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A B S T R A C T   

Detecting and quantifying the host transcriptional response to influenza virus infection can serve as a real-time 
diagnostic tool for clinical management. We have employed the multiplexing capabilities of GMR sensors to 
develop a novel assay based on the influenza metasignature (IMS), which can classify influenza infection based 
on transcript levels. We show that the assay can reliably detect ten IMS transcripts and distinguish subjects with 
naturally acquired influenza infection from those with other symptomatic viral infections (AUC 0.93, 95% CI: 
0.82–1.00). Separately, we validated that the gene IFI27, not included in the IMS panel, has very high single- 
biomarker accuracy (AUC 0.95, 95% CI: 0.90–0.99) in stratifying patients with influenza. We demonstrate 
that a portable GMR biosensor can be used as a tool to diagnose influenza infection by measuring the host 
response, simultaneously highlighting the power of immune system metrics and advancing the field of gene 
expression-based diagnostics.   

1. Introduction 

Respiratory viral infections are a significant burden, causing 35.6 
million illnesses, 710,000 hospitalizations, and 56,000 deaths annually 
in the United States (CDC, 2021b), and up to 4 million deaths each year 
worldwide (Forum of International Respiratory Societies, 2017). Glob
ally, influenza causes 1 billion cases, 3–5 million severe illnesses, and up 
to 500,000 deaths annually (WHO, 2018). Seasonal and pandemic 
strains of influenza viruses remain among the most common and deadly 
respiratory viral pathogens. 

Current methods for influenza testing rely on the detection of 
influenza viral antigens or RNA. Rapid influenza diagnostic tests (RIDTs) 
are antigen-based tests that can be done at the point-of-care (POC), 
typically within 30 min. However, these tests are qualitative and provide 
only a dichotomous result of either the presence or absence of the 
influenza virus without quantifying viral load; the sensitivity of such 

tests is estimated to be between 50 and 70% (CDC, 2016). The gold 
standard for influenza testing is reverse transcription polymerase chain 
reaction (RT-PCR), in which amplification of influenza viral RNA is 
performed and quantified. However, the primers for RT-PCR testing are 
designed to detect specific viral sequences and the diagnostic efficacy 
can be reduced when a new strain emerges in the population. 

While detection of viral RNA is important for disease diagnosis, 
exploring differences in host gene expression during the time course of 
infection could provide useful clinical information. For example, a rapid 
and quantitative snapshot of the body’s active immune response could 
be tested in clinical studies as a tool to inform decisions regarding dose 
and duration of antiviral medications. A multi-cohort analysis of pub
licly available transcriptional data, leveraging the heterogeneity present 
in five influenza gene expression data sets with 292 samples in total, 
identified an 11-gene host response signature, the Influenza Meta 
Signature (IMS), that could distinguish individuals infected with 
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influenza from those with bacterial or other respiratory viral infections 
(Andres-Terre et al., 2015). The level of expression of these genes is 
summarized by the IMS Score (the geometric mean of the normalized 
expression of the eleven upregulated genes). Rapid quantification of IMS 
transcripts in blood with a sensitive tool could therefore serve as a 
diagnostic of influenza infection, which could then be assessed further 
for clinical utility. 

While RT-PCR is the gold standard in gene expression analysis, it 
requires instrumentation that is unlikely to be available in settings other 
than a diagnostic laboratory (CDC, 2021a), which increases turnaround 
time for clinical applications. The same is true of gene expression 
microarrays, which are known to profile transcripts more easily at a 
larger scale, but have a lower dynamic range, as they are constrained by 
limitations such as fluorescent background signal and signal saturation 
(Zhao et al., 2014). With improved dynamic range, sensitivity, and 
specificity, next-generation sequencing (NGS) has become prevalent for 
high-throughput gene expression analysis; however, the high cost, 
complex equipment, and turnaround time render it impractical for rapid 
and targeted gene expression analysis of a limited number of genes (Arts 
et al., 2017). 

To address these issues, we developed portable giant magnetoresis
tive (GMR) biosensors as a platform for targeted gene expression anal
ysis. GMR biosensors have been shown to detect proteins (Park et al., 
2016; Krishna et al., 2016), antibodies (Lee et al., 2016), enzymes 
(Adem et al., 2020), as well as DNA (Wang et al., 2014; Rizzi et al., 2017; 
Nesvet et al., 2021) with high sensitivity and specificity. In fact, previous 
research has shown advances in GMR sensors used for DNA biomarker 
detection, such as genotyping of the human hepatitis B virus (HBV) (Zhi, 
X. et al., 2012), with an impressive limit of detection of around 10 
copies/mL of target HBV DNA molecules (Zhi, X. et al., 2014). 

GMR sensors function through localized proximity magnetic sensing: 
magnetic nanoparticles are used as DNA tags to generate a magnetic 
field that is detected by the GMR biosensor, so that binding of DNA to 
the sensor surface can be detected in real time. Compared to traditional 
optical detection, advantages of magnetic sensing include a lower limit 
of detection, higher dynamic range, temperature insensitivity, and lower 
background noise (Xu et al., 2008; Rizzi et al., 2017). Since the GMR 
chip has 80 different sensors, the device is strong in multiplexing 
compared to other platforms (Ravi et al., 2018). Moreover, we have 
previously developed a rapid GMR platform that can interface with a 
smartphone, interpret data in real time and transmit results to central 
databases, enabling POC decision-making (Choi et al., 2016). It is 
generally easier to accommodate a large number of sensors in a single 
GMR biochip reported here than in a single giant magnetoimpedance 
(GMI) biochip (Gao et al., 2016). 

Here, we present an assay for multiplexed transcript detection on a 
GMR platform that can reliably quantify the IMS score. With this assay, 
we show that we can accurately detect influenza virus infection and 
monitor influenza progression after symptom onset, providing valuable 
clinical information that can aid in disease management. 

2. Materials and methods 

2.1. In vitro treatment, RNA extraction and reverse transcription from 
peripheral blood mononuclear cells (PBMCs) 

PBMCs from twelve healthy donors (IRB-30494, Autoimmunity 
Center of Excellence at Stanford) were isolated and seeded into 10 cm 
dishes at around 50–60% confluency, with three plates for each donor. 
For each donor, one plate was treated with 2000 U/mL interferon alpha 
(IFN) (PBL Assay Science) overnight, one was treated with 100 ng/mL 
lipopolysaccharide (LPS) (Sigma-Aldrich) overnight, and one was left as 
an untreated control. Messenger RNA (mRNA) was extracted from each 
culture using the Qiagen RNeasy Mini Kit (QIAGEN) according to the 
manufacturer’s protocol. Complementary DNA (cDNA) was synthesized 
using the Invitrogen Superscript III First Strand Synthesis System 

according to the manufacturer’s protocol. 

2.2. Cohort of human subjects with infection 

Banked whole blood RNA samples were obtained from a study 
(DMID #09–0062) of healthy volunteers aged between 18 and 49. 
Participants were serially sampled before and during infection with a 
naturally occurring H1N1 influenza virus or other respiratory viruses 
(Zhai et al., 2015). Importantly, the healthy volunteers had not been 
vaccinated in the three years preceding enrollment in the study and did 
not receive influenza vaccination during the study. Recruitment was 
performed during two consecutive influenza seasons: September 
2009–April 2010, and September 2010–April 2011. Peripheral whole 
blood samples were collected in PAXgene RNA stabilization tubes 
(QIAGEN) and stored at -80 ◦C. RNA purification was performed with 
the PAXgene Blood RNA system (QIAGEN). Samples from each partici
pant were collected at baseline (early in the influenza season), when the 
participant was healthy. Participants who exhibited any respiratory 
symptoms during the season were sampled again on day 0 (day of 
symptom onset), day 2, day 4, day 6, and day 21. The purified RNA 
samples were aliquotted and stored at -80 ◦C, and deidentified samples 
from subjects that had given consent to have their samples further 
analyzed were transferred from Baylor College of Medicine, Houston, TX 
to Stanford University, Stanford, CA in August 2020. The protocol was 
approved by the institutional review boards of all participating in
stitutions. Additionally, nasal wash samples on day 0 and day 2 were 
tested with RT-PCR for respiratory viruses including influenza A, pH1N1 
influenza, influenza B, picornavirus/rhinovirus, respiratory syncytial 
virus, human metapneumovirus, parainfluenza viruses, coronaviruses, 
and adenoviruses (Zhai et al., 2015). 

For the GMR data analysis at Stanford University, we selected sam
ples from participants that were RT-PCR positive for influenza A or B 
viruses, human rhinovirus (HRV), and participants with flu-like symp
toms in whom no virus was identified. In the process of selection, we 
remained blinded to the status of each participant, but chose these three 
classifications as they had the most samples available for a reasonable 
statistical analysis. From these subjects, a final cohort of 68 subjects (40 
female, 28 male) was chosen that had both baseline and day 0 samples 
available. Four subjects were also chosen that had follow-up samples 
available from day 2, day 4, day 6, and day 21 post-infection. The 
concentration of the RNA samples for all subjects was quantified using 
Qubit (ThermoFisher Scientific), and the RNA was reverse transcribed to 
cDNA using SuperScript III First-Strand Synthesis System (ThermoFisher 
Scientific). Briefly, 200 ng of input mRNA was reverse-transcribed with 
an oligo(dT)20 primer, using SuperScript III reverse transcriptase (RT) in 
a 20 μL reaction. The cDNA was stored at -20 ◦C prior to PCR 
amplification. 

2.3. RT-PCR amplification 

Prior to GMR detection, cDNA was RT-PCR amplified using a BioRad 
Thermal Cycler and primers specific to IMS genes. All primer sequences 
were designed with Universal ProbeLibrary System Assay Design Center 
(Roche), and the sequences were obtained from Integrated DNA Tech
nologies (Table S1). The primers had a stock concentration of 100 μM 
and were diluted to 80 μM prior to use. SsoAdvanced Universal SYBR 
Green Supermix (Bio-Rad) was used for fluorescence detection, and a 
master mix was created with 1:10 dilution of Supermix to primers. The 
total volume of each qPCR reaction was 20 μL, with 2 μL of PBMC cDNA, 
10 μL of master mix, and the remaining 8 μL with primers for the genes 
of interest and DNA suspension buffer (Teknova). For the stimulated 
PBMC cDNA from Section 2.1, primers specific to the IMS genes HERC5, 
HERC6, PARP12, LGALS3BP, ZBP1, IFI6, IFIH1, CD38, and LY6E were 
used (Table S1). PCR amplification was initiated with polymerase acti
vation and DNA denaturation at 95 ◦C for 30 s, followed by 27 cycles 
with denaturation at 95 ◦C for 10 s, and annealing and extension at 59 ◦C 
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for 30 s. For the subject cDNA from Section 2.2, primers specific to the 
IMS genes HERC5, HERC6, PARP12, LGALS3BP, ZBP1, IFI6, IFIH1, LY6E, 
and RTP4 were used, along with the IFI27 gene (Table S1). PCR ampli
fication was initiated with polymerase activation and DNA denaturation 
at 95 ◦C for 30 s, followed by 25 cycles with denaturation at 95 ◦C for 10 
s, and annealing and extension at 59 ◦C for 30 s. A no-template control 
was also amplified to assess contamination levels and primer specificity. 

2.4. RT-PCR fold change calculations with stimulated PBMC cDNA 

Prior to GMR detection, RT-PCR was used to determine if each IMS 
gene was upregulated in IFN-treated healthy PBMCs compared to an 
untreated control. For these reactions, each IMS gene was amplified 
individually, and expression levels were compared between the IFN- 
treated sample and the control. A housekeeping gene, GAPDH, was 
amplified for both conditions to calibrate the calculations. The raw Ct 
values of GAPDH, in triplicate, were averaged for each condition, and 
then subtracted from the Ct values for each IMS gene for each condition. 
Finally, the corrected values for each gene, in triplicates, were averaged. 
The final fold change for each IMS gene was calculated as 2^(Control- 
Treated Ct). 

2.5. GMR sensor preparation 

The GMR biosensor arrays, comprised of 8 × 10 sensors, were 
fabricated as described previously (Osterfeld et al., 2008). The sensors 
are functionalized with amino-modified DNA probes using a surface 
silanization, by a method described previously (Ravi et al., 2018). 
Briefly, the surface was activated with a 15-min treatment with 15% 
hydrogen peroxide (Certified ACS, Sigma-Aldrich) in distilled water, 
30-min treatment with 10% (3-aminopropyl) triethoxysilane (Sigma 
Aldrich) in acetone, 30 min treatment with 5% glutaraldehyde (Fisher 
Scientific) in distilled water, and a final wash with distilled water. Each 
DNA probe was diluted to 20 μM in filtered 2X saline sodium citrate SSC 
(Invitrogen) from a stock solution of 20X SSC prior to spotting. The DNA 
probes (Table S1) were spotted (~1.5 nL) onto separate sensors of the 
GMR chip using a robotic arrayer (sciFlexarrayer, Scienion). For each 
chip, 7 sensors were functionalized with the probes complementary to 
each of the 10 IMS genes used (70 sensors total), 4 sensors were func
tionalized with a DNA sequence not complementary to the 
PCR-amplified product, as a negative control, and 4 sensors were func
tionalized with biotinylated DNA as a positive control. The chips were 
stored at room temperature until use. Prior to use, the GMR chips were 
inserted into cartridges defining a reaction well over the sensors. The 
chip surface was then washed and blocked with 1% BSA in PBS for 30 
min as described previously (Osterfeld et al., 2008) to prevent 
non-specific binding. 

2.6. Addition of PCR product to GMR sensors 

Double-stranded PCR products with amplified IMS genes prepared at 
the end of Section 2.3 were added to the GMR sensors prepared at the 
end of Section 2.5. 20 μL of the PCR product was added to 130 μL hy
bridization buffer (400 mM NaCl in Tris EDTA). The PCR product de
natured through a modified heat and shock-cooling denaturation 
approach as described previously (Rizzi et al., 2017). Briefly, the sam
ples were denatured for 10 min at 95 ◦C and shock-cooled for 5 min in 
ice to slow down re-hybridization. The denatured samples were inserted 
onto the GMR chip, and allowed to hybridize to the DNA probes on the 
chip for 1 h at 37 ◦C. The chips were then washed six times with washing 
buffer (10 mM NaCl in Tris EDTA) to remove unbound DNA, leaving 
around 50 μL wash buffer on the sensor surface. The GMR cartridges 
were inserted into the MagArray reader stations. After measuring 2 min 
of baseline signal and allowing calibration of the sensor system, 50 μL of 
streptavidin magnetic nanoparticles (MNPs) (Miltenyi Biotec) were 
added in the sample well and the binding signal was measured at 15 min 

when the GMR signal reached a plateau, indicating binding saturation. 
DNA hybridization causes magnetic nanoparticles to bind to the sensor 
surface, leading to a change in the measured magnetoresistive (MR) 
ratio of the sensor. The signal is measured in terms of ΔMR = MR− MR0. 
All samples for each condition were run in duplicate. 

2.7. IMS gene expression measurements and analysis: infection cohort 

The endpoint GMR binding signals in parts per million (ppm) across 
all subjects were extracted, and the signal from the negative control was 
subtracted to control for background noise. For each gene, there were 7 
sensors per chip, and 2 chips per time point; the 14 binding signals were 
averaged to get a mean expression for that gene (individual outlier 
sensors that were greater/lower than two standard deviations from the 
mean were disregarded in the average calculation). 

For the stimulated PBMC experiments, average expression mea
surements were rescaled to a value between 0 and 100, and the fold 
change for each gene was calculated by dividing the average expression 
in each condition (either LPS or IFN) by the average expression in the 
control condition. A paired t-test was conducted to examine statistical 
significance between the LPS and IFN groups for each gene (a two-tailed 
p-value < 0.05 was significant). For each subject, the fold change across 
all individual IMS genes was averaged to find the total IMS fold change 
score for each subject. Fold change analysis was done in R (R Core Team, 
2019); statistical tests and graph generation were done in GraphPad 
Prism (Version 8.4.1). 

For the infection cohort experiments, the average expression mea
surements for each gene were log2 transformed, and the geometric mean 
of the log2-transformed genes was calculated for each subject at baseline 
and on day 0 (day of symptom onset), to obtain the IMS score 
(Andres-Terre et al., 2015). The log2 transformation and geometric 
mean calculations were performed in R (R Core Team, 2019). The day 
0 classifications of the 68 subjects were then unblinded, and a 
Mann-Whitney test was performed to determine if the day 0 IMS score 
was significantly different in subjects with influenza virus infection, 
HRV infection, or individuals with respiratory symptoms who tested 
negative for the viruses interrogated by the RT-PCR virology panel. A 
Mann-Whitney test was also performed to determine if the day 0 indi
vidual log2-transformed gene expression was significantly different in 
subjects with influenza virus infection, HRV infection, or with a 
“negative” classification. For both tests, a two-tailed p-value < 0.05 was 
significant. 

A Wilcoxon matched-pairs signed rank test was performed for in
dividuals with confirmed influenza to determine if the baseline IMS 
score was significantly different from the day 0 IMS score. The difference 
in baseline and day 0 scores was calculated for each influenza subject 
and a Mann-Whitney test was performed to determine if the IMS scores 
were significant between timepoints. A two-tailed p-value < 0.05 was 
considered significant. Statistical tests and graph generation were con
ducted in GraphPad Prism (Version 8.4.1). 

Additionally, two influenza-infected subjects, one HRV-infected in
dividual, and one “negative” subject that had RNA samples available 
from multiple time points after symptom onset were selected for follow- 
up analysis. The IMS score for these subjects was calculated and plotted 
over the course of baseline to day 21 for the influenza-infected subjects, 
and baseline to day 6 for the non-influenza infected subjects, to examine 
gene expression kinetics after infection. 

2.8. Logistic regression models and ROC curve analysis 

Using all data (n = 68), logistic regression models were developed to 
determine if the expression level of the IMS biomarkers could diagnose 
influenza infection status. Influenza-infected subjects were treated as 
cases, and HRV-infected and negative subjects were grouped together as 
non-influenza, or control. A univariate logistic regression model using 
IMS scores at the day of symptom onset was developed and evaluated. 
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The data was then split into training (42 subjects) and test (26 subjects) 
sets using the R caret package, and a multivariate logistic regression 
model using all individual IMS genes was developed on the training set 
and evaluated on the separate, withheld test set, using the glm() function 
in R’s built-in stats package. The pROC package in R was used to develop 
Receiver-Operating Characteristic (ROC) curves on the test set and 
extract the AUC of each model; GraphPad prism was utilized to plot the 
ROC curves. The diagnostic power of IFI27 was additionally examined 
through a univariate logistic regression model (n = 68). 

A regression model was developed with the L1 penalty for feature 
selection to assess which individual IMS genes in conjunction with IFI27 
were most beneficial for influenza classification. L1 regularization, or 
LASSO regression, adds a penalty equal to the sum of the absolute value 
of the coefficients, thereby shrinking certain parameters to zero to 
prevent overfitting on an unseen test dataset. The glmnet package in R 
was utilized for L1 regression. After the model was developed, the 
regression coefficients were summarized, and the coefficients with 
weights greater than zero were selected as important features. The test 
set AUC was then determined using these four individual gene expres
sion values. 

3. Results 

We used GMR sensors for multiplexed gene expression quantification 
by magnetically detecting biotinylated PCR products after reverse 
transcription from sample mRNA and performing targeted amplification 
of the IMS genes (Fig. 1). The GMR chips were spotted according to the 

spotting pattern shown in Fig. S1. There was no cross reactivity between 
individual amplified IMS genes and their corresponding GMR probes; 
each gene only bound to its respective probe (Fig. S2). 

3.1. IMS genes are upregulated after in vitro IFN stimulation of PBMCs 

The interferon (IFN) response is one of the first barriers of defense 
against influenza viruses. Specifically, type I IFNs, such as IFN-alpha, are 
secreted after influenza infection and are critical in hindering viral 
replication and proliferation (Killip, M. et al., 2015). Before measuring 
IMS expression through GMR, we used RT-PCR to determine if IMS 
genes were upregulated in IFN-treated PBMCs compared to controls. 
Each IMS gene was amplified individually, and its expression was 
compared between control and IFN-treated PMBCs. We found that all 
IMS genes were upregulated (fold change>1) in IFN-treated PBMCs 
compared to controls (Fig. S3). Fold change values ranged from 6.2 
(IFI6) to 46.6 (ZBP1). 

3.2. IMS gene expression measured by GMR sensors is higher after IFN 
than after LPS stimulation 

Bacterial lipopolysaccharides (LPS), also known as an endotoxins, 
are present in the outer surface membrane of Gram-negative bacteria, 
and are implicated in the pathogenesis of sepsis (Opal, 2010). For our 
study, IFN-alpha was used as a virus-specific immune modulator, and 
LPS was used as a non-specific immune modulator. 

To determine if the IMS biomarkers were indeed virus specific, IFN- 

Fig. 1:. Workflow for detection of IMS genes on the GMR biosensor array. (a) PBMCs were isolated from healthy human donors. mRNA was isolated, reverse- 
transcribed to cDNA, and PCR-amplified with biotinylated primers for the IMS genes of interest. The PCR product was denatured at 95 ◦C to create biotinylated 
ssDNA corresponding to each of the target IMS genes. (b) Sensors on the GMR chip are spotted with ssDNA probes complementary to each of the IMS genes seen in 
(a), along with a negative control and a positive control, according to the simplified spotting pattern seen. The target ssDNA is added to the sensor surface and 
allowed to hybridize. Signal is measured after adding streptavidin MNPs. To simplify, only four of the nine IMS genes are shown; for full spotting pattern, see Fig. S1. 
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stimulated, LPS-stimulated, or control PBMC-derived cDNA samples 
were amplified with primers specific to IMS genes, and the fold change 
of each individual gene relative to control was calculated, along with the 
mean fold change across all IMS genes for each condition. The mean fold 
change across all IMS genes, or the IMS fold change, was significantly 
higher in IFN-treated PBMCs compared to LPS-treated PBMCs (p <
0.0001; Fig. 2a). Similarly, the fold change for each individual IMS gene 
was significantly higher in IFN-treated PBMCs compared to LPS-treated 
PBMCs for all donors (Fig. 2b). The strongest differentiators between 
IFN and LPS treatment were IFI6, HERC5, HERC5, and LY6E (p <
0.0001), followed by PARP12, IFIH1, CD38, LGALS3BP (p < 0.001), and 
ZBP1 (p < 0.01). 

3.3. IMS measured on GMR sensors distinguishes influenza from other 
viral respiratory infections 

To determine if the IMS could distinguish influenza infection at the 
time of symptom onset, we measured the IMS score of subjects at day 
0 using GMR sensors. Influenza-infected subjects had an overall higher 
IMS score compared to HRV-infected subjects or “negative” subjects (p 
< 0.0001, n = 54) (Fig. 3a). Here, “negative” is defined as subjects who 
were symptomatic but not found to have any of the 21 viruses in the RT- 
PCR virology panel performed on nasal wash fluid. Importantly, a sta
tistically significant difference in the IMS score was not observed be
tween HRV-infected subjects and negative classifications on day 0, 
suggesting that the IMS score is influenza-specific. To verify that the IMS 
score was not high before symptom onset, we measured the IMS score at 
the baseline timepoint, which was collected at the beginning of the 
influenza season, when subjects were asymptomatic. For each infection 
classification present in our cohort, the IMS score at baseline was lower 
than the IMS scores at day 0 for each subject, confirming that the in
crease in the IMS score was indeed attributed to the infection. The dif
ference in IMS score between the baseline and symptom-onset (day 0) 
time points for influenza-infected subjects is shown in Fig. 3b. 

To further investigate the difference in the IMS scores on day 0, we 
analyzed the log2-transformed gene expression GMR signal of each IMS 
gene between the classifications. Each IMS gene individually had 
significantly higher expression in influenza-infected subjects compared 
to HRV-infected subjects (p < 0.0001, n = 39) or negative subjects (p <
0.0001, n = 41) (Fig. 4). This indicates that no single gene was dispro
portionately driving the IMS score to be significantly different between 
disease classifications. 

3.4. IMS measured on GMR sensors distinguishes influenza from other 
viral respiratory infections with high accuracy 

To demonstrate the specificity and accuracy of the IMS score to 
distinguish influenza infection, we developed logistic regression models 
with different combinations of independent variables, in which 
influenza-infected subjects were treated as cases, and HRV or negative 
subjects were grouped together as non-influenza, or control. In a uni
variate logistic regression model using day 0 IMS score as the inde
pendent variable, using all the data (n = 68), the AUC was 0.87 (95% 
confidence interval (CI): 0.79–0.96) (Fig. 5a). The data was split into 
training (42 samples) and test (26 samples) sets, and a multivariate lo
gistic regression model with the individual IMS gene expression values 
on day 0 was developed on the training set and evaluated on a separate, 
withheld test set with an AUC of 0.93 (95% CI: 0.82–1.00) (Fig. 5b), 
sensitivity of 0.81 (95% CI: 0.70–0.92) and specificity of 0.89 (95% CI: 
0.51–1.00). 

We then re-visited the genes that comprised the original IMS panel. 
One of the genes not included in the IMS panel originally was IFI27, 
which has been shown to distinguish influenza from other respiratory 
viral infections with a high single-biomarker accuracy (Tang et al., 
2017). Therefore, we tested the ability of IFI27 to distinguish influenza 
from non-influenza cases in this cohort. Fig. S4 shows that subjects with 
influenza had a significantly higher IFI27 expression level compared to 
HRV (p < 0.0001, n = 39), or negative subjects (p < 0.0001, n = 41). We 
then developed a univariate logistic regression model (n = 68) using 
IFI27 expression on day 0, resulting in a high single-biomarker AUC of 
0.95 (95% CI: 0.90–0.99) (Fig. 5c). 

The known interactions between the IMS genes are modeled through 
the STRING database (version 11.5) in Fig. S5a (Szklarczyk et al., 2021), 
which illustrates that the IMS genes are all part of the same transcrip
tional network. To determine if the biological connectivity of the genes 
results in experimental co-expression, the correlation coefficients be
tween the IMS genes were calculated using the individual gene log GMR 
signal from the day of symptom onset. The significant coefficients are 
visualized using a color correlation plot (Fig. S5b). IFI27 has the lowest 
individual correlations with the other IMS genes: while it is still highly 
correlated, its correlation coefficients range from 0.5 to 0.75, while 
many of the other coefficients range from 0.7 to 0.9. This reinforces the 
strength of IFI27 as a biomarker for influenza infection: while groups of 
genes within the IMS are co-expressed as part of a broad antiviral 
response, IFI27 appears to increase more independently, strongly, and 
specifically in influenza infection. 

Fig. 2:. GMR levels of IMS expression examined in LPS-treated and IFN-treated healthy-donor PBMCs, each pair of dots connected by a line represents one donor. 
Fold change was calculated relative to untreated control. (a) For each donor, IMS expression in IFN-treated PBMCs was compared to IMS expression in LPS-treated 
PBMCs using a paired t-test (p < 0.0001, n = 11). (b) For each donor, expression levels of each individual IMS gene were compared between IFN-treated PBMCs and 
LPS-treated PBMCs using a paired t-test (p < 0.0001, n = 11). 
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The high correlation between the IMS genes also suggested that not 
all genes were needed for accurate classification in this cohort. There
fore, a regression model was developed with the L1 penalty for feature 
selection, to assess which individual IMS genes in conjunction with IFI27 
were best able to classify influenza infection. After regularization was 
applied for feature selection, IFI27, HERC5, HERC6, and IFIH1 had co
efficients greater than 0. Using the expression levels of these four genes 
(now referred to as the LASSO regression score) on day 0, the test set 
AUC was 0.93 (95% CI: 0.84–1.00) (Fig. 5d), with a sensitivity of 0.90 

(95% CI: 0.73–1.00) and specificity of 0.89 (95% CI: 0.65–1.00). 

3.5. IFI27 expression is a more stable biomarker during symptomatic 
infection than the IMS 

To investigate the kinetics of the IMS score throughout the course of 
infection, we analyzed follow-up time points for two influenza-infected 
subjects, one HRV-infected individual, and one subject with a negative 
classification (Fig. 6a). Here, the IMS score includes the geometric mean 

Fig. 3. (a) Subjects with flu-like symptoms were 
classified on the day of symptom onset (day 0) by RT- 
PCR on nasal wash fluid, as having influenza A or B, 
HRV, or negative (did not test positive for any of the 
viruses in the panel). Each dot represents one indi
vidual. Using a Mann-Whitney test, the IMS score on 
day 0 of infection was compared between influenza A 
or B-infected individuals, HRV-infected individuals (p 
< 0.0001, n = 39), or negative individuals (p <
0.0001, n = 41). (b) For influenza-infected in
dividuals, the IMS score was compared between the 
baseline and day 0 timepoints using a Wilcoxon 
matched-pairs signed rank test (p < 0.0001, n = 26).   

Fig. 4. Subjects with flu-like symptoms were classified on the day of symptom onset (day 0) by RT-PCR on nasal wash fluid, as having influenza A or B, HRV, or 
negative (did not test positive for any of the viruses in the panel). Each dot represents one individual. Expression levels of each individual IMS gene on day 0 of 
infection was compared between influenza A or B-infected individuals, HRV-infected individuals (p < 0.0001, n = 39), or negative individuals using a Mann-Whitney 
test (p < 0.0001, n = 41). 
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of the IMS genes along with IFI27 expression. For both subjects not 
infected with influenza, the IMS score had minor fluctuations from 
baseline to day 6 post-infection. Conversely, for both influenza-infected 
subjects, the IMS score increased substantially from the baseline time
point to the peak score at day 0 (time of symptom onset), but after that 
the score decreased, returning to baseline levels on day 21. The data 
suggest that the ability of the IMS score to differentiate influenza from 
other respiratory viral diseases wanes quickly after the first day of 
symptoms. 

Next, we examined IFI27 expression throughout the time course of 
symptomatic infection. IFI27 expression remained stable and high in 
influenza-infected subjects compared to the HRV or negative subjects 
throughout the first 6 days of symptomatic infection, returning to 
baseline between days 6 and 21 (Fig. 6b). Examining the time course of 
each of the IMS genes (Fig. 6c; Fig. 6d) in both subjects with influenza, 
IFIH1 had the lowest expression levels each day, and IFI27 had the 
highest expression levels until day 6. It is important to underscore that 
from day 0 to day 6, while IFI27 expression levels remained stable, the 
expression levels of the other IMS genes progressively decreased. Our 
results indicate that the ability of the IMS score to differentiate influenza 
from other viral respiratory infections tends to decrease rapidly after the 
first day of symptoms, whereas IFI27 expression remains elevated for at 
least six days after symptom onset. 

4. Discussion 

Our findings demonstrate that the portable GMR platform can be 
effectively applied to the quantitative, multiplexed measurement of 
transcript abundance. Ten transcripts, along with a negative and posi
tive control, were simultaneously quantified. Previous studies have 
shown that PCR amplification can increase GMR sensitivity for tran
scripts with low copy numbers (Ravi et al., 2018). By using PCR 
amplification prior to GMR detection in this study, we have successfully 
performed GMR-based gene expression analysis in samples from a 
clinically realistic setting of naturally acquired viral respiratory in
fections. The same information could be gained with NGS, but at a much 
higher price, turnaround time, and experimental complexity. Moreover, 
by using magnetic detection compared to traditional optimal detection, 
GMR sensors have the added advantage of providing a lower limit of 
detection, higher dynamic range, and lower background noise, which 
are essential in simultaneously quantifying both higher abundance and 
lower abundance transcripts in gene expression analysis. 

By mining publicly available gene expression datasets, Andres-Terre 
et al. identified a unique set of biomarkers, the IMS, that is specific to 
influenza infection and can distinguish influenza from bacterial or other 
respiratory viral infections. We have developed a rapid, multiplexed 
assay using the GMR platform to measure the IMS score. In this study, we 
have validated that the IMS biomarker can classify influenza infection in 
clinical samples, demonstrating for the first time the use of GMR sensors 

0.79 - 0.96)

Fig. 5. Logistic regression models were applied to determine the power of the IMS genes in classifying influenza infection. (a) A univariate logistic regression model 
was applied using the IMS scores on day 0 (day of symptom onset); the AUC was 0.87 (95% CI: 0.79–0.96). (b) A multivariate logistic regression model was applied 
using the individual IMS gene scores on day 0, the test AUC was 0.93 (95% CI: 0.82–1.00). (c) The IFI27 gene was added to the panel, and a univariate logistic 
regression model was developed; the AUC was 0.95 (95% CI: 0.90–0.99). (d) A multivariate LASSO logistic regression model was applied using individual IMS genes 
in conjunction with IFI27, resulting in 4 genes of greater influence. Using just the expression levels of these four genes at day 0 of infection (LASSO regression score) 
the test set AUC was 0.93 (95% CI: 0.84–1.00). 
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for infectious disease molecular diagnostics. We have shown that the 
IMS score measured by a GMR biosensor can successfully distinguish 
IFN-stimulated PBMCs from LPS-stimulated PBMCs and differentiate 
subjects with influenza from HRV-infected subjects or symptomatic 
subjects with a negative infection classification. Importantly, while 
traditional rapid influenza tests and PCR-based tests check for presence 
of the virus, this assay shifts the paradigm to measure the body’s 
response to the virus. This type of biomarker can be incorporated into 
future studies in the contexts of disease severity, disease progression, or 
clinical management (antiviral dosage, for example). 

Separately, our results highlight the potential of IFI27 expression as a 
biomarker in influenza classification, in accordance with other studies 
(Zhai et al., 2015; Tang et al., 2017; Kollmus et al., 2018). Due to the 
inherent biological and experimental correlation of the IMS genes, we 
have found that only a few IMS genes, along with IFI27, are needed for 
accurate classification in the cohort we have studied. Comparatively, 
our findings indicate that IFI27 is a less time-sensitive biomarker than 
the IMS genes. While IFI27 expression is high for at least six days after 
symptom onset, individual IMS gene expression levels (and the corre
sponding IMS score) wane quickly after the day of symptom onset. This 
finding is of potential clinical relevance, as most patients outside a 
research setting usually do not seek medical attention on the first day of 
symptoms. 

More recently, Gupta et al. have shown that IFI27 alone has high 
accuracy in diagnosing SARS-CoV-2 infection. While IFI27 was a top 
performing single biomarker for influenza diagnosis in the cohort we 
have analyzed, future studies will greatly benefit from measuring more 
than one biomarker to obtain accurate influenza classification. This re
inforces the diagnostic utility of the LASSO regression score: by 
combining IFI27 with select IMS genes (HERC5, HERC6, and IFIH1), the 
accuracy and specificity of influenza diagnosis can be improved for 

future studies. 
It is important to note that in the existing platform, prior to begin

ning the GMR readout, the sample must go through RNA purification, 
reverse transcription, and PCR with target gene-specific biotinylated 
primers. For this diagnostic assay to be implemented as a POC test with a 
rapid readout of a patient’s response to infection, certain parts of the 
workflow must be integrated and expedited. While not used in this 
study, we are currently developing a POC PCR/GMR sensor system for 
DNA detection, in which cDNA, IMS primers, and PCR reaction materials 
are loaded onto the GMR chip functionalized with ssDNA probes com
plementary to IMS genes of interest, and on-chip PCR is performed with 
endpoint GMR detection (Yao et al., 2021). Future studies will involve 
translating the IMS assay onto the POC PCR/GMR system and observing 
the real-time hybridization curves of the amplifying IMS genes to the 
ssDNA probes on the GMR surface. 

The strengths of the present study include thorough recruitment and 
collection of human samples in a study of naturally occurring viral 
respiratory infections, a novel assay design with portable magnetic 
biosensors, and robust data analysis with emphasis on machine learning 
classifiers. This study also has some limitations. First, RNA samples were 
collected 12 years prior to analysis. While these were banked in a core 
facility at -80 ◦C with central temperature monitoring, long-term storage 
could impact RNA quality. Second, we could only test the IMS signature 
on a limited number of respiratory illnesses. Whereas testing in other 
common viral respiratory infections, such as respiratory syncytial virus 
(RSV), or in bacterial infections, would have been valuable, such sam
ples were not available in abundance for our studies. Finally, there was a 
limited number of preserved samples with follow-up time points in the 
longitudinal analysis. 

In summary, we have developed a rapid, GMR-based assay for 
measuring the host response to influenza infection, demonstrating for 

 

 

Fig. 6. (a) IMS score (including IFI27) over time in subjects with flu-like symptoms (b) IFI27 expression (log GMR signal) over time in subjects with flu-like 
symptoms. (c) (d) Expression time course (log GMR signal) of individual genes in the IMS score, plus IFI27, in two subjects infected with influenza. 
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the first time the use of GMR biosensors in infectious disease molecular 
diagnostics. We have also experimentally validated the biomarker set 
discovered by Andres-Terre et al., demonstrating that a subset of the 
genes in the signature, with the addition of the IFI27 gene, improves the 
accuracy of classification. We have shown the potential of measuring 
immune system metrics that can be used along with traditional PCR 
diagnostics to quantify the immune response and monitor disease pro
gression. More broadly, the ease of use and versatility of the GMR 
platform lends itself to rapidly measuring any biomarker signature. 
Future studies could involve developing a unique set of biomarkers 
specific to any disease, such as COVID-19, and translating this assay 
seamlessly onto the existing platform. 
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