Publications

Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS)

Publications

  • LOXHD1 is indispensable for coupling auditory mechanosensitive channels to the site of force transmission. Research square Wang, P., Miller, K. K., He, E., Dhawan, S. S., Cunningham, C. L., Grillet, N. 2024

    Abstract

    Hearing is initiated in hair cells by the mechanical activation of ion channels in the hair bundle. The hair bundle is formed by stereocilia organized into rows of increasing heights interconnected by tip links, which convey sound-induced forces to stereocilia tips. The auditory mechanosensitive channels are complexes containing at least four protein-subunits - TMC1/2, TMIE, CIB2, and LHFPL51-16 - and are located at the tips of shorter stereocilia at a yet-undetermined distance from the lower tip link insertion point17. While multiple auditory channel subunits appear to interact with the tip link, it remains unknown whether their combined interaction alone can resist the high-frequency mechanical stimulations owing to sound. Here we show that an unanticipated additional element, LOXHD1, is indispensable for maintaining the TMC1 pore-forming channel subunits coupled to the tip link. We demonstrate that LOXHD1 is a unique element of the auditory mechanotransduction complex that selectively affects the localization of TMC1, but not its close developmental paralogue TMC2. Taking advantage of our novel immunogold scanning electron microscopy method for submembranous epitopes (SUB-immunogold-SEM), we demonstrate that TMC1 normally concentrates within 100-nm of the tip link insertion point. In LOXHD1's absence, TMC1 is instead mislocalized away from this force transmission site. Supporting this finding, we found that LOXHD1 interacts selectively in vitro with TMC1 but not with TMC2 while also binding to channel subunits CIB2 and LHFPL5 and tip-link protein PCDH15. SUB-immunogold-SEM additionally demonstrates that LOXHD1 and TMC1 are physically connected to the lower tip-link complex in situ. Our results show that the TMC1-driven mature channels require LOXHD1 to stay coupled to the tip link and remain functional, but the TMC2-driven developmental channels do not. As both tip links and TMC1 remain present in hair bundles lacking LOXHD1, it opens the possibility to reconnect them and restore hearing for this form of genetic deafness.

    View details for DOI 10.21203/rs.3.rs-3752492/v1

    View details for PubMedID 38260480

    View details for PubMedCentralID PMC10802736

  • High-resolution immunofluorescence imaging of mouse cochlear hair bundles. STAR protocols Miller, K. K., Wang, P., Grillet, N. 2022; 3 (2): 101431

    Abstract

    High-resolution immunofluorescence imaging of cochlear hair bundles faces many challenges due to the hair bundle's small dimensions, fragile nature, and complex organization. Here, we describe an optimized protocol for hair-bundle protein immunostaining and localization. We detail the steps and solutions for extracting and fixing the mouse inner ear and for dissecting the organ of Corti. We further emphasize the optimal permeabilization, blocking, staining, and mounting conditions as well as the parameters for high-resolution microscopy imaging. For complete details on the use and execution of this protocol, please refer to Trouillet etal. (2021).

    View details for DOI 10.1016/j.xpro.2022.101431

    View details for PubMedID 35669049

  • Oncofusion-driven de novo enhancer assembly promotes malignancy in Ewing sarcoma via aberrant expression of the stereociliary protein LOXHD1. Cell reports Deng, Q., Natesan, R., Cidre-Aranaz, F., Arif, S., Liu, Y., Rasool, R. U., Wang, P., Mitchell-Velasquez, E., Das, C. K., Vinca, E., Cramer, Z., Grohar, P. J., Chou, M., Kumar-Sinha, C., Weber, K., Eisinger-Mathason, T. S., Grillet, N., Grünewald, T., Asangani, I. A. 2022; 39 (11): 110971

    Abstract

    Ewing sarcoma (EwS) is a highly aggressive tumor of bone and soft tissues that mostly affects children and adolescents. The pathognomonic oncofusion EWSR1::FLI1 transcription factor drives EwS by orchestrating an oncogenic transcription program through de novo enhancers. By integrative analysis of thousands of transcriptomes representing pan-cancer cell lines, primary cancers, metastasis, and normal tissues, we identify a 32-gene signature (ESS32 [Ewing Sarcoma Specific 32]) that stratifies EwS from pan-cancer. Among the ESS32, LOXHD1, encoding a stereociliary protein, is the most highly expressed gene through an alternative transcription start site. Deletion or silencing of EWSR1::FLI1 bound upstream de novo enhancer results in loss of the LOXHD1 short isoform, altering EWSR1::FLI1 and HIF1α pathway genes and resulting in decreased proliferation/invasion of EwS cells. These observations implicate LOXHD1 as a biomarker and a determinant of EwS metastasis and suggest new avenues for developing LOXHD1-targeted drugs or cellular therapies for this deadly disease.

    View details for DOI 10.1016/j.celrep.2022.110971

    View details for PubMedID 35705030

  • High-resolution imaging of the mouse-hair-cell hair bundle by scanning electron microscopy. STAR protocols Grillet, N. 2022; 3 (1): 101213

    Abstract

    Scanning electron microscopy (SEM) allows cell surface imaging at a sub-nanometric resolution. However, the sample requires a specific preparation to sustain the high vacuum of the SEM and be electrically conductive. The sample preparation consists of dissection, fixation, dehydration, metal coating, and tissue mounting. Here we provide a comprehensive protocol to perform SEM on the mouse's inner ear, and image the hair bundles at high resolution. Hair bundles are the force-sensitive organelles located at the apical surface of hair cells. For complete details on the use and execution of this protocol, please refer to Trouillet etal. (2021).

    View details for DOI 10.1016/j.xpro.2022.101213

    View details for PubMedID 35257116

  • Loxhd1 mutations cause mechanotransduction defects in cochlear hair cells. The Journal of neuroscience : the official journal of the Society for Neuroscience Trouillet, A., Miller, K. K., George, S. S., Wang, P., Ali, N., Ricci, A., Grillet, N. 2021

    Abstract

    Sound detection happens in the inner ear via the mechanical deflection of the hair bundle of cochlear hair cells. The hair bundle is an apical specialization consisting of actin-filled membrane protrusions (called stereocilia) connected by tip links (TLs) that transfer the deflection force to gate the mechanotransduction channels. Here, we identified the hearing loss-associated Loxhd1/DFNB77 gene as being required for the mechanotransduction process. LOXHD1 consists of 15 polycystin lipoxygenase alpha-toxin (PLAT) repeats, which in other proteins can bind lipids and proteins. LOXHD1 was distributed along the length of the stereocilia. Two LOXHD1 mouse models with mutations in the 10th PLAT repeat exhibited mechanotransduction defects (in both sexes). While mechanotransduction currents in mutant inner hair cells (IHCs) were similar to wild-type (WT) levels in the first postnatal week, they were severely affected by postnatal day 11. The onset of the MET phenotype was consistent with the temporal progression of postnatal LOXHD1 expression/localization in the hair bundle. The mechanotransduction defect observed in Loxhd1-mutant IHCs was not accompanied by a morphological defect of the hair bundle or a reduction in TL number. Using immunolocalization, we found that two proteins of the upper and lower TL protein complexes (Harmonin and LHFPL5) were maintained in the mutants, suggesting that the mechanotransduction machinery was present but not activatable. This work identified a novel LOXHD1-dependent step in hair bundle development that is critical for mechanotransduction in mature hair cells as well as for normal hearing function in mice and humans.SIGNIFICANCE STATEMENT:Hair cells detect sound-induced forces via the hair bundle, which consists of membrane protrusions connected by tip links. The mechanotransduction machinery forms protein complexes at the tip-link ends. The current study showed that LOXHD1, a multi-repeat protein responsible for hearing loss in humans and mice when mutated, was required for hair-cell mechanotransduction, but only after the first postnatal week. Using immunochemistry, we demonstrated that this defect was not caused by the mislocalization of the tip-link complex proteins Harmonin or LHFPL5, suggesting that the mechanotransduction protein complexes were maintained. This work identified a new step in hair bundle development, which is critical for both hair-cell mechanotransduction and hearing.

    View details for DOI 10.1523/JNEUROSCI.0975-20.2021

    View details for PubMedID 33707295

  • Dimensions of a Living Cochlear Hair Bundle Front Cell Dev Biol Miller, K. K., Atkinson, P., Mendoza, K., Ó Maoiléidigh, D., Grillet, N. 2021; 9: 742529

    Abstract

    The hair bundle is the mechanosensory organelle of hair cells that detects mechanical stimuli caused by sounds, head motions, and fluid flows. Each hair bundle is an assembly of cellular-protrusions called stereocilia, which differ in height to form a staircase. Stereocilia have different heights, widths, and separations in different species, sensory organs, positions within an organ, hair-cell types, and even within a single hair bundle. The dimensions of the stereociliary assembly dictate how the hair bundle responds to stimuli. These hair-bundle properties have been measured previously only to a limited degree. In particular, mammalian data are either incomplete, lack control for age or position within an organ, or have artifacts owing to fixation or dehydration. Here, we provide a complete set of measurements for postnatal day (P) 11 C57BL/6J mouse apical inner hair cells (IHCs) obtained from living tissue, tissue mildly-fixed for fluorescent imaging, or tissue strongly fixed and dehydrated for scanning electronic microscopy (SEM). We found that hair bundles mildly-fixed for fluorescence had the same dimensions as living hair bundles, whereas SEM-prepared hair bundles shrank uniformly in stereociliary heights, widths, and separations. By determining the shrinkage factors, we imputed live dimensions from SEM that were too small to observe optically. Accordingly, we created the first complete blueprint of a living IHC hair bundle. We show that SEM-prepared measurements strongly affect calculations of a bundle's mechanical properties - overestimating stereociliary deflection stiffness and underestimating the fluid coupling between stereocilia. The methods of measurement, the data, and the consequences we describe illustrate the high levels of accuracy and precision required to understand hair-bundle mechanotransduction.

    View details for DOI 10.3389/fcell.2021.742529

    View details for PubMedCentralID PMC8657763

  • Mechanosensory hair cells express two molecularly distinct mechanotransduction channels NATURE NEUROSCIENCE Wu, Z., Grillet, N., Zhao, B., Cunningham, C., Harkins-Perry, S., Coste, B., Ranade, S., Zebarjadi, N., Beurg, M., Fettiplace, R., Patapoutian, A., Muller, U. 2017; 20 (1): 24-33

    Abstract

    Auditory hair cells contain mechanotransduction channels that rapidly open in response to sound-induced vibrations. We report here that auditory hair cells contain two molecularly distinct mechanotransduction channels. One ion channel is activated by sound and is responsible for sensory transduction. This sensory transduction channel is expressed in hair cell stereocilia, and previous studies show that its activity is affected by mutations in the genes encoding the transmembrane proteins TMHS, TMIE, TMC1 and TMC2. We show here that the second ion channel is expressed at the apical surface of hair cells and that it contains the Piezo2 protein. The activity of the Piezo2-dependent channel is controlled by the intracellular Ca(2+) concentration and can be recorded following disruption of the sensory transduction machinery or more generally by disruption of the sensory epithelium. We thus conclude that hair cells express two molecularly and functionally distinct mechanotransduction channels with different subcellular distributions.

    View details for DOI 10.1038/nn.4449

    View details for Web of Science ID 000391085500009

    View details for PubMedID 27893727

    View details for PubMedCentralID PMC5191906

  • TMIE Is an Essential Component of the Mechanotransduction Machinery of Cochlear Hair Cells. Neuron Zhao, B., Wu, Z., Grillet, N., Yan, L., Xiong, W., Harkins-Perry, S., Müller, U. 2014; 84 (5): 954-67

    Abstract

    Hair cells are the mechanosensory cells of the inner ear. Mechanotransduction channels in hair cells are gated by tip links. The molecules that connect tip links to transduction channels are not known. Here we show that the transmembrane protein TMIE forms a ternary complex with the tip-link component PCDH15 and its binding partner TMHS/LHFPL5. Alternative splicing of the PCDH15 cytoplasmic domain regulates formation of this ternary complex. Transducer currents are abolished by a homozygous Tmie-null mutation, and subtle Tmie mutations that disrupt interactions between TMIE and tip links affect transduction, suggesting that TMIE is an essential component of the hair cell's mechanotransduction machinery that functionally couples the tip link to the transduction channel. The multisubunit composition of the transduction complex and the regulation of complex assembly by alternative splicing is likely critical for regulating channel properties in different hair cells and along the cochlea's tonotopic axis.

    View details for DOI 10.1016/j.neuron.2014.10.041

    View details for PubMedID 25467981

    View details for PubMedCentralID PMC4258123

  • Using injectoporation to deliver genes to mechanosensory hair cells. Nature protocols Xiong, W., Wagner, T., Yan, L., Grillet, N., Müller, U. 2014; 9 (10): 2438-49

    Abstract

    Mechanosensation, the transduction of mechanical force into electrochemical signals, allows organisms to detect touch and sound, to register movement and gravity, and to sense changes in cell volume and shape. The hair cells of the mammalian inner ear are the mechanosensors for the detection of sound and head movement. The analysis of gene function in hair cells has been hampered by the lack of an efficient gene transfer method. Here we describe a method termed injectoporation that combines tissue microinjection with electroporation to express cDNAs and shRNAs in mouse cochlear hair cells. Injectoporation allows for gene transfer into dozens of hair cells, and it is compatible with the analysis of hair cell function using imaging approaches and electrophysiology. Tissue dissection and injectoporation can be carried out within a few hours, and the tissue can be cultured for days for subsequent functional analyses.

    View details for DOI 10.1038/nprot.2014.168

    View details for PubMedID 25232939

    View details for PubMedCentralID PMC4241755

  • TMHS Is an Integral Component of the Mechanotransduction Machinery of Cochlear Hair Cells CELL Xiong, W., Grillet, N., Elledge, H. M., Wagner, T. F., Zhao, B., Johnson, K. R., Kazmierczak, P., Mueller, U. 2012; 151 (6): 1283-1295

    Abstract

    Hair cells are mechanosensors for the perception of sound, acceleration, and fluid motion. Mechanotransduction channels in hair cells are gated by tip links, which connect the stereocilia of a hair cell in the direction of their mechanical sensitivity. The molecular constituents of the mechanotransduction channels of hair cells are not known. Here, we show that mechanotransduction is impaired in mice lacking the tetraspan TMHS. TMHS binds to the tip-link component PCDH15 and regulates tip-link assembly, a process that is disrupted by deafness-causing Tmhs mutations. TMHS also regulates transducer channel conductance and is required for fast channel adaptation. TMHS therefore resembles other ion channel regulatory subunits such as the transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor regulatory proteins (TARPs) of AMPA receptors that facilitate channel transport and regulate the properties of pore-forming channel subunits. We conclude that TMHS is an integral component of the hair cell's mechanotransduction machinery that functionally couples PCDH15 to the transduction channel.

    View details for DOI 10.1016/j.cell.2012.10.041

    View details for Web of Science ID 000311999900017

    View details for PubMedID 23217710