Professor of Medicine (Cardiovascular Medicine)

Publications

  • Cloud-Based Machine Learning Platform to Predict Clinical Outcomes at Home for Patients With Cardiovascular Conditions Discharged From Hospital: Clinical Trial. JMIR cardio Yang, P. C., Jha, A., Xu, W., Song, Z., Jamp, P., Teuteberg, J. J. 2024; 8: e45130

    Abstract

    Hospitalizations account for almost one-third of the US

  • New Alcohol Sensitivity in Patients With Post-acute Sequelae of SARS-CoV-2 (PASC): A Case Series. Cureus Eastin, E. F., Tiwari, A., Quach, T. C., Bonilla, H. F., Miglis, M. G., Yang, P. C., Geng, L. N. 2023; 15 (12): e51286

    Abstract

    Post-acute sequelae of SARS-CoV-2 (PASC), or long COVID, is characterized by persistent symptoms after acute SARS-CoV-2 infection that can vary from patient to patient. Here, we present a case series of four patients with a history of SARS-CoV-2 infection referred to the Post-Acute COVID-19 Syndrome (PACS) Clinic at Stanford University for evaluation of persistent symptoms, who also experienced new-onset alcohol sensitivity. Alcohol reactions and sensitivity are not well characterized in the literature as it relates to post-viral illness. While there have been some anecdotal reports of new alcohol sensitivity in PASC patients in the media, there is a paucity of published data in the medical literature about this topic. During their medical consultation, the patients self-reported new changes in their symptoms or behaviors following the use of alcohol. A new onset of alcohol sensitivities should be assessed along with other post-COVID-19 symptoms and may provide novel avenues to explore the pathobiology of illness and potential interventions.

    View details for DOI 10.7759/cureus.51286

    View details for PubMedID 38288178

    View details for PubMedCentralID PMC10823305

  • Sex Influences the Safety and Therapeutic Efficacy of Cardiac Nanomedicine Technologies. Small (Weinheim an der Bergstrasse, Germany) Lin, Z., Jiwani, Z., Serpooshan, V., Aghaverdi, H., Yang, P. C., Aguirre, A., Wu, J. C., Mahmoudi, M. 2023: e2305940

    Abstract

    Nanomedicine technologies are being developed for the prevention, diagnosis, and treatment of cardiovascular disease (CVD), which is the leading cause of death worldwide. Before delving into the nuances of cardiac nanomedicine, it is essential to comprehend the fundamental sex-specific differences in cardiovascular health. Traditionally, CVDs have been more prevalent in males, but it is increasingly evident that females also face significant risks, albeit with distinct characteristics. Females tend to develop CVDs at a later age, exhibit different clinical symptoms, and often experience worse outcomes compared to males. These differences indicate the need for sex-specific approaches in cardiac nanomedicine. This Perspective discusses the importance of considering sex in the safety and therapeutic efficacy of nanomedicine approaches for the prevention, diagnosis, and treatment of CVD.

    View details for DOI 10.1002/smll.202305940

    View details for PubMedID 37803920

  • Anti-breast cancer-induced cardiomyopathy: Mechanisms and future directions. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie Liu, C., Chen, H., Guo, S., Liu, Q., Chen, Z., Huang, H., Zhao, Q., Li, L., Cen, H., Jiang, Z., Luo, Q., Chen, X., Zhao, J., Chen, W., Yang, P. C., Wang, L. 2023; 166: 115373

    Abstract

    With the progression of tumor treatment, the 5-year survival rate of breast cancer is close to 90%. Cardiovascular toxicity caused by chemotherapy has become a vital factor affecting the survival of patients with breast cancer. Anthracyclines, such as doxorubicin, are still some of the most effective chemotherapeutic agents, but their resulting cardiotoxicity is generally considered to be progressive and irreversible. In addition to anthracyclines, platinum- and alkyl-based antitumor drugs also demonstrate certain cardiotoxic effects. Targeted drugs have always been considered a relatively safe option. However, in recent years, some random clinical trials have observed the occurrence of subclinical cardiotoxicity in targeted antitumor drug users, which may be related to the effects of targeted drugs on the angiotensin converting enzyme, angiotensin receptor and β receptor. The use of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and beta-blockers may prevent clinical cardiotoxicity. This article reviews the toxicity and mechanisms of current clinical anti-breast cancer drugs and proposes strategies for preventing cardiovascular toxicity to provide recommendations for the clinical prevention and treatment of chemotherapy-related cardiomyopathy.

    View details for DOI 10.1016/j.biopha.2023.115373

    View details for PubMedID 37647693

  • Myalgic Encephalomyelitis/Chronic Fatigue Syndrome is common in post-acute sequelae of SARS-CoV-2 infection (PASC): Results from a post-COVID-19 multidisciplinary clinic. Frontiers in neurology Bonilla, H., Quach, T. C., Tiwari, A., Bonilla, A. E., Miglis, M., Yang, P. C., Eggert, L. E., Sharifi, H., Horomanski, A., Subramanian, A., Smirnoff, L., Simpson, N., Halawi, H., Sum-Ping, O., Kalinowski, A., Patel, Z. M., Shafer, R. W., Geng, L. C. 2023; 14: 1090747

    Abstract

    The global prevalence of PASC is estimated to be present in 0·43 and based on the WHO estimation of 470 million worldwide COVID-19 infections, corresponds to around 200 million people experiencing long COVID symptoms. Despite this, its clinical features are not well-defined.We collected retrospective data from 140 patients with PASC in a post-COVID-19 clinic on demographics, risk factors, illness severity (graded as one-mild to five-severe), functional status, and 29 symptoms and principal component symptoms cluster analysis. The Institute of Medicine (IOM) 2015 criteria were used to determine the Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) phenotype.The median age was 47 years, 59.0% were female; 49.3% White, 17.2% Hispanic, 14.9% Asian, and 6.7% Black. Only 12.7% required hospitalization. Seventy-two (53.5%) patients had no known comorbid conditions. Forty-five (33.9%) were significantly debilitated. The median duration of symptoms was 285.5 days, and the number of symptoms was 12. The most common symptoms were fatigue (86.5%), post-exertional malaise (82.8%), brain fog (81.2%), unrefreshing sleep (76.7%), and lethargy (74.6%). Forty-three percent fit the criteria for ME/CFS, majority were female, and obesity (BMI > 30 Kg/m2) (P = 0.00377895) and worse functional status (P = 0.0110474) were significantly associated with ME/CFS.Most PASC patients evaluated at our clinic had no comorbid condition and were not hospitalized for acute COVID-19. One-third of patients experienced a severe decline in their functional status. About 43% had the ME/CFS subtype.

    View details for DOI 10.3389/fneur.2023.1090747

    View details for PubMedID 36908615

    View details for PubMedCentralID PMC9998690

  • Microvascular Obstruction Identifies a Subgroup of Patients Who Benefit from Stem Cell Therapy Following ST-Elevation Myocardial Infarction. American heart journal Davidson, S. J., Roncalli, J., Surder, D., Corti, R., Chugh, A. R., Yang, P. C., Henry, T. D., Stanberry, L., Lemarchand, P., Beregi, J. P., Traverse, J. H. 2023

    Abstract

    Microvascular obstruction (MVO) is associated with greater infarct size, adverse left-ventricular (LV) remodeling and reduced ejection fraction following ST-elevation myocardial infarction (STEMI). We hypothesized that patients with MVO may constitute a subgroup of patients that would benefit from intracoronary stem cell delivery with bone marrow mononuclear cells (BMCs) given previous findings that BMCs tended to improve LV function only in patients with significant LV dysfunction.We analyzed the cardiac MRIs of 356 patients (303 M, 53 F) with anterior STEMIs who received autologous BMCs or placebo / control as part of 4 randomized clinical trials that included the Cardiovascular Cell Therapy Research Network (CCTRN) TIME trial and its pilot, the multi-center French BONAMI trial and SWISS-AMI trials. A total of 327g patients had paired imaging data at one year. All patients received 100 - 150 million intracoronary autologous BMCs or placebo / control 3 - 7 days following primary PCI and stenting. LV function, volumes, infarct size and MVO were assessed prior to infusion of BMCs and 1 year later. Patients with MVO (n=210) had reduced LVEF and much greater infarct size and LV volumes compared to patients without MVO (n=146) (p < 0.01). At 12 months, patients with MVO who received BMCs had significantly greater recovery of LVEF compared to those patients with MVO who received placebo (absolute difference = 2.7%; p < 0.05). Similarly, left-ventricular end-diastolic (LVEDVI) and end-systolic volume indices (LVESVI) demonstrated significantly less adverse remodeling in patients with MVO who received BMCs compared to placebo. In contrast, no improvement in LVEF or LV volumes was observed in those patients without MVO who received BMCs compared to placebo.The presence of MVO on cardiac MRI following STEMI identifies a subgroup of patients who benefit from intracoronary stem cell therapy.

    View details for DOI 10.1016/j.ahj.2023.02.004

    View details for PubMedID 36796572

  • Extracellular vesicle-derived circCEBPZOS attenuates postmyocardial infarction remodeling by promoting angiogenesis via the miR-1178-3p/PDPK1 axis. Communications biology Yu, L., Liang, Y., Zhang, M., Yang, P. C., Hinek, A., Mao, S. 2023; 6 (1): 133

    Abstract

    Emerging studies indicate that extracellular vesicles (EVs) and their inner circular RNAs (circRNAs), play key roles in the gene regulatory network and cardiovascular repair. However, our understanding of EV-derived circRNAs in cardiac remodeling after myocardial infarction (MI) remains limited. Here we show that the level of circCEBPZOS is downregulated in serum EVs of patients with the adverse cardiac remodeling compared with those without post-MI remodeling or normal subjects. Loss-of-function approaches in vitro establish that circCEBPZOS robustly promote angiogenesis. Overexpression of circCEBPZOS in mice attenuates MI-induced left ventricular dysfunction, accompanied by a larger functional capillary network at the border zone. Further exploration of the downstream target gene indicates that circCEBPZOS acts as a competing endogenous RNA by directly binding to miR-1178-3p and thereby inducing transcription of its target gene phosphoinositide-dependent kinase-1 (PDPK1). Together, our results reveal that circCEBPZOS attenuates detrimental post-MI remodeling via the miR-1178-3p/PDPK1 axis, which facilitates revascularization, ultimately improving the cardiac function.

    View details for DOI 10.1038/s42003-023-04505-x

    View details for PubMedID 36726025

  • Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases. Journal of extracellular vesicles Li, G., Chen, T., Dahlman, J., Eniola-Adefeso, L., Ghiran, I. C., Kurre, P., Lam, W. A., Lang, J. K., Marbán, E., Martín, P., Momma, S., Moos, M., Nelson, D. J., Raffai, R. L., Ren, X., Sluijter, J. P., Stott, S. L., Vunjak-Novakovic, G., Walker, N. D., Wang, Z., Witwer, K. W., Yang, P. C., Lundberg, M. S., Ochocinska, M. J., Wong, R., Zhou, G., Chan, S. Y., Das, S., Sundd, P. 2023; 12 (2): e12305

    Abstract

    Extracellular vesicles (EVs) carry diverse bioactive components including nucleic acids, proteins, lipids and metabolites that play versatile roles in intercellular and interorgan communication. The capability to modulate their stability, tissue-specific targeting and cargo render EVs as promising nanotherapeutics for treating heart, lung, blood and sleep (HLBS) diseases. However, current limitations in large-scale manufacturing of therapeutic-grade EVs, and knowledge gaps in EV biogenesis and heterogeneity pose significant challenges in their clinical application as diagnostics or therapeutics for HLBS diseases. To address these challenges, a strategic workshop with multidisciplinary experts in EV biology and U.S. Food and Drug Administration (USFDA) officials was convened by the National Heart, Lung and Blood Institute. The presentations and discussions were focused on summarizing the current state of science and technology for engineering therapeutic EVs for HLBS diseases, identifying critical knowledge gaps and regulatory challenges and suggesting potential solutions to promulgate translation of therapeutic EVs to the clinic. Benchmarks to meet the critical quality attributes set by the USFDA for other cell-based therapeutics were discussed. Development of novel strategies and approaches for scaling-up EV production and the quality control/quality analysis (QC/QA) of EV-based therapeutics were recognized as the necessary milestones for future investigations.

    View details for DOI 10.1002/jev2.12305

    View details for PubMedID 36775986

  • High-resolution, respiratory-resolved coronary MRA using a Phyllotaxis-reordered variable-density 3D cones trajectory. Magnetic resonance imaging Koundinyan, S. P., Baron, C. A., Malavé, M. O., Ong, F., Addy, N. O., Cheng, J. Y., Yang, P. C., Hu, B. S., Nishimura, D. G. 2023

    Abstract

    To develop a respiratory-resolved motion-compensation method for free-breathing, high-resolution coronary magnetic resonance angiography (CMRA) using a 3D cones trajectory.To achieve respiratory-resolved 0.98 mm resolution images in a clinically relevant scan time, we undersample the imaging data with a variable-density 3D cones trajectory. For retrospective motion compensation, translational estimates from 3D image-based navigators (3D iNAVs) are used to bin the imaging data into four phases from end-expiration to end-inspiration. To ensure pseudo-random undersampling within each respiratory phase, we devise a phyllotaxis readout ordering scheme mindful of eddy current artifacts in steady state free precession imaging. Following binning, residual 3D translational motion within each phase is computed using the 3D iNAVs and corrected for in the imaging data. The noise-like aliasing characteristic of the combined phyllotaxis and cones sampling pattern is leveraged in a compressed sensing reconstruction with spatial and temporal regularization to reduce aliasing in each of the respiratory phases.In initial studies of six subjects, respiratory motion compensation using the proposed method yields improved image quality compared to non-respiratory-resolved approaches with no motion correction and with 3D translational correction. Qualitative assessment by two cardiologists and quantitative evaluation with the image edge profile acutance metric indicate the superior sharpness of coronary segments reconstructed with the proposed method (P < 0.01).We have demonstrated a new method for free-breathing, high-resolution CMRA based on a variable-density 3D cones trajectory with modified phyllotaxis ordering and respiratory-resolved motion compensation with 3D iNAVs.

    View details for DOI 10.1016/j.mri.2023.01.008

    View details for PubMedID 36646397

  • Angiogenic stem cell delivery platform to augment post-infarction neovasculature and reverse ventricular remodeling. Scientific reports Shin, H. S., Thakore, A., Tada, Y., Pedroza, A. J., Ikeda, G., Chen, I. Y., Chan, D., Jaatinen, K. J., Yajima, S., Pfrender, E. M., Kawamura, M., Yang, P. C., Wu, J. C., Appel, E. A., Fischbein, M. P., Woo, Y., Shudo, Y. 2022; 12 (1): 17605

    Abstract

    Many cell-based therapies are challenged by the poor localization of introduced cells and the use of biomaterial scaffolds with questionable biocompatibility or bio-functionality. Endothelial progenitor cells (EPCs), a popular cell type used in cell-based therapies due to their robust angiogenic potential, are limited in their therapeutic capacity to develop into mature vasculature. Here, we demonstrate a joint delivery of human-derived endothelial progenitor cells (EPC) and smooth muscle cells (SMC) as a scaffold-free, bi-level cell sheet platform to improve ventricular remodeling and function in an athymic rat model of myocardial infarction. The transplanted bi-level cell sheet on the ischemic heart provides a biomimetic microenvironment and improved cell-cell communication, enhancing cell engraftment and angiogenesis, thereby improving ventricular remodeling. Notably, the increased density of vessel-like structures and upregulation of biological adhesion and vasculature developmental genes, such as Cxcl12 and Notch3, particularly in the ischemic border zone myocardium, were observed following cell sheet transplantation. We provide compelling evidence that this SMC-EPC bi-level cell sheet construct can be a promising therapy to repair ischemic cardiomyopathy.

    View details for DOI 10.1038/s41598-022-21510-y

    View details for PubMedID 36266453

    View details for PubMedCentralID PMC9584918

  • Spinning-enabled wireless amphibious origami millirobot. Nature communications Ze, Q., Wu, S., Dai, J., Leanza, S., Ikeda, G., Yang, P. C., Iaccarino, G., Zhao, R. R. 2022; 13 (1): 3118

    Abstract

    Wireless millimeter-scale origami robots have recently been explored with great potential for biomedical applications. Existing millimeter-scale origami devices usually require separate geometrical components for locomotion and functions. Additionally, none of them can achieve both on-ground and in-water locomotion. Here we report a magnetically actuated amphibious origami millirobot that integrates capabilities of spinning-enabled multimodal locomotion, delivery of liquid medicine, and cargo transportation with wireless operation. This millirobot takes full advantage of the geometrical features and folding/unfolding capability of Kresling origami, a triangulated hollow cylinder, to fulfill multifunction: its geometrical features are exploited for generating omnidirectional locomotion in various working environments through rolling, flipping, and spinning-induced propulsion; the folding/unfolding is utilized as a pumping mechanism for controlled delivery of liquid medicine; furthermore, the spinning motion provides a sucking mechanism for targeted solid cargo transportation. We anticipate the amphibious origami millirobots can potentially serve as minimally invasive devices for biomedical diagnoses and treatments.

    View details for DOI 10.1038/s41467-022-30802-w

    View details for PubMedID 35701405

  • Regenerating Endothelium and Restoring Microvascular Endothelial Function. JACC. Cardiovascular imaging Hare, J. M., Yang, P. 2022; 15 (5): 825-827

    View details for DOI 10.1016/j.jcmg.2022.02.014

    View details for PubMedID 35512955

  • Stem Cell and Exosome Therapy in Pulmonary Hypertension. Korean circulation journal Oh, S., Jung, J., Ahn, K., Jang, A. Y., Byun, K., Yang, P. C., Chung, W. 2022; 52 (2): 110-122

    Abstract

    Pulmonary hypertension is a rare and progressive illness with a devastating prognosis. Promising research efforts have advanced the understanding and recognition of the pathobiology of pulmonary hypertension. Despite remarkable achievements in terms of improving the survival rate, reducing disease progression, and enhancing quality of life, pulmonary arterial hypertension (PAH) is not completely curable. Therefore, an effective treatment strategy is still needed. Recently, many studies of the underlying molecular mechanisms and technological developments have led to new approaches and paradigms for PAH treatment. Management based on stem cells and related paracrine effects, epigenetic drugs and gene therapies has yielded prospective results for PAH treatment in preclinical research. Further trials are ongoing to optimize these important insights into clinical circumstances.

    View details for DOI 10.4070/kcj.2021.0191

    View details for PubMedID 35128849

  • Recommendations for Nomenclature and Definition Of Cell Products Intended for Human Cardiovascular Use. Cardiovascular research Taylor, D. A., Chacon-Alberty, L., Sampaio, L. C., Del Hierro, M. G., Perin, E. C., Mesquita, F. C., Henry, T. D., Traverse, J. H., Pepine, C. J., Hare, J. M., Murphy, M. P., Yang, P. C., March, K. L., Vojvodic, R. W., Ebert, R. F., Bolli, R., Cardiovascular Cell Therapy Research Network (CCTRN) 2021

    Abstract

    Exogenous cell-based therapy has emerged as a promising new strategy to facilitate repair of hearts damaged by acute or chronic injury. However, the field of cell-based therapy is handicapped by the lack of standardized definitions and terminology, making comparisons across studies challenging. Even the term "stem cell therapy" is misleading because only a small percentage of cells derived from adult bone marrow, peripheral blood, or adipose tissue meets the accepted hematopoietic or developmental definition of stem cells. Furthermore, cells (stem or otherwise) are dynamic biological products, meaning that their surface marker expression, phenotypic and functional characteristics, and the products they secrete in response to their microenvironment can change. It is also important to point out that most surface markers are seldom specific for a cell type. In this article, we discuss the lack of consistency in the descriptive terminology used in cell-based therapies and offer guidelines aimed at standardizing nomenclature and definitions to improve communication among investigators and the general public.

    View details for DOI 10.1093/cvr/cvab270

    View details for PubMedID 34387303

  • Dual Contrast Manganese-Enhanced MRI and Gadolinium Delayed-Enhanced MRI Detect Heterogenous Myocardial Viability in Ischemic Cardiomyopathy JACC-CARDIOVASCULAR IMAGING Tada, Y., Santoso, M. R., Heidary, S., Sano, H., Tachibana, A., Matsuura, Y., Harnish, P., Yang, P. C. 2021; 14 (7): 1474-1476

    View details for DOI 10.1016/j.jcmg.2020.12.025

    View details for Web of Science ID 000697114900022

    View details for PubMedID 33744127