Understanding neuronal circuitry underlying locomotion, sexual function and gut motility
The lab’s goal is to understand the molecular basis of neuronal circuit formation. We are particularly interested in circuits that underlie locomotion, sexual function and gut motility.
Spinal circuits underlying locomotor function:
Local inhibitory microcircuits have a fundamental role in shaping animal behavior. In the mammalian spinal cord inhibitory interneurons modulate the sensory-motor signaling that controls locomotion. We are using a specific interneuron circuit to understand (i) how distinct neuronal populations are generated, (ii) how these distinct neuronal populations recognize and choose their correct synaptic partners from among different available targets, and (iii) how postsynaptic signals induce the differentiation of presynaptic terminals in service of balanced circuit function.
Spinal circuitry of sexual function:
During mammalian copulation, spinal circuits reflexively integrate sexually-specific sensory information. We are performing anatomical reconstructions of erectile circuits in the spinal cord, and are analyzing copulatory behavior in males with disrupted interneuron circuitry.
Neuronal circuitry of the gut:
The enteric nervous system (ENS) in the gut contains more neurons than the spinal cord and presents a translational model relevant to many human illnesses. However, relatively little is known about the development, connectivity and function of ENS circuitry. The mouse ENS is experimentally tractable and allows application of molecular genetic and high-resolution imaging techniques, as well as innovative in vivo experimental approaches. We aim to (i) map ENS circuit connectivity and (ii) explore functional consequences of ENS circuit abnormalities.
Learn More About our Research
Department of Neurosurgery
The Kaltschmidt Lab is part of the Department of Neurosurgery.
Kaltschmidt Laboratory
Stanford Neurosciences Building, Rooms E363/E365
290 Jane Stanford Way
Stanford, CA 94305
Phone: (650) 724-6882
Email: jukalts@stanford.edu