Du, Y., Kobilka, B. K. 2024; 121 (48): e2414544121

    Abstract

    Advances in singe-particle cryo-electron microscopy (cryo-EM) have made it possible to solve the structures of numerous Family A and Family B G protein-coupled receptors (GPCRs) in complex with G proteins and arrestins, as well as several Family C GPCRs. Determination of these structures has been facilitated by the presence of large extramembrane components (such as G protein, arrestin, or Venus flytrap domains) in these complexes that aid in particle alignment during the processing of the cryo-EM data. In contrast, determination of the inactive state structure of Family A GPCRs is more challenging due to the relatively small size of the seven transmembrane domain (7TM) and to the surrounding detergent micelle that, in the absence of other features, make particle alignment impossible. Here, we describe an alternative protein engineering strategy where the heterodimeric protein calcineurin is fused to a GPCR by three points of attachment, the cytoplasmic ends of TM5, TM6, and TM7. This three-point attachment provides a more rigid link with the GPCR transmembrane domain that facilitates particle alignment during data processing, allowing us to determine the structures of the β2 adrenergic receptor (β2AR) in the apo, antagonist-bound, and agonist-bound states. We expect that this fusion strategy may have broad application in cryo-EM structural determination of other Family A GPCRs.

    View details for DOI 10.1073/pnas.2414544121

    View details for PubMedID 39565314

  • A µ-opioid receptor modulator that works cooperatively with naloxone. Nature O'Brien, E. S., Rangari, V. A., El Daibani, A., Eans, S. O., Hammond, H. R., White, E., Wang, H., Shiimura, Y., Krishna Kumar, K., Jiang, Q., Appourchaux, K., Huang, W., Zhang, C., Kennedy, B. J., Mathiesen, J. M., Che, T., McLaughlin, J. P., Majumdar, S., Kobilka, B. K. 2024

    Abstract

    The µ-opioid receptor (µOR) is a well-established target for analgesia1, yet conventional opioid receptor agonists cause serious adverse effects, notably addiction and respiratory depression. These factors have contributed to the current opioid overdose epidemic driven by fentanyl2, a highly potent synthetic opioid. µOR negative allosteric modulators (NAMs) may serve as useful tools in preventing opioid overdose deaths, but promising chemical scaffolds remain elusive. Here we screened a large DNA-encoded chemical library against inactive µOR, counter-screening with active, G-protein and agonist-bound receptor to 'steer' hits towards conformationally selective modulators. We discovered a NAM compound with high and selective enrichment to inactive µOR that enhances the affinity of the key opioid overdose reversal molecule, naloxone. The NAM works cooperatively with naloxone to potently block opioid agonist signalling. Using cryogenic electron microscopy, we demonstrate that the NAM accomplishes this effect by binding a site on the extracellular vestibule in direct contact with naloxone while stabilizing a distinct inactive conformation of the extracellular portions of the second and seventh transmembrane helices. The NAM alters orthosteric ligand kinetics in therapeutically desirable ways and works cooperatively with low doses of naloxone to effectively inhibit various morphine-induced and fentanyl-induced behavioural effects in vivo while minimizing withdrawal behaviours. Our results provide detailed structural insights into the mechanism of negative allosteric modulation of the µOR and demonstrate how this can be exploited in vivo.

    View details for DOI 10.1038/s41586-024-07587-7

    View details for PubMedID 38961287

    View details for PubMedCentralID 5689219

  • Mechanistic insights into G-protein coupling with an agonist-bound G-protein-coupled receptor. Nature structural & molecular biology Batebi, H., Pérez-Hernández, G., Rahman, S. N., Lan, B., Kamprad, A., Shi, M., Speck, D., Tiemann, J. K., Guixà-González, R., Reinhardt, F., Stadler, P. F., Papasergi-Scott, M. M., Skiniotis, G., Scheerer, P., Kobilka, B. K., Mathiesen, J. M., Liu, X., Hildebrand, P. W. 2024

    Abstract

    G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by promoting guanine nucleotide exchange. Here, we investigate the coupling of G proteins with GPCRs and describe the events that ultimately lead to the ejection of GDP from its binding pocket in the Gα subunit, the rate-limiting step during G-protein activation. Using molecular dynamics simulations, we investigate the temporal progression of structural rearrangements of GDP-bound Gs protein (Gs·GDP; hereafter GsGDP) upon coupling to the β2-adrenergic receptor (β2AR) in atomic detail. The binding of GsGDP to the β2AR is followed by long-range allosteric effects that significantly reduce the energy needed for GDP release: the opening of α1-αF helices, the displacement of the αG helix and the opening of the α-helical domain. Signal propagation to the Gs occurs through an extended receptor interface, including a lysine-rich motif at the intracellular end of a kinked transmembrane helix 6, which was confirmed by site-directed mutagenesis and functional assays. From this β2AR-GsGDP intermediate, Gs undergoes an in-plane rotation along the receptor axis to approach the β2AR-Gsempty state. The simulations shed light on how the structural elements at the receptor-G-protein interface may interact to transmit the signal over 30 Å to the nucleotide-binding site. Our analysis extends the current limited view of nucleotide-free snapshots to include additional states and structural features responsible for signaling and G-protein coupling specificity.

    View details for DOI 10.1038/s41594-024-01334-2

    View details for PubMedID 38867113

    View details for PubMedCentralID 3184188

  • Author Correction: Stepwise activation of a metabotropic glutamate receptor. Nature Krishna Kumar, K., Wang, H., Habrian, C., Latorraca, N. R., Xu, J., O'Brien, E. S., Zhang, C., Montabana, E., Koehl, A., Marqusee, S., Isacoff, E. Y., Kobilka, B. K. 2024

    View details for DOI 10.1038/s41586-024-07470-5

    View details for PubMedID 38702522

  • Stepwise activation of a metabotropic glutamate receptor. Nature Krishna Kumar, K., Wang, H., Habrian, C., Latorraca, N. R., Xu, J., O'Brien, E. S., Zhang, C., Montabana, E., Koehl, A., Marqusee, S., Isacoff, E. Y., Kobilka, B. K. 2024

    Abstract

    Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain that is linked via a cysteine-rich domain to their 7-transmembrane domain1. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the extracellular ligand-binding domain to the G protein-coupling 7-transmembrane domain2. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging, we reveal distinct receptor conformations upon allosteric modulator and G protein binding.

    View details for DOI 10.1038/s41586-024-07327-x

    View details for PubMedID 38632403

    View details for PubMedCentralID 6709600

  • Ligand efficacy modulates conformational dynamics of the -opioid receptor. Nature Zhao, J., Elgeti, M., O'Brien, E. S., Sar, C. P., Ei Daibani, A., Heng, J., Sun, X., White, E., Che, T., Hubbell, W. L., Kobilka, B. K., Chen, C. 2024

    Abstract

    The -opioid receptor (OR) is an important target for pain management1 and molecular understanding of drug action on OR will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance and single-molecule fluorescence resonance energy transfer, how ligand-specific conformational changes of OR translate into a broad range of intrinsic efficacies at the transducer level. We identify several conformations of the cytoplasmic face of the receptor that interconvert on different timescales, including a pre-activated conformation that is capable of G-protein binding, and a fully activated conformation that markedly reduces GDP affinity within the ternary complex. Interaction of beta-arrestin-1 with the muOR core binding site appears less specific and occurs with much lower affinity than binding of Gi.

    View details for DOI 10.1038/s41586-024-07295-2

    View details for PubMedID 38600384

  • Time-resolved cryo-EM of G-protein activation by a GPCR. Nature Papasergi-Scott, M. M., Perez-Hernandez, G., Batebi, H., Gao, Y., Eskici, G., Seven, A. B., Panova, O., Hilger, D., Casiraghi, M., He, F., Maul, L., Gmeiner, P., Kobilka, B. K., Hildebrand, P. W., Skiniotis, G. 2024

    Abstract

    G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Galpha subunit1. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory Gs protein in complex with the beta2-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Galpha switch regions and the alpha5 helix that weaken the G-protein-receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the alpha-helical domain against the nucleotide-bound Ras-homology domain correlates with alpha5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.

    View details for DOI 10.1038/s41586-024-07153-1

    View details for PubMedID 38480881

  • Structural basis of α1A-adrenergic receptor activation and recognition by an extracellular nanobody. Nature communications Toyoda, Y., Zhu, A., Kong, F., Shan, S., Zhao, J., Wang, N., Sun, X., Zhang, L., Yan, C., Kobilka, B. K., Liu, X. 2023; 14 (1): 3655

    Abstract

    The α1A-adrenergic receptor (α1AAR) belongs to the family of G protein-coupled receptors that respond to adrenaline and noradrenaline. α1AAR is involved in smooth muscle contraction and cognitive function. Here, we present three cryo-electron microscopy structures of human α1AAR bound to the endogenous agonist noradrenaline, its selective agonist oxymetazoline, and the antagonist tamsulosin, with resolutions range from 2.9 Å to 3.5 Å. Our active and inactive α1AAR structures reveal the activation mechanism and distinct ligand binding modes for noradrenaline compared with other adrenergic receptor subtypes. In addition, we identified a nanobody that preferentially binds to the extracellular vestibule of α1AAR when bound to the selective agonist oxymetazoline. These results should facilitate the design of more selective therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.

    View details for DOI 10.1038/s41467-023-39310-x

    View details for PubMedID 37339967

    View details for PubMedCentralID 8185284

  • Structure based approaches on fentanyl template to design novel mu opioid modulators Ople, R., Wang, H., Li, Q., Polacco, B., Bernhard, S., Appourchaux, K., Sribhashyam, S., Eans, S., Huttenhain, R., McLaughlin, J., Kobilka, B., Majumdar, S. AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS. 2023
  • Structural basis for activation of CB1 by an endocannabinoid analog. Nature communications Krishna Kumar, K., Robertson, M. J., Thadhani, E., Wang, H., Suomivuori, C. M., Powers, A. S., Ji, L., Nikas, S. P., Dror, R. O., Inoue, A., Makriyannis, A., Skiniotis, G., Kobilka, B. 2023; 14 (1): 2672

    Abstract

    Endocannabinoids (eCBs) are endogenous ligands of the cannabinoid receptor 1 (CB1), a G protein-coupled receptor that regulates a number of therapeutically relevant physiological responses. Hence, understanding the structural and functional consequences of eCB-CB1 interactions has important implications for designing effective drugs targeting this receptor. To characterize the molecular details of eCB interaction with CB1, we utilized AMG315, an analog of the eCB anandamide to determine the structure of the AMG315-bound CB1 signaling complex. Compared to previous structures, the ligand binding pocket shows some differences. Using docking, molecular dynamics simulations, and signaling assays we investigated the functional consequences of ligand interactions with the "toggle switch" residues F2003.36 and W3566.48. Further, we show that ligand-TM2 interactions drive changes to residues on the intracellular side of TM2 and are a determinant of efficacy in activating G protein. These intracellular TM2 rearrangements are unique to CB1 and are exploited by a CB1-specific allosteric modulator.

    View details for DOI 10.1038/s41467-023-37864-4

    View details for PubMedID 37160876

    View details for PubMedCentralID PMC10169858

  • Constrained catecholamines gain β2AR selectivity through allosteric effects on pocket dynamics. Nature communications Xu, X., Shonberg, J., Kaindl, J., Clark, M. J., Stößel, A., Maul, L., Mayer, D., Hübner, H., Hirata, K., Venkatakrishnan, A. J., Dror, R. O., Kobilka, B. K., Sunahara, R. K., Liu, X., Gmeiner, P. 2023; 14 (1): 2138

    Abstract

    G protein-coupled receptors (GPCRs) within the same subfamily often share high homology in their orthosteric pocket and therefore pose challenges to drug development. The amino acids that form the orthosteric binding pocket for epinephrine and norepinephrine in the β1 and β2 adrenergic receptors (β1AR and β2AR) are identical. Here, to examine the effect of conformational restriction on ligand binding kinetics, we synthesized a constrained form of epinephrine. Surprisingly, the constrained epinephrine exhibits over 100-fold selectivity for the β2AR over the β1AR. We provide evidence that the selectivity may be due to reduced ligand flexibility that enhances the association rate for the β2AR, as well as a less stable binding pocket for constrained epinephrine in the β1AR. The differences in the amino acid sequence of the extracellular vestibule of the β1AR allosterically alter the shape and stability of the binding pocket, resulting in a marked difference in affinity compared to the β2AR. These studies suggest that for receptors containing identical binding pocket residues, the binding selectivity may be influenced in an allosteric manner by surrounding residues, like those of the extracellular loops (ECLs) that form the vestibule. Exploiting these allosteric influences may facilitate the development of more subtype-selective ligands for GPCRs.

    View details for DOI 10.1038/s41467-023-37808-y

    View details for PubMedID 37059717

    View details for PubMedCentralID PMC10104803

  • Function and dynamics of the intrinsically disordered carboxyl terminus of beta2 adrenergic receptor. Nature communications Heng, J., Hu, Y., Perez-Hernandez, G., Inoue, A., Zhao, J., Ma, X., Sun, X., Kawakami, K., Ikuta, T., Ding, J., Yang, Y., Zhang, L., Peng, S., Niu, X., Li, H., Guixa-Gonzalez, R., Jin, C., Hildebrand, P. W., Chen, C., Kobilka, B. K. 2023; 14 (1): 2005

    Abstract

    Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The beta2 adrenergic receptor's (beta2AR) 71 amino acid CT is a substrate for GPCR kinases and binds beta-arrestins to regulate signaling. Here we show that the beta2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking beta-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged beta2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.

    View details for DOI 10.1038/s41467-023-37233-1

    View details for PubMedID 37037825

  • Negative allosteric modulation of the glucagon receptor by RAMP2. Cell Krishna Kumar, K., O'Brien, E. S., Habrian, C. H., Latorraca, N. R., Wang, H., Tuneew, I., Montabana, E., Marqusee, S., Hilger, D., Isacoff, E. Y., Mathiesen, J. M., Kobilka, B. K. 2023; 186 (7): 1465-1477.e18

    Abstract

    Receptor activity-modifying proteins (RAMPs) modulate the activity of many Family B GPCRs. We show that RAMP2 directly interacts with the glucagon receptor (GCGR), a Family B GPCR responsible for blood sugar homeostasis, and broadly inhibits receptor-induced downstream signaling. HDX-MS experiments demonstrate that RAMP2 enhances local flexibility in select locations in and near the receptor extracellular domain (ECD) and in the 6th transmembrane helix, whereas smFRET experiments show that this ECD disorder results in the inhibition of active and intermediate states of the intracellular surface. We determined the cryo-EM structure of the GCGR-Gs complex at 2.9 Å resolution in the presence of RAMP2. RAMP2 apparently does not interact with GCGR in an ordered manner; however, the receptor ECD is indeed largely disordered along with rearrangements of several intracellular hallmarks of activation. Our studies suggest that RAMP2 acts as a negative allosteric modulator of GCGR by enhancing conformational sampling of the ECD.

    View details for DOI 10.1016/j.cell.2023.02.028

    View details for PubMedID 37001505

  • Negative allosteric modulation of the glucagon receptor by RAMP2 O'Brien, E. S., Kumar, K., Habrian, C., Latorraca, N. R., Wang, H., Tuneew, I., Montabana, E., Marqusee, S., Hilger, D., Isacoff, E. Y., Mathiesen, J. M., Kobilka, B. K. CELL PRESS. 2023: 161A
  • Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature communications Xu, J., Wang, Q., Hübner, H., Hu, Y., Niu, X., Wang, H., Maeda, S., Inoue, A., Tao, Y., Gmeiner, P., Du, Y., Jin, C., Kobilka, B. K. 2023; 14 (1): 376

    Abstract

    The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and β-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance β-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.

    View details for DOI 10.1038/s41467-022-35726-z

    View details for PubMedID 36690613

    View details for PubMedCentralID PMC9870890

  • Structure-based design of bitopic ligands for the µ-opioid receptor. Nature Faouzi, A., Wang, H., Zaidi, S. A., DiBerto, J. F., Che, T., Qu, Q., Robertson, M. J., Madasu, M. K., El Daibani, A., Varga, B. R., Zhang, T., Ruiz, C., Liu, S., Xu, J., Appourchaux, K., Slocum, S. T., Eans, S. O., Cameron, M. D., Al-Hasani, R., Pan, Y. X., Roth, B. L., McLaughlin, J. P., Skiniotis, G., Katritch, V., Kobilka, B. K., Majumdar, S. 2022

    Abstract

    Mu opioid receptor (µOR) agonists like fentanyl have long been used for pain management, but are considered a major public health concern due to their adverse side effects, including lethal overdose.1 To design safer therapeutics, we report a conceptually novel approach targeting conserved sodium (Na+) binding site2, observed in µOR3 and many other class A GPCRs, by bitopic fentanyl derivatives functionalized via a linker with a positively charged guanidino group. Cryo-EM structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the ligand's guanidine and the key Asp2.50 residue in the Na+ site. While the lead bitopics maintain nanomolar potency and high efficacy at Gi subtypes, they show strongly reduced arrestin recruitment, one also shows the lowest Gz-efficacy among the panel of µOR agonists, including partial and biased, morphinan and fentanyl analogs. In mice, the best bitopic ligand displayed µOR dependent antinociception with attenuated adverse effects supporting the µOR Na+ site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands engaging the Na+ pocket in class A GPCRs can be designed to control their efficacy and functional selectivity profiles for Gi/o/z subtypes and arrestins, thus modulating their in vivo pharmacology.

    View details for DOI 10.1038/s41586-022-05588-y

    View details for PubMedID 36450356

  • Insights into distinct signaling profiles of the OR activated by diverse agonists. Nature chemical biology Qu, Q., Huang, W., Aydin, D., Paggi, J. M., Seven, A. B., Wang, H., Chakraborty, S., Che, T., DiBerto, J. F., Robertson, M. J., Inoue, A., Suomivuori, C., Roth, B. L., Majumdar, S., Dror, R. O., Kobilka, B. K., Skiniotis, G. 2022

    Abstract

    Drugs targeting the mu-opioid receptor (muOR) are the most effective analgesics available but are also associated with fatal respiratory depression through a pathway that remains unclear. Here we investigated the mechanistic basis of action of lofentanil (LFT) and mitragynine pseudoindoxyl (MP), two muOR agonists with different safety profiles. LFT, one of the most lethal opioids, and MP, a kratom plant derivative with reduced respiratory depression in animal studies, exhibited markedly different efficacy profiles for G protein subtype activation and beta-arrestin recruitment. Cryo-EM structures of muOR-Gi1 complex with MP (2.5A) and LFT (3.2A) revealed that the two ligands engage distinct subpockets, and molecular dynamics simulations showed additional differences in the binding site that promote distinct active-state conformations on the intracellular side of the receptor where G proteins and beta-arrestins bind. These observations highlight how drugs engaging different parts of the muOR orthosteric pocket can lead to distinct signaling outcomes.

    View details for DOI 10.1038/s41589-022-01208-y

    View details for PubMedID 36411392

  • Membrane phosphoinositides regulate GPCR-beta-arrestin complex assembly and dynamics. Cell Janetzko, J., Kise, R., Barsi-Rhyne, B., Siepe, D. H., Heydenreich, F. M., Kawakami, K., Masureel, M., Maeda, S., Garcia, K. C., von Zastrow, M., Inoue, A., Kobilka, B. K. 2022

    Abstract

    Binding of arrestin to phosphorylated G protein-coupled receptors (GPCRs) is crucial for modulating signaling. Once internalized, some GPCRs remain complexed with beta-arrestins, while others interact only transiently; this difference affects GPCR signaling and recycling. Cell-based and invitro biophysical assays reveal the role of membrane phosphoinositides (PIPs) in beta-arrestin recruitment and GPCR-beta-arrestin complexdynamics. We find that GPCRs broadly stratify into two groups, one that requires PIP binding for beta-arrestin recruitment and one that does not. Plasma membrane PIPs potentiate an active conformation of beta-arrestin and stabilize GPCR-beta-arrestin complexes by promoting a fully engaged state of the complex. As allosteric modulators of GPCR-beta-arrestin complex dynamics, membrane PIPs allow for additional conformational diversity beyond that imposed by GPCR phosphorylation alone. For GPCRs that require membrane PIP binding for beta-arrestin recruitment, this provides a mechanism for beta-arrestin release upon translocation of the GPCR to endosomes, allowing for its rapid recycling.

    View details for DOI 10.1016/j.cell.2022.10.018

    View details for PubMedID 36368322

  • A cholesterol analog stabilizes the human beta2-adrenergic receptor nonlinearly with temperature. Science signaling Serdiuk, T., Manna, M., Zhang, C., Mari, S. A., Kulig, W., Pluhackova, K., Kobilka, B. K., Vattulainen, I., Muller, D. J. 2022; 15 (737): eabi7031

    Abstract

    In cell membranes, G protein-coupled receptors (GPCRs) interact with cholesterol, which modulates their assembly, stability, and conformation. Previous studies have shown how cholesterol modulates the structural properties of GPCRs at ambient temperature. Here, we characterized the mechanical, kinetic, and energetic properties of the human beta2-adrenergic receptor (beta2AR) in the presence and absence of the cholesterol analog cholesteryl hemisuccinate (CHS) at room temperature (25°C), at physiological temperature (37°C), and at high temperature (42°C). We found that CHS stabilized various structural regions of beta2AR differentially, which changed nonlinearly with temperature. Thereby, the strongest effects were observed for structural regions that are important for receptor signaling. Moreover, at 37°C, but not at 25° or 42°C, CHS caused beta2AR to increase and stabilize conformational substates to adopt to basal activity. These findings indicate that the nonlinear, temperature-dependent action of CHS in modulating the structural and functional properties of this GPCR is optimized for 37°C.

    View details for DOI 10.1126/scisignal.abi7031

    View details for PubMedID 35671340

  • Structure-based Evolution of G protein-biased mu-opioid Receptor Agonists. Angewandte Chemie (International ed. in English) Gmeiner, P., Wang, H., Hetzer, F., Huang, W., Qu, Q., Meyerowitz, J., Kaindl, J., Hubner, H., Skiniotis, G., Kobilka, B. K. 2022

    Abstract

    The mu-opioid receptor (muOR) is the major target for opioid analgesics. Activation of muOR initiates signaling through G protein pathways as well as through beta-arrestin recruitment. muOR agonists that are biased towards G protein signaling pathways demonstrate diminished side effects. PZM21, discovered by computational docking, is a G protein biased muOR agonist. Here we report the cryoEM structure of PZM21 bound muOR in complex with G i protein. Structure-based evolution led to multiple PZM21 analogs with more pronounced G i protein bias and increased lipophilicity to improve CNS penetration. Among them, FH210 shows extremely low potency and efficacy for arrestin recruitment. We further determined the cryoEM structure of FH210 bound to muOR in complex with G i protein and confirmed its expected binding pose. The structural and pharmacological studies reveal a potential mechanism to reduce beta-arrestin recruitment by the muOR, and hold promise for developing next-generation analgesics with fewer adverse effects.

    View details for DOI 10.1002/anie.202200269

    View details for PubMedID 35385593

  • Atypical structural snapshots of human cytomegalovirus GPCR interactions with host G proteins. Science advances Tsutsumi, N., Maeda, S., Qu, Q., Vogele, M., Jude, K. M., Suomivuori, C., Panova, O., Waghray, D., Kato, H. E., Velasco, A., Dror, R. O., Skiniotis, G., Kobilka, B. K., Garcia, K. C. 1800; 8 (3): eabl5442

    Abstract

    Human cytomegalovirus (HCMV) encodes G protein-coupled receptors (GPCRs) US28 and US27, which facilitate viral pathogenesis through engagement of host G proteins. Here we report cryo-electron microscopy structures of US28 and US27 forming nonproductive and productive complexes with Gi and Gq, respectively, exhibiting unusual features with functional implications. The "orphan" GPCR US27 lacks a ligand-binding pocket and has captured a guanosine diphosphate-bound inactive Gi through a tenuous interaction. The docking modes of CX3CL1-US28 and US27 to Gi favor localization to endosome-like curved membranes, where US28 and US27 can function as nonproductive Gi sinks to attenuate host chemokine-dependent Gi signaling. The CX3CL1-US28-Gq/11 complex likely represents a trapped intermediate during productive signaling, providing a view of a transition state in GPCR-G protein coupling for signaling. Our collective results shed new insight into unique G protein-mediated HCMV GPCR structural mechanisms, compared to mammalian GPCR counterparts, for subversion of host immunity.

    View details for DOI 10.1126/sciadv.abl5442

    View details for PubMedID 35061538

  • Translating science to medicine: The case for physician-scientists. Science translational medicine Utz, P. J., Jain, M. K., Cheung, V. G., Kobilka, B. K., Lefkowitz, R., Yamada, T., Dzau, V. J. 2022; 14 (632): eabg7852

    Abstract

    As the number of physician-scientists continues to decline, action must be taken to support them as they embark on their careers.

    View details for DOI 10.1126/scitranslmed.abg7852

    View details for PubMedID 35171650

  • Structures of active melanocortin-4 receptor-Gs-protein complexes with NDP-alpha-MSH and setmelanotide. Cell research Heyder, N. A., Kleinau, G., Speck, D., Schmidt, A., Paisdzior, S., Szczepek, M., Bauer, B., Koch, A., Gallandi, M., Kwiatkowski, D., Burger, J., Mielke, T., Beck-Sickinger, A. G., Hildebrand, P. W., Spahn, C. M., Hilger, D., Schacherl, M., Biebermann, H., Hilal, T., Kuhnen, P., Kobilka, B. K., Scheerer, P. 2021

    Abstract

    The melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4R-Gs-protein complexes with two drugs recently approved by theFDA, the peptide agonists NDP-alpha-MSH and setmelanotide, with 2.9A and 2.6A resolution. Together with signaling data from structure-derived MC4R mutants, the complex structures reveal the agonist-induced origin of transmembrane helix (TM) 6-regulated receptor activation. The ligand-binding modes of NDP-alpha-MSH, a high-affinity linear variant of the endogenous agonist alpha-MSH, and setmelanotide, a cyclic anti-obesity drug with biased signaling toward Gq/11, underline the key role of TM3 in ligand-specific interactions and of calcium ion as a ligand-adaptable cofactor. The agonist-specific TM3 interplay subsequently impacts receptor-Gs-protein interfaces at intracellular loop 2, which also regulates the G-protein coupling profile of this promiscuous receptor. Finally, our structures reveal mechanistic details of MC4R activation/inhibition, and provide important insights into the regulation of the receptor signaling profile which will facilitate the development of tailored anti-obesity drugs.

    View details for DOI 10.1038/s41422-021-00569-8

    View details for PubMedID 34561620