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Natural Killer Cells From Children With Type 1 Diabetes
Have Defects in NKG2D-Dependent Function

and Signaling

Huilian Qin,' I-Fang Lee,! Constadina Panagiotopoulos,” Xiaoxia Wang,! Alvina D. Chu,® Paul J. Utz,?

John J. Priatel,’ and Rusung Tan'

OBJECTIVE—Natural killer (NK) cells from NOD mice have
numeric and functional abnormalities, and restoration of NK cell
function prevents autoimmune diabetes in NOD mice. However,
little is known about the number and function of NK cells in
humans affected by type 1 diabetes. Therefore, we evaluated the
phenotype and function of NK cells in a large cohort of type 1
diabetic children.

RESEARCH DESIGN AND METHODS—Peripheral blood
mononuclear blood cells were obtained from subjects whose
duration of disease was between 6 months and 2 years. NK cells
were characterized by flow cytometry, enzyme-linked immuno-
sorbent spot assays, and cytotoxicity assays. Signaling through
the activating NK cell receptor, NKG2D, was assessed by immu-
noblotting and reverse-phase phosphoprotein lysate microarray.

RESULTS—NK cells from type 1 diabetic subjects were present
at reduced cell numbers compared with age-matched, nondia-
betic control subjects and had diminished responses to the
cytokines interleukin (IL)-2 and IL-15. Analysis before and after
IL-2 stimulation revealed that unlike NK cells from nondiabetic
control subjects, NK cells from type 1 diabetic subjects failed to
downregulate the NKG2D ligands, major histocompatibility com-
plex class I-related chains A and B, upon activation. Moreover, type 1
diabetic NK cells also exhibited decreased NKG2D-dependent
cytotoxicity and interferon-y secretion. Finally, type 1 diabetic
NK cells showed clear defects in NKG2D-mediated activation
of the phosphoinositide 3-kinase-AKT pathway.

CONCLUSIONS—These results are the first to demonstrate that
type 1 diabetic subjects have aberrant signaling through the
NKG2D receptor and suggest that NK cell dysfunction contributes
to the autoimmune pathogenesis of type 1 diabetes. Diabetes
60:857-866, 2011

ype 1 diabetes is a multifactorial autoimmune
disease characterized by T-cell destruction of
insulin-producing B-cells and the eventual loss of
glucose homeostasis (1). Although both genetic
and environmental factors contribute to the breakdown of
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immunological self-tolerance, and many of the hallmarks
of disease in humans are recapitulated in the NOD mouse
(2), the precise mechanisms driving pathogenesis remain
unclear. Current evidence suggests that natural killer (NK)
cells may be both important regulators and inducers of
autoimmune diseases (3-8), and several reports (9-13)
have documented that NK cells in NOD mice are impaired
compared with those in healthy mice. Although inves-
tigations of human subjects with type 1 diabetes have de-
scribed NK cell alterations, these studies have been limited
in size, and the mechanisms underlying the phenotype
have not been identified (14-20).

NK cells are well known to have critical roles against
viral, bacterial, and parasitic pathogens through the direct
killing of infected cells and the production of proin-
flammatory cytokines such as interferon (IFN)-y and tumor
necrosis factor-a (21). A balance of signals received through
a diverse array of activating and inhibitory surface receptors
determines whether NK cells evoke their potent effector
functions toward a target (22). Some activating receptors
are known to bind foreign viral proteins, whereas others
recognize self-proteins that are induced upon cellular stress
(23). A prominent activating receptor involved in the rec-
ognition of stressed, infected, or transformed cells is the
C-type lectin NKG2D (24). Signaling by NKG2D is mediated
through its association with the transmembrane adaptor
protein DNAX-activating protein of 10 kDa (DAP10). Al-
though the NKG2D-DAP10-signaling complex is unusual
because it lacks an immunoreceptor tyrosine-based acti-
vation motif, DAP10 does contain a “YxxM” motif that
functions to recruit the p85 subunit of phosphoinositide3-
kinase (PI3K) upon tyrosine phosphorylation (25,26).

Recent work (27) has shown that NOD NK cells exhibit
decreased NKG2D-dependent functioning and that this
deficit may contribute to disease in this murine model.
Activated NOD NK cells, but not C57BL/6 NK cells, were
found to maintain NKG2D ligand expression, resulting in
the downmodulation of the NKG2D receptor through a
mechanism dependent on the “YxxM” motif of DAP10 (27).
Reduced NKG2D expression on NOD NK cells was mirrored
by decreased cytotoxic and cytokine-secreting functions
(27). Notably, we have previously shown that administra-
tion of complete Freund adjuvant (CFA) to NOD mice
causes NK cells to downregulate NKG2D ligand expression
and that the phenomenon is correlated with increased
NKG2D receptor expression and heightened NK cell
functions (28,29). In addition, NK cells rejuvenated by CFA
treatment were able to protect NOD SCID (severe com-
bined immune deficiency) mice from the development of
autoimmune diabetes following the adoptive transfer of
these hosts with diabetogenic splenocytes (28,29). Col-
lectively, these findings suggest that the chronic exposure
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of NOD NK cells to NKG2D ligands results in their de-
sensitization and also that augmentation of NK cell func-
tion protects NOD mice from disease.

Given the important regulatory role of NK cells in di-
abetes of the NOD mouse, we sought to determine whether
numeric or functional deficits also are present among hu-
man type 1 diabetic NK cells. Here, we report that NK cells
from children with type 1 diabetes constitute a significantly
reduced fraction of peripheral mononuclear cells relative to
age-matched nondiabetic control subjects and that these
NK cells are poorly responsive to interleukin (IL)-2/1-15
stimulation. Analogous to findings in the NOD mouse (27-29),
dysregulated expression of the NKG2D ligands on activated
type 1 diabetic NK cells is present and associated with both
impaired NKG2D-mediated effector function and signaling.
These results suggest that NK cell dysfunction and aberrant
NKG2D signaling may be a consequence of, or contribute
to, the pathogenesis of type 1 diabetes.

RESEARCH DESIGN AND METHODS

Subject recruitment, sample collection, and complete blood-cell counts.
The University of British Columbia Clinical Research Ethics Board (certificate
nos. H07-01707 and H03-70046) approved the collection of blood, and informed
consent was received from nondiabetic control and type 1 diabetic subjects.
Complete blood-cell counts were performed on fresh blood using a Sysmex
XE-2100 automated multiparameter blood-cell counter at the Children’s and
Women’s Health Centre of British Columbia.

Antibodies and flow cytometry. Cells were pretreated with anti-CD16 (3GS;
Biolegend) antibody (Ab) to block nonspecific binding to Fc receptors prior to
samples being stained with the indicated markers. Abs specific for CD3 (HIT3a),
CD4 (RPA-T4), CD8 (HIT8a), CD19 (HIB19), CD25 (2A3), 2B4 (2-69), LAIR-1
(DX26), NKB1 (DX9), CD9%4 (HP-3D9), CD56 (B159), CD122 (Mik-b2), and CD132
(AG184) were purchased from BD Biosciences. Abs recognizing IL-15Ra
(eBioJM7A4; eBioscience), CD16 (CB16, eBioscience), NKG2D (FAB139P; R&D
Systems), major histocompatibility complex class I-related chains A and B
(MICA/B) clone 159207 (R&D Systems), and MICA/B clone 6D4 (Biolegend)
were acquired from the indicated sources. Samples were analyzed on a
FACSCalibur flow cytometer using CellQuest software (BD Biosciences).
Purification and in vitro culture of human NK cells. NK cells were isolated
from peripheral blood using a human NK cell enrichment kit (StemCell
Technologies), and typical isolation resulted in =96% purity, as determined by
staining with anti-CD3 and anti-CD56 Abs (data not shown). Purified NK cells
were expanded in RPMI-1640 medium containing 10% AB human serum, 1
mmol/L nonessential amino acids, 5 X 10° 2-ME, 1000 units/mL human rIL-2
(BD Biosciences), and 50 units/mL rIL-15 (eBioscience). NK cells were ex-
panded in vitro for 5-7 days prior to their use in cytotoxicity and enzyme-
linked immunosorbent spot (ELISpot) assays.

Cytotoxicity assays. Target cell lines K562, Raji, and Daudi were acquired
from the American Type Culture Collection. One million target cells were la-
beled by incubating cells with 100 wCi ®'Cr for 90 min at 37°C, washing them
three times with PBS, and seeding them at 10* cells/well in round-bottom 96-
well plates. Various numbers of effectors were added to each well, and plates
were centrifuged at 500 rpm for 2 min and incubated at 37°C. After 4 h in-
cubation, 100-pL volumes of supernatant were collected and the amount of
51Cr released was measured using a y counter. For NKG2D stimulation, NK
cells were treated with 10 pwg/mL anti-NKG2D (MAB139; R&D Systems) Abs for
20 min at 37°C. After stimulation, cells were washed twice with complete RPMI
medium prior to their use as effectors in cytotoxic T-lymphocyte (CTL) assays.
ELISpot assays. The preparation of NK cell effectors was carried out iden-
tically as that performed for the CTL assays. ELISpots were performed in 96-
well flat-bottom MAIP S4510 plates (Millipore) using a human IFN-y ELISpot kit
from Mabtech. Immunospot plates were coated with 15 pwg/mL capture anti-
human IFN-y mAbs (clone 1-D1 K) by overnight incubation at 4°C. A total of
5,000 of the indicated target cells were mixed with 50,000 or 25,000 lymphokine-
activated killer (LAK) cells (10:1 or 5:1 effector:target ratios) and cultured for
24 h. Captured cytokines were detected with biotinylated anti-IFN-y mAbs
(clone 7-B6-1), and spots were developed using streptavidin-alkaline phospha-
tase and counted with Bioreader-4000 (Bio-Sys).

Cell-signaling studies. IL-2/IL-15—cultured NK cells (10 X 10° cells/mL) were
stimulated with 10 pg/mL of anti-NKG2D Ab (MAB139; R&D Systems) for 15
min at 37°C. Cells were lysed in ice-cold lysis buffer (20 mmol/L Tris-HCI, pH
8.2; 100 mmol/L NaCl; and 10 mmol/L. EDTA) containing a protease inhibitor
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cocktail (Sigma). NKG2D was immunoprecipitated using anti-NKG2D Abs
(1D11; eBioscience) and a combination of protein G-Sepharose and anti-
mouse IgG-agarose (Santa Cruz Biotechnology). Cell lysates and immuno-
precipitates were analyzed by blotting with either anti-PI3K (06-496; Upstate
Biotechnology) or anti-NKG2D (1D11; eBioscience) Abs. Anti-mouse IgG Abs
coupled to horseradish peroxidase (BioRad) and electrochemiluminescence
(Pierce Biotechnology) were used to detect membrane-bound anti-PI3K and
anti-NKG2D Abs.

Lysate preparation, microarray production, data acquisition, and array
analyses. NK cells, expanded in complete medium containing 1,000 units/mL
IL-2 and IL-15 (BD Biosciences) for 10 days, were serum starved for 4 h.
For NKG2D-signaling studies, NK cells (107 cells/mL) were incubated with 10
pg/mL of anti-NKG2D mAbs (R&D Systems) for 10 min on ice, washed twice
with PBS, and incubated for 1 min or 5 min in 37°C warmed PBS containing
affinity-purified rabbit anti-mouse IgG F(ab’); (Jackson Immunoresearch
Laboratories). The fabrication and processing of lysate arrays has previously
been discussed in detail (30). Slides were probed with anti-P(Y)-p85 PI3K
(no. 3821), P(T308)-AKT (no. 9275), P(S473)-AKT (no. 9271), and P(S473)-AKT
(no. 4058; mAbs) primary Abs from Cell Signaling Technology. The processed
slides were scanned using a GenePix 4000A microarray scanner (Molecular
Devices) and analyzed with GenePix Pro 6.0 software (Molecular Devices).
For each sample printed in triplicate, the background-subtracted median
fluorescence intensities were averaged and the intensity fold-change com-
pared with the unstimulated sample calculated as a ratio of background-
subtracted median fluorescence intensities for each time point versus the
background-subtracted median fluorescence intensities of the unstimulated
sample. The log base 2 values of these ratios were depicted in heatmap format
using TIGR MultiExperiment Viewer software, and data were expressed as the
means = SD (31).

Statistical analyses. A Student ¢ test was used to calculate statistical sig-
nificance where indicated, and a single-factor ANOVA was used for multigroup
comparison. Prism software (GraphPad Software) was used to create graphs
and provided assistance with statistical tests.

RESULTS

NK cells from type 1 diabetic subjects are present at
reduced frequencies and respond poorly to IL-2 and
IL-15. To address whether numerical or functional NK cell
defects are present in human type 1 diabetic subjects, we
analyzed peripheral blood mononuclear cells (PBMCs)
from subjects with established type 1 diabetes (>0.5 years
and <2 years; mean age 9.3 = 4.5 years; mean type 1 di-
abetes duration 1.4 = 0.5 years) and age-matched non-
diabetic control subjects (mean age 10.7 = 4.0 years) using
great care to follow standardized and consistent processing
of blood samples and experimental conditions (Table 1).
We rationalized that if NK cell dysfunction was an intrinsic
property of the type 1 diabetes immune system, long-
standing measurable defects would still be present in sub-
jects after establishment of disease. We also limited our
subjects to those whose onset of diabetes was no greater
than 2 years in order to minimize the potential effects of
chronic hyperglycemia on lymphocyte number and func-
tion. Frequencies of NK (CD3~CD56%), NKT (CD3*CD56"),
CD4 T (CD3*CD56 CD4"), CD8 T (CD3*CD56 CD8"), and
B-cell (CD3™ CD19") subsets among PBMCs were assessed
using standard flow cytometric techniques (Fig. 1A and B).
In contrast to the similar proportions of CD4 T-, CD8 T-, and
B-cells in the peripheral blood of type 1 diabetic subjects
relative to control subjects, the NK cell fraction in type 1
diabetic subjects was markedly reduced (~37%) relative to
nondiabetic age-matched control subjects (control subjects:
6.58 = 2.93% vs. type 1 diabetic subjects: 4.18 * 1.66%; P <
0.0005). To ascertain whether type 1 diabetic subjects ex-
hibit a decrease in absolute NK cell numbers, complete
blood-cell counts were performed on fresh blood samples
from type 1 diabetic and nondiabetic subjects (Fig. 1C).
Total lymphocyte numbers were found to be modestly re-
duced in type 1 diabetic subjects relative to control sub-
jects, although these numbers both fell within the normal
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TABLE 1
Characteristics of the type 1 diabetic subjects and nondiabetic
control groups from British Columbia’s Children’s Hospital are
presented

Type 1 diabetic Nondiabetic
subjects control subjects
n 116 145
Female/male subjects 49/67 90/55
Mean age (years) 9.3 £ 45 10.7 = 4.0
Mean age of onset (years) 89 42 N/A
Mean duration of type 1
diabetes (years) 1.4 + 0.5 N/A
Mean A1C (%) 7.8 + 1.2 N/A

Data are means = SD. All type 1 diabetic subjects were being treated
with insulin and did not show evidence of other autoimmune dis-
eases. Age-matched subjects with no autoimmune or metabolic dis-
eases were used as nondiabetic control subjects.

range for age at our institution (type 1 diabetic subjects:
2.21 #+ 0.74 X 10”/L, n = 11 vs. control subjects: 2.96 + 0.74 X
10°/L, n = 10; P < 0.02), and absolute NK cell numbers per
blood volume were decreased approximately twofold in
type 1 diabetic subjects relative to control subjects (type 1
diabetic subjects: 0.92 + 0.37 X 10%L vs. control subjects:
1.94 + 0.86 X 10%L; P < 0.0001).

The critical roles of the cytokines IL-2 and IL-15 in NK
cell homeostasis (32,33) led us to hypothesize that a lack
of responsiveness by type 1 diabetic NK cells to IL-2 and
IL-15 could underlie their decreased representation. To
address this question, purified NK cells from type 1 di-
abetic and age-matched control subjects were labeled with
the mitotic tracker carboxyfluorescein succinimidyl ester
(CFSE), as described previously (34), and cultured in vitro
either in media alone or with addition of II-2 and IL-15
(Fig. 2A). After 1 week, measurements of cellular pro-
liferation indicated that very few type 1 diabetic NK cells
had proliferated. In contrast, significant numbers of con-
trol NK cells had undergone one or more cell divisions.
The vast majority of NK cells, whether type 1 diabetic or
control derived, failed to proliferate in the absence of ex-
ogenous cytokines, demonstrating that cell division was
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dependent upon cytokine stimulation (data not shown). To
determine whether the lack of proliferation by type 1 di-
abetic NK cells was associated with a decreased cellular
recovery, equivalent numbers of control and type 1 di-
abetic NK cells were placed into culture with IL-2 and IL-15
(Fig. 2B). One week later, cell counts of cultures revealed
that the yield from wells containing type 1 diabetic NK
cells was decreased twofold relative to the control group.
These findings indicate that reduced frequencies of NK
cells in type 1 diabetic subjects are correlated with poor
responsiveness to IL-2 and IL-15.

To address whether poor IL-2/IL-15 responsiveness by
type 1 diabetic NK cells is a result of insufficient cytokine
receptor expression, we compared levels of IL-2 and IL-15
receptor subunits (Fig. 2C). Flow cytometric analyses
revealed that type 1 diabetic NK cells expressed modestly
reduced levels, as determined by comparison of mean
fluorescence intensity (MFI) values, of IL-2RB/IL-156R(
(CD122) and IL-2Rvy/IL-15Ry (CD132 or common-y chain)
relative to control (CD122: type 1 diabetic = 65.3 £ 5.8 vs.
control = 75.2 + 12.5; CD132: type 1 diabetic = 26.1 + 5.9
vs. control = 29.8 + 2.7). CD122 and CD132 interact with
CD25 to form the high-affinity IL-2 receptor, whereas these
two subunits are thought to bind IL-15 through trans-
presentation by IL-156Ra chain on an accessory cell (35).
Regardless of the NK cell origin, we were unable to detect
significant expression of either of the unique subunits of
these two cytokine receptors, IL-2Ra (CD25) and IL-15R«
(data not shown). These results indicate that the hypo-
responsiveness of type 1 diabetic NK cells to IL-2/IL-15
stimulation is not a result of a lack of cytokine receptor
expression.

Activated type 1 diabetic NK cells fail to downregulate
the NKG2D ligands, MICA/B. To investigate the surface
phenotype of type 1 diabetic NK cells and potential causes
of their dysfunction, we analyzed the expression of differ-
ent NK cell markers on cells directly ex vivo and after
in vitro activation with IL-2/IL-15 (Fig. 3A). Type 1 diabetic
NK cells were found to express normal levels of 2B4, CD94,
LAIR, and NKB-1 directly ex vivo, as judged by percent-
positive and MFI values (Fig. 3A and data not shown, re-
spectively). Type 1 diabetic and control NK cells induced
the expression of the C-type lectin CD94 and extinguished
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FIG. 1. NK cells from PBMCs of type 1 diabetic (T1D) subjects are present at reduced cell frequencies and numbers. A: Flow cytometric analyses of
nondiabetic control (Ctl) and type 1 diabetic PBMCs using Abs against CD3 and CD56 markers. B: The frequencies of NK cells (Ctl: n = 36; T1D: n =
22) and other lymphocyte subsets (Ctl: n = 11; T1D: n = 14) among PBMCs obtained from type 1 diabetic subjects (ll) and age-matched, non-
diabetic control subjects ([J) were determined by flow cytometry: NK cells (CD3~CD56"), B-cells (CD3-CD19"), T-cells (CD3*CD197), CD4
T-cells (CD4*CD197), CD8 T-cells (CD8*CD197), and NK T-cells (CD3*CD56*). C: Type 1 diabetic subjects possess fewer NK cells than normal
control subjects. Complete blood-cell counts were used to determine the NK cell numbers present per liter of blood. ***P < 0.0005. Error bars
represent the SD.
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FIG. 2. Type 1 diabetic NK cells are poorly responsive to IL-2/IL-15 stimulation. A: One million NK cells from type 1 diabetic subjects (T1D; n = 8)
and age-matched control subjects (Ctl; n = 4) were cultured for 1 week with rIL-2 and rIL-15 and were subsequently counted. B: Purified NK cells
from the peripheral blood of type 1 diabetic subjects (ll, n = 8) and age-matched control subjects ([], n = 4) were labeled with CFSE and cultured
for 1 week with rIL-2 and rIL-15. Representative (histograms) and cumulative data (bar graphs) are shown for the cell-division history of cultured
NK cell populations. *P < 0.05. C: Expression of IL-2RB/IL-15Rp (CD122) and the common-y chain receptor (CD132) on NK cells was determined
directly ex vivo by flow cytometry. Cumulative data were plotted out as MFI values. Error bars represent the SD.

the signaling lymphocyte activation molecule family re-
ceptor, 2B4. Next, we assessed levels of NKG2D ligands on
the surface of control and type 1 diabetic NK cells because
previous experiments in diabetic NOD mice attributed their
altered expression to NK cell dysfunction (27). Resting NK
cells have been reported to express a MICA and MICB
message (http://biogps.gnf.org) and MICA protein (36). Us-
ing a specific monoclonal Ab anti-MICA/B Ab (clone 6D4)
for detection, we also detected MICA/B expression on
control and type 1 diabetic NK cells directly ex vivo (Fig.
3B and (). However, upon activation in vitro, MICA/B
levels on control NK cells were almost completely lost,
whereas type 1 diabetic NK cells maintained strong MICA/B
expression (control = 4.8 = 0.3 MFI; type 1 diabetic
30.3 = 7.6 MFT; 6.3-fold change in MFI). Experiments per-
formed with monoclonal anti-MICA Ab corroborated these
conclusions (Ab clone 159227; data not shown). Despite
retaining high MICA/B levels, activated type 1 diabetic NK
cells expressed NKG2D levels that were comparable to
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control NK cells (Fig. 3B and C). Together, these experi-
ments reveal that type 1 diabetic NK cells exhibit dysreg-
ulated MICA/B but normal CD94 and 2B4 expression upon
stimulation with IL-2/IL-15.

Type 1 diabetic LAK cells exhibit reduced cytotoxicity,
IFN-y secretion, and NKG2D function. To evaluate their
effector function, purified type 1 diabetic and control NK
cells were expanded with IL-2 to generate LAKs and were
assessed for their ability to lyse either HLA-negative, NK
cell-sensitive K562, or NK cell-resistant LAK-sensitive
Raji targets using standard °'Cr-release assays (Fig. 44).
Type 1 diabetic LAK cells were found to be at least two-
fold less efficient killers of K562 cells on a per-cell basis
than control LAKs (type 1 diabetic LAK = 70.4 = 3.0% kill
at 10:1 effector:target [E:T] ratio kill vs. control LAK =
80.4 £ 2.6 kill at 5:1 E:T ratio). In addition, a similar deficit
in type 1 diabetic LAK cytotoxicity also was observed
against Raji targets (type 1 diabetic LAK = 78.6 = 1.8% kill
at 10:1 E:T ratio kill vs. control LAK = 80.5 * 5.7 kill at 5:1

diabetes.diabetesjournals.org
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FIG. 3. Type 1 diabetic NK cells fail to downregulate the NKG2D ligands MICA/B upon activation. A: Surface marker analyses were performed on
type 1 diabetic (T1D; n = 10) and age-matched control (Ctl; n = 10) NK cells either directly ex vivo (NK) or after 1 week of in vitro activation with
IL-2/IL-15 (LAK). NK cells were pretreated with anti-CD16 Ab to block nonspecific FcR binding and were subsequently stained with Abs recog-
nizing MICA/B, NKG2D, 2B4, CD94, LAIR, NKB-1, NKp46m or CD16, electronically gated on CD56*CD3~ cells and the percent positive for the
indicated marker determined. B: Representative histograms illustrate staining with anti-NKG2D (IgG1) or anti-MICA/B (IgG2a) Abs, both directly
conjugated with phycoerythrin (PE), on freshly isolated (NK) and 1-week-activated NK cells (LAK) from the peripheral blood of type 1 diabetic
and age-matched control subjects. Shaded histograms represent staining with isotype-control Abs (IgG1 or IgG2a) bound to PE and include rel-
evant antibodies from other channels to account for fluorescence spillover. C: Cumulative data comparing NKG2D and MICA/B expression, as net
MFI values (MFI of specific Ab-stained cells minus MFI of isotype control Ab-stained cells), on type 1 diabetic (n = 10) and age-matched control

(n = 10) NK cells directly ex vivo and 1 week after activation with IL-2/IL-15. *P < 0.05; ***P < 0.0001. Error bars represent the SD.

E:T ratio). Next, we assessed the ability of control and
type 1 diabetic LAK cells to produce IFN-y upon exposure
to target cells (Fig. 4B). Control or type 1 diabetic LAK
cells were incubated with either K562 or Raji cells for 24 h
and IFN-y cellular secretion enumerated by ELISpot
assays. Similar to the cytotoxicity results, type 1 diabetic
LAK cells demonstrated a twofold-decreased capacity to
produce IFN-y when stimulated with K562 targets (type 1
diabetic LAK = 220 = 13 spots at 10:1 E:T ratio vs. control
LAK = 210 = 29 spots at 5:1 E:T ratio). Likewise, type 1
diabetic LAK cells also displayed marked reductions in
IFN-y secretion relative to control subjects when treated
with either 10:1 (220 * 12 vs. 320 = 18) or 5:1 (140 = 10 vs.
190 = 4) ratios of Raji stimulators. Together, these findings
demonstrate that LAK cells derived from type 1 diabetic
subjects display reduced effector function compared with
those derived from nondiabetic control subjects.

diabetes.diabetesjournals.org

Previous work in NOD mice has suggested that the ex-
pression of NKG2D ligands on activated NK cells affects
NKG2D signaling and results in decreased NKG2D-
dependent cytotoxicity and cytokine production (27). Be-
cause activated type 1 diabetic NK cells possess unusually
high levels of NKG2D ligands, we sought to examine
whether these cells also exhibited defects in NKG2D
function (Fig. 4C). To address this question, type 1 diabetic
and control LAK cells were treated with either anti-NKG2D
Abs or control murine Abs for 20 min, washed, and sub-
sequently incubated with ®*'Cr-labeled Daudi targets, a cell
line known both to express NKG2D ligands and to be
sensitive to NKG2D-mediated killing (37,38). Stimulation
of control LAK cells with anti-NKG2D Abs resulted in
markedly improved killing of targets versus control murine
Abs (70.1 = 2.8% vs. 884 = 1.7%; 26.1% increase; P <
0.0005), whereas type 1 diabetic LAK cells were unaffected
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FIG. 4. Type 1 diabetic LAK cells exhibit reduced cytotoxicity, IFN-y secretion, and NKG2D function. LAK cells were generated by treating purified
NK cells with rIL-2/rIL-15 and were tested for effector function. A: The cytotoxicity of LAK cells from type 1 diabetic subjects (T1D; r = 8) and age-
matched control subjects (Ctl; n = 14) was assessed using standard chromium-release assays with either K562 or Raji cell lines as targets and
indicated numbers of E:T ratios. B: The capacity of type 1 diabetic (n = 8) and age-matched control (n = 14) LAK cells to produce IFN-y following
stimulation with K562 or Raji cells was measured with ELISpot assays, using the indicated E:T ratios. C: Type 1 diabetic (n = 6) and control LAK
cells (n = 6) were cultured with 51Cr-labeled Daudi target cells at a 5:1 E:T ratio, and cytolytic activity was assessed at the end of 4 h. Data are
presented in both dot graph (i, control Ig; A, NKG2D) and bar graph ([, control; [ll, type 1 diabetic) format. D: Type 1 diabetic (n = 6) and control
(n = 6) LAK cells were treated with Daudi stimulators, and IFN-y production was measured by an ELISpot assay. Data are presented in the same

fashion as in C (dot graph and bar graph format). *P < 0.05; **P < 0.01; ***P < 0.0005. Error bars represent the SD.

by treatment (64.5 = 5.1% vs. 59.0 £ 7.4%; 8.2% increase;
P = 0.39). Using ELISpot assays, we also assessed the ef-
fect of anti-NKG2D Ab treatment on the ability of non-
diabetic control and type 1 diabetic LAK cells to secrete
IFN-vy after incubation with Daudi stimulators (Fig. 4D). As
with the cytotoxicity results, anti-NKG2D Ab stimulation
had a more profound and significant effect on IFN-y pro-
duction by control LAK cells (183 = 19 vs. 241 * 19 spots;
31.7% increase; P = 0.031). In comparison, type 1 diabetic
LAK cells treated with anti-NKG2D Abs displayed an in-
significant rise (96 = 8 vs. 116 = 12; 20.8% increase; P =
0.096). These results suggest that a defect in the NKG2D-
dependent activation pathway of type 1 diabetic NK
cells may be responsible for their diminished effector
functions.
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Type 1 diabetic LAK cells exhibit defective NKG2D
signaling. NKG2D-mediated effector functions are trig-
gered through its association with the transmembrane
adaptor molecule DAP10 (26,39). Coupling of NKG2D to
DAP10 leads to formation of a multimolecular signaling
complex and the activation of multiple downstream signal-
ing cascades, including the PISBK-AKT pathway (summarized
in Fig. 5A), which is critically involved in effector function,
cell growth, and cell survival (39,40). To investigate whether
NKG2D signaling is altered in type 1 diabetic subjects,
we first measured PI3K association with NKG2D-DAP10
complexes in control and type 1 diabetic LAK cells after
treatment with either anti-NKG2D Abs or control murine
Abs (Fig. 5B and C). After Ab stimulation, NKG2D-DAP10
complexes were pulled down by immunoprecipitation and
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probed with either anti-NKG2D or anti-p85 subunit of PISK
Abs. Strikingly, NKG2D stimulation resulted in the efficient
association of PISK with NKG2D-DAP10 complexes in LAK
cells from three nondiabetic control subjects but not from
type 1 diabetic subjects. To measure the activation status
of PI3K and the downstream-acting serine/threonine kinase
AKT, we next used reversephase protein lysate micro-
arrays to measure their phosphorylation with phospho-

expanded from six type 1 diabetic subjects, and six
nondiabetic control subjects were serum-starved for 4 h
then stimulated with anti-NKG2D Abs over a time course
of 5 min and their lysates probed with two P-AKT(5473)—,
one P-AKT(T308)—, and one P-PI3K p85(Y458)-specific Abs
(Fig. 5D). The use of two separate Ab clones, both rec-
ognizing P-AKT(5473), allowed us to assess the internal
reproducibility of the assay. Robust phosphorylation of

(P)-specific Abs, as previously described (30). NK cells PI3K and AKT was detected in all six control samples
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FIG. 5. Type 1 diabetic LAK cells exhibit defective NKG2D signaling. A: DAP10 phosphorylation at its “YINM” motif (blue box) results in the
activation of the PI3K pathway. B: Type 1 diabetic (T1D; n = 3; C052, C053, and C068) and control (Ctl; n = 3; D068, D069, and D088) LAK cells
were stimulated with either anti-NKG2D Ab or murine IgG for 15 min. NKG2D was pulled down with anti-NKG2D Abs and blotted with either anti-
NKG2D or anti-PISK Abs. C: Densitometric measurements are presented on NKG2D and PI3K band intensities and ratios of cumulative means *+
SD. *P < 0.05. D: Purified NK cells from nondiabetic control subjects (C; n = 6) and type 1 diabetic subjects (D; n = 6) were stimulated with anti-
NKG2D Abs for a time course. Reverse-phase protein lysate microarrays were used to detect phosphorylation of p85 PISK and AKT. Results are
expressed as log base 2 MFI ratio values and presented as heatmaps of phosphorylation changes over time, with yellow reflecting an increase, blue
reflecting a decrease compared with baseline time zero, and black representing no change. E: Cumulative data from control and type 1 diabetic
samples in D. *P < 0.05; **P < 0.01; ***P < 0.005. Error bars represent the SD.
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over the sampled times. By contrast, five of six type 1
diabetic samples showed no evidence of stimulation-
induced phosphorylation and three of six in this group
exhibited stimulation-induced dephosphorylation. The
cumulative mean phosphorylation by type 1 diabetic NK
cells was significantly decreased relative to control sam-
ples at both 1 and 5 min after anti-NKG2D stimulation
(Fig. bE). Together, these findings suggest that impaired
effector functions by type 1 diabetic LAK cells may be a
consequence of aberrant signaling through the NKG2D
receptor.

DISCUSSION

Our analysis of PBMCs from type 1 diabetic subjects
revealed that NK cell frequency (CD3 CD56") was de-
creased ~37% relative to age-matched nondiabetic control
subjects (Fig. 1). Rodacki et al. (41) also have reported
that NK cell frequencies were reduced in type 1 diabetic
subjects, although in their study, the reduced frequencies
were present in recent-onset (<1 month) but not in long-
standing (>1 year; mean 10 years postdiagnosis) type 1
diabetic subjects. It is not clear why those data differ from
our findings. Our observation that decreased NK cell fre-
quencies in PBMCs from type 1 diabetic subjects were
associated with impaired responsiveness to IL-2/IL-15
stimulation suggests that cell-intrinsic mechanisms may be
responsible for their reduced frequencies (Fig. 2). Horng
et al. (42) have proposed that murine NK cell homeostasis
and NKG2D function are coregulated through the coupling
of NKG2D and IL-15 receptors, suggesting that a common
pathway may be responsible for defects in both cytokine
responsiveness and NKG2D function exhibited by type 1
diabetic NK cells. Consistent with these findings, NKG2D-
deficient mice possess perturbations to NK cell numbers,
NK cell apoptosis, and NK cell proliferation, implying that
NKG2D plays a critical role in the regulation of NK cell
homeostasis (43).

The decreased responsiveness to IL-2/IL-15 led us to
compare markers of NK cell activation and differentiation
between type 1 diabetic and nondiabetic control NK cells
directly ex vivo and after cytokine stimulation (Fig. 3). Of
the NK cell markers assessed, the only difference seen
between type 1 diabetic and control NK cells was in the
failure of type 1 diabetic NK cell to downmodulate ex-
pression of the NKG2D ligands MICA/B. However, despite
aberrant maintenance of MICA/B expression on activated
type 1 diabetic NK cells, we did not see signs of NKG2D
receptor downmodulation, a PI3K-dependent phenomenon
seen in NOD NK cells (27). The finding that surface levels
of NKG2D on type 1 diabetic NK cells continued to match
closely those of nondiabetic control NK cells suggested
that impaired NKG2D function by type 1 diabetic NK cells
was a consequence of downstream (intracellular) signaling
rather than insufficient receptor expression (Fig. 3). Con-
sistent with this interpretation and with the diminished
NKG2D-mediated effector function observed (Fig. 4C and
D), type 1 diabetic NK cells were found to possess an in-
tracellular signal transduction defect proximal to the
NKG2D receptor affecting the PISK-AKT pathway (Fig. 5).
Additional examination of NKG2D signal transduction in
type 1 diabetic NK cells, including the Grb2/Vav1l pathway,
is being pursued.

NK cells share an increasing number of traits with the
adaptive immune system, including the formation of self-
tolerance and the generation of long-lived memory cells,
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despite their exclusive use of germline-encoded antigen
receptors (44,45). Continuous exposure of NK cells to
ligands recognizing their activating receptors has been
shown to result in NK cell tolerance and, therefore, argues
that regulatory mechanisms exist to limit their autoim-
mune potential (46,47). Moreover, these experiments sug-
gest that the expression of NKG2D ligands on activated
type 1 diabetic NK cells could result in their chronic
stimulation through the NKG2D receptor, inducing NK cell
hyporesponsiveness. Notably, ectopic expression of the
murine NKG2D ligand Rae-1¢ in the epithelium of mice has
been shown to result in NKG2D downregulation and de-
fective NK cell cytotoxicity (48). Our findings of dysregu-
lated NKG2D ligand expression on type 1 diabetic NK cells
are reminiscent of a previous report (27) describing the
expression of NKG2D ligands on activated NK cells from
diabetes-prone NOD, but not diabetes-resistant C57BL/6,
mice. In NOD mice, it has been postulated that the ex-
pression of NKG2D ligands by activated NK cells results
in chronic NKG2D stimulation, NKG2D downmodulation
through PI3K-dependent ligand-induced internalization,
and, eventually, desensitization (27). As a consequence of
the aforementioned study, as well as our own, we hy-
pothesize that chronic exposure to NKG2D ligands, either
on the same cell (¢is) or on an adjacent NK cell (trans),
may result in prolonged signaling and eventually lead to
NK cell dysfunction.

Given their propensity to produce IFN-y and kill other
cells, NK cells may influence the development of autoim-
mune diseases through direct tissue destruction or in-
directly via the regulation of adaptive immune responses
or the modification of antigen-presenting cells (49). Ex-
amples of NK cells playing a causative role in disease exist
(5); for instance, NK cells have also been suggested to
mediate a protective function in subjects with multiple
sclerosis and their depletion in rodent models of experi-
mental autoimmune encephalomyelitis exacerbates auto-
immunity (50,561). In addition, low NK cell activity has
been observed in other autoimmune settings, including
systemic lupus erythematosus (SLE) subjects and the Ipr
murine model of SLE. Adoptive transfer of NK1.1* cells
into Ipr mice has been found to slow down the lupus-like
disease process (52-54). With respect to type 1 diabetes,
we have previously shown that enhancement of NK cell
function through CFA treatment, resulting in improved
NKG2D receptor levels and decreased NKG2D ligand ex-
pression, reduces autoreactive CTL numbers and protects
NOD mice from disease (28,29). The data above indicate
that NK cells in type 1 diabetic subjects are defective in
number, signaling, and function and suggest that augmen-
tation of NK cell function may prove valuable as an immune-
modifying therapy for type 1 diabetes or other autoimmune
diseases.
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