














Figure 6. Enhancement of rRNA synthesis by co-expression of TIF-IA with Ebp1. (A) Effects of Ebp1 depletion on rRNA synthesis in T cells. Cultured T cells were

transfected with SCR or siEbp1 (20 nM) for 36 hours. 59ETS pre-rRNA levels and RNA labeling (left) and ChIP assay with Pol I antibody and western blot (right). (B) Effects of

Ebp1 depletion on TIF-IA localization; 293T cells were transfected with SCR or siEbp1 (20 nM) for 36 hours. Cells were co-stained with anti–TIF-IA and anti-UBF antibodies

(left). rDNA was labeled with a rDNA probe as described in “Methods.” Fluorescence intensity was measured along the line through 3D pictures on the left (right). (C) Effects of

Ebp1 depletion on TIF-IA binding with Pol I in primary T cells. Cells were transfected with SCR or siEbp1 (20 nM) for 36 hours. Nucleoli were isolated (see “Methods”) and

nucleolar or whole cell lysates were immunoblotted for TIF-IA, Ebp1, and NPM1 (left), whereas cell lysate was incubated with anti–TIF-IA and the precipitate immunoblotted

with anti-Pol I antibody (right). (D) Effects of co-overexpression of TIF-IA and Ebp1 on rRNA synthesis. Jurkat T cells were co-transfected with GFP-Ebp1 and vector control or

Myc–TIF-IA for 24 hours. 59ETS pre-rRNA and RNA labeling (left) and Pol I binding by ChIP assay and western blot (right). (E) Effects of TIF-IA depletion on Ebp1-enhanced

rRNA synthesis. Jurkat T cells were co-transfected with GFP-Ebp1 and SCR or siTIF-IA (20 nM) for 36 hours. 59ETS pre-rRNA and RNA labeling (left) and Pol I binding and

western blot (right). (F) Effects of Ebp1 depletion on rRNA synthesis and Pol I binding to rDNA in MEF cells. RNA and protein were extracted from MEF–Ebp11 /1 or

MEF–Ebp12 /2 cells. 59ETS pre-rRNA levels and RNA labeling (left), ChIP assay with Pol I antibody (middle), and TIF-IA was immunoprecipitated and western blot probed with

anti-Pol I antibody (right). (G) Comparison of effects of TIF-IA overexpression in MEF–Ebp11 /1 and MEF–Ebp12 /2 cells. Cells were transfected with vector control or TIF-IA

for 24 hours. 59ETS pre-rRNA levels and RNA labeling (left) and ChIP assay and western blot (right). (H) Effects of co-overexpression of Ebp1 and TIF-IA in MEF–Ebp12 /2

cells. Cells were transfected with TIF-IA alone or co-transfected with TIF-IA and Ebp1 for 24 hours. 59ETS pre-rRNA levels and RNA labeling (left) and ChIP assay and

western blot (right).
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as a potential immunosuppressive agent that targets both classical
(a, b) and novel (d, e, h, u) PKC isoforms, and inhibits CD3/CD28
antibody- and alloantigen-induced T-cell proliferative responses in

vitro.53 Phase 2 clinical trials have shown that sotrastaurin has
efficacy in psoriasis and in renal transplantation.54,55 Based on our
results, we postulate that the efficacy of sotrastaurin relates, at least in

Figure 7. Additive effects of MPA and sotrastaurin in inhibiting T-cell activation. (A) Effects of Ebp1 mutated to alanine at the S360 phosphorylation site on the

regulation of rRNA synthesis. Interaction of TIF-IA with Ebp1–WT, Ebp1–S360A, and Ebp1–S360D. Jurkat T cells were co-transfected with the indicated constructs of

GFP–Ebp1 and Myc–TIF-IA. Lysates were incubated with anti-Myc antibody and the precipitate immunoblotted with anti-GFP antibody (left). (Middle and right) Jurkat T cells

were transfected with indicated constructs of Ebp1. 59ETS pre-rRNA and RNA labeling (middle) and Pol I binding (right). (B) Effect of S360A–Ebp1 and S360D–Ebp1

expression on TIF-IA nucleolar localization. Jurkat T cells were transfected with WT–Ebp1, or S360A- and S360D-mutated Ebp1 constructs for 24 hours. Nucleoli were

isolated and western blots were performed on nucleolar or whole cell lysate with the antibodies indicated. (C) Effects of PKCd depletion on rRNA synthesis in T cells. Cells

were transfected with SCR or siPKCd (50 nM) for 36 hours. 59ETS pre-rRNA levels (left), Pol I binding (middle), and PKCd expression by western blot (right). (D) Effects of

sotrastaurin on rRNA levels in T cells. The cells were treated with DMSO or sotrastaurin (100 nM) for 3 hours. 59ETS pre-rRNA and RNA labeling (left) and Pol I binding assay

(right). (E) Effects of combined treatment with MPA and sotrastaurin on rRNA synthesis, PCNA mRNA levels, and proliferation in T cells. Cultured T cells were treated with

DMSO, MPA (100 nM), sotrastaurin (100 nM), or both for 24 hours. 59ETS pre-rRNA levels (far left), PCNA mRNA level (near left), MTS assay (near right), and western blot

(far right). (F) Effects of combined treatment with MPA and sotrastaurin on rRNA synthesis and proliferation with overexpression of TIF-IA and Ebp1. Jurkat T cells were co-

transfected with Ebp1 and TIF-IA for 24 hours and then treated as shown. 59ETS pre-rRNA levels (far left), PCNA mRNA level (near left), MTS and colony forming assay (near

right), and western blot (far right). (G) Inhibition of IL-2 secretion by T cells with depletion of Ebp1 and TIF-IA (left) or with treatment with MPA and sotrastaurin (right). Cells

were co-transfected with Ebp1 or TIF-IA siRNA (left) or treated with indicated drugs for 24 hours (right). IL-2 levels were measured by enzyme-linked immunosorbent assay.

The samples were run in triplicate. (H) Schematic model of the effects of TIF-IA and Ebp1 and of MPA and sotrastaurin on the regulation of rRNA synthesis during T-cell

activation.
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part, to the inhibition of rRNA synthesis in T cells by dissociating
Ebp1 from TIF-IA. As a consequence of the phosphorylation of
Ebp1 at S360 by PKCd, Ebp1 interacts with Akt in neuronal cells27

and binds more strongly to nucleophosmin.28 Although sotrastaurin
is a pan-PKC inhibitor and may have effects within the cell that
extend beyond the Ebp1–TIF-IA interaction, the fact that the S360D
mutant largely abrogates the ability of sotrastaurin to inhibit rRNA
synthesis supports specificity for S360 phosphorylation as the pri-
mary mechanism by which the drug is having its effect. We con-
clude that the Ebp1–TIF-IA interaction is also dependent on S360
phosphorylation.

Over the past 2 decades, the success of various forms of trans-
plantation has been tightly linked to the development of new ap-
proaches to immunosuppression.56,57 Recent advances frequently
require the combination of several agents with complementary
mechanisms of action. The finding that the combination ofMPA and
sotrastaurin has additive effects in inhibiting both rRNA synthesis
and T-cell activation while simultaneously decreasing PCNA ex-
pression (Figure 7H) suggests that this combination might have
enhanced clinical efficacy over MMP alone for autoimmune and
other disorders that result from T lymphocyte activation.
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