Engineering muscles and organs in space

August 2, 2018

The National Science Foundation (NSF) has invested in two projects for fundamental biomedical engineering research onboard the International Space Station (ISS) U.S. National Laboratory for the benefit of life on Earth.

The awards are made jointly with the Center for the Advancement of Science in Space (CASIS), manager of operations for the experiments.

"NSF values our collaboration with CASIS, which empowers U.S. researchers to make important science and engineering discoveries in the microgravity environment onboard the ISS National Laboratory," says Dawn Tilbury, NSF assistant director for Engineering. "With these new experiments in space, NSF grantees will help us answer fundamental questions about tissue growth and engineering that cannot be studied on Earth and can help improve lives."

Gravity is the principal source of mechanical forces -- stretching, compression, sliding and bending -- that affect the growth and regeneration of tissues. For example, embryos develop in a buoyant environment where gravity’s effects are counteracted, while muscle and bone tissue remain strong when feeling Earth’s gravitational force.

Understanding the many ways tissues and cells respond to gravity, from cellular signaling to gene expression, can help overcome current stumbling blocks for tissue engineering and lead to new opportunities.  

“Tissue engineering holds great future promise for developing replacement tissues and creating research models to help us understand normal and diseased tissues,” said Michele Grimm, the NSF program director who led the program. “In both areas, experiments in the microgravity environment of the ISS can allow researchers to gain new understanding of cell and tissue function and the diagnosis and treatment of disease.”  

Insights gained in the microgravity environment of space may enhance the development of complex tissue and blood supply for damaged or defective organs. Research onboard the ISS may also help create reliable, tissue-engineered models of muscles and other organs outside the body to enable future research in biology, engineering and medicine.

NSF has invested $600,000 in FY 2018 in two grants for tissue engineering research in microgravity:

The NSF–CASIS awards for tissue engineering research are funded through the Engineering of Biomedical Systems program of the NSF Division of Chemical, Bioengineering, Environmental and Transport Systems (CBET) in the Directorate for Engineering. CBET supports discoveries in chemical and biochemical systems; environmental engineering and sustainability; engineering of biology and health; and fundamental transport, thermal and fluid phenomena.

Fiscal year (FY) 2018 is the third year of the NSF-CASIS engineering research collaboration and the first year for collaboration in tissue engineering. Previous investments were in combustion and thermal transport and in fluid dynamics. In FY 2018, NSF funded one additional joint project in fluid dynamics and particulate and multiphase processing:

- NSF -