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Abstract | Rheumatologists see patients with a range of autoimmune diseases. Phenotyping these diseases for 
diagnosis, prognosis and selection of therapies is an ever increasing problem. Advances in multiplexed assay 
technology at the gene, protein, and cellular level have enabled the identification of ‘actionable biomarkers’; 
that is, biological metrics that can inform clinical practice. Not only will such biomarkers yield insight into the 
development, remission, and exacerbation of a disease, they will undoubtedly improve diagnostic sensitivity 
and accuracy of classification, and ultimately guide treatment. This Review provides an introduction to these 
powerful technologies that could promote the identification of actionable biomarkers, including mass cytometry, 
protein arrays, and immunoglobulin and T‑cell receptor high-throughput sequencing. In our opinion, these 
technologies should become part of routine clinical practice for the management of autoimmune diseases. The 
use of analytical tools to deconvolve the data obtained from use of these technologies is also presented here. 
These analyses are revealing a more comprehensive and interconnected view of the immune system than ever 
before and should have an important role in directing future treatment approaches for autoimmune diseases.

Maecker, H. T. et al. Nat. Rev. Rheumatol. 8, 317–328 (2012); doi:10.1038/nrrheum.2012.66

Introduction
Biomarkers—biological characteristics that can be 
objectively evaluated as indicators of a biological or 
pathological state—are being sought for many diseases. 
Biomarkers have the potential to transform our basic 
understanding and clinical management of a wide range 
of human illnesses. We have coined the term ‘actionable 
biomarkers’ to describe biomarkers that can inform clini-
cal practice—that is, biomarkers upon which clinicians 
can act (Figure 1).

Actionable biomarkers are already used in the clinical 
management of certain diseases, most notably cancer. A 
prime example is the BCR–ABL1 fusion gene of t(9;22) 
chromosomal translocations, which, in the correct clini-
cal context, can be used to identify patients with chronic 
myelogenous leukaemia who are likely to respond to 
therapy with drugs that target the activity of the tyrosine 
protein kinase ABL1.1 Likewise, overexpression of the 
receptor tyrosine-protein kinase erbB2 (also known as 
HER2) characterizes the subset of patients with breast 
cancer who are likely to respond to treatment with a 
monoclonal antibody that targets the erbB2 receptor.2 
These two success stories illustrate how molecular charac
teristics that are linked to disease pathogenesis, rather 
than clinical characteristics (which are generally a disease 
epiphenomenon), are most likely to serve as actionable 

biomarkers. In these examples a single biomarker suffices; 
in other cases, however, a panel of multiple biomarkers is 
more useful as it can yield a more comprehensive picture 
(termed a molecular signature) of a disease and its sub-
types.3–6 In fact, in rheumatic diseases, only profiling 
using multiple biomarkers has so far proven useful.

One potential use for actionable biomarkers is in diag-
nosing disease. First, by casting a wide net, combinations 
of biomarkers might be identified that improve both the 
sensitivity and specificity of disease detection and clas-
sification. Second, by revealing a molecular signature 
of disease before the onset of definitive, characteristic 
symptoms, biomarkers might enable earlier diagnosis 
and therefore earlier institution of therapeutic, or even 
preventive, interventions. For example, biomarkers that 
can distinguish individuals with early-stage rheuma-
toid arthritis (RA) from patients with undifferentiated 
arthritis—or better yet from asymptomatic individuals 
who are genetically predisposed to develop RA—would 
be invaluable as evidence suggests that early intervention 
with existing drugs could prevent RA progression.7 

As illustrated earlier, a potential use for actionable 
biomarkers is in predicting how an individual’s disease 
will develop. As all known rheumatic diseases are hetero
geneous, they do not manifest identically in all patients, 
nor do all patients respond to treatment in the same way. 
For example, RA ranges from mild and self-limiting to 
severe and progressive. In our opinion, stratification into 
subtypes is important for the clinical management of a 
disease and we propose that actionable biomarkers could 
aid this subtyping. Stratification of disease could help 
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clinicians determine whether an individual’s condition is 
likely to progress, and therefore whether aggressive inter-
vention is needed, as well as select and establish an effec-
tive treatment strategy. For example, less than two-thirds 
of all individuals with RA have an adequate response to 
anti-TNF therapy.8 Using appropriate biomarkers might 
enable identification of non-responders before TNF-
inhibitor therapy is initiated, thereby lowering costs and 
preventing unwanted complications associated with 
a therapy that was not going to be effective. Emerging 
reports of autoantibody profiles that can predict disease 
progression in so-called incomplete lupus,9 predict which 
patients will develop RA,10 or predict which patients 
with RA will respond to anti-TNF therapy,11 suggest that 
biomarker-based predictive tests will become as much 
a mainstay in the management of rheumatic diseases as 
they currently are in cancer.

Actionable biomarkers can also be used to monitor a 
patient’s response to specific therapies. Such pharmaco
dynamic biomarkers can accelerate clinical trials by 
serving as early surrogate markers of the efficacy and 
safety of an investigational drug as well as guide clinicians 
as to when a given therapy should be initiated.

Systems immunology
The nascent field of systems immunology, a branch 
of systems biology, uses computational mathemati-
cal modelling to characterize the immune system and 
predict its response when a specific component is 
affected. New technological approaches that can gener-
ate vast multiplex datasets have enabled the development 
of this field. Indeed, more than 40,000 mRNA transcripts 
from the human genome can now be routinely measured 
in a single microarray (a technology that provides details 
on which genes are expressed in a tissue or cell of inter-
est). Multiplexed Luminex TM (Luminex Corporation, 
Austin, TX, USA) assays can quantitate 50 or more pro-
teins that are involved in inflammation (that is, cytokines 
and chemokines) in a single small sample of tissue or 
blood; protein arrays can measure many more. 

Additionally, new flow-cytometric methods are now 
available to simultaneously analyze the expression of 
30 or more surface and intracellular proteins in indivi
dual cells. This technology promotes the identification 
and enumeration of the various peripheral blood cells 
in addition to revealing, for instance, which signalling 
pathways are activated in the different cell types.

Key points

■■ Antigen arrays are valuable for profiling autoantibodies in diverse rheumatic 
autoimmune diseases and can be composed of most biomolecules including 
proteins, peptides, protein complexes, sugars, nucleic acids and lipids

■■ High-throughput DNA sequencing enables the tracking of disease-associated 
clones of T cells and B cells in autoimmune diseases; changes in populations 
of these cells can be correlated with therapeutic response

■■ The analysis of peripheral blood cells following cellular activation might be 
important in identifying clinically actionable biomarkers

■■ New technologies enable analysis of gene and protein expression in whole 
blood samples; deconvolution of datasets reveals which immune-cell subset 
underlies a change without isolating or manipulating the cells

A successful systems immunology study requires that 
the assays employed are as comprehensive as possible, 
and that they also possess sufficient resolution to distin-
guish the changes that accompany differential outcomes. 
Investigators of systems immunology are increasingly 
measuring a plethora of signals in response to an experi-
mental intervention, such as a vaccine.12 Complex signa-
tures emerging from such studies can act as biomarkers, 
and also provide clues to the mechanistic pathways 
that lead to specific outcomes, such as protection from 
disease. In addition, sufficient assay standardization and 
sample handling, including standardization of processing 
and storage protocols, are essential for a study to achieve 
reproducible results over time. This standardization is 
particularly important for studies in human immuno
logy, which often involve longitudinal sampling, col-
lection of specimens from multiple sites, and/or subject 
recruitment that can span multiple years. 

New approaches in systems immunology 
New immunological technologies provide novel types 
of highly multiplexed readouts, with the potential to 
measure the activation induced in vitro by a given 
intervention, as well as resting immune phenotypes of 
cells (Figure 1). For example, individual differences in 
activation-induced signalling, but not in resting expres-
sion levels of certain phosphoproteins, correlate with 
disease outcome in acute myeloid leukaemia.13 Therefore, 
measuring changes in activation-induced signalling in 
rheumatic autoimmune diseases, using a flow cytometry 
based technique, might lead to changes in the clinical 
management of these diseases.

Mass cytometry
Cytometry by time-of-flight (CyTOF) mass cytometry 
uses multiple antibodies, each tagged with multiple 
copies of an individual heavy metal ion, and measures 
their binding to cells by mass spectrometry.14 By contrast, 
fluorescence cytometry is used to measure the binding of 
antibodies tagged with a fluorophore. The advantage of 
mass cytometry is that many more antibodies can be used 
in combination to assay a single sample (such as whole 
blood or single-cell suspensions from tissues), without 
the inherent spillover between fluorescence spectra that is 
inherent in optical fluorescence systems.15 Such a system 
has already been used to quantitate differences in cellular 
constitution and drug responses of individual cells in a 
complex mixture of cells such as bone marrow.16 

In one of the authors’ laboratories, 36 different metal 
ions have been chelated to polymers that have then been 
conjugated to antibodies, DNA dyes, or other markers 
(H. T. Maecker, unpublished work). In most cases, the 
resolution and sensitivity of mass cytometry are compar
able to those of fluorescence flow cytometry, although 
generating a sufficiently sensitive reagent has so far not 
been possible for a few cellular markers. As experience 
with this approach increases, and with the availability of 
pre-made heavy metal ion–antibody conjugates for mass 
cytometry, this problem should be resolved. Moreover, as 
the number of mass cytometry systems in use increases, 
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Immune monitoring

mass cytometry is likely to become the preferred method 
for initial multi-parameter flow-cytometric analysis, 
especially as the cost per marker analyzed is similar to 
that of fluorescence systems.

Analyzing complex flow cytometry datasets 
A number of new analysis platforms such as HyperCyt® 
(IntelliCyt Corporation, 9620 San Mateo Blvd NE, 
Alberquerque, NM 87113, USA)17 and CyTOF16 are vastly 
increasing the sample throughput and number of inde-
pendent proteomic parameters that can be measured at 
the single cell level. The data collected in a single day, if 
reviewed by conventional methods, would require viewing 
many thousands of bivariate plots. This approach is not 
only inefficient, but also results in an incomplete under-
standing of the multidimensional relationships present 
in the underlying data. Effective automated gating and 
specialized tools for visualizing high-dimensional flow 
cytometry data are crucial areas of development. 

In 2009, two automated gating methods—flow analy-
sis with automated multivariate estimation (FLAME)18 
and density-based merging (DBM)19—were developed, 
both of which are highly promising but that use very 
different approaches (Figure 2). By contrast, spanning-
tree progression analysis of density-normalized events 
(SPADE),20 a tool developed for visualizing high-
complexity flow cytometry data, foregoes traditional 
gating and bivariate plots altogether.

Automated gating methods—FLAME and DBM
FLAME is based on the assumption that a sample 
of flow cytometry data can be modelled as a hetero
geneous mixture of populations of cells (known as clus-
ters) in which each cluster can be described by a skewed 
Student’s t distribution (skew-t distribution).18 The 
skew-t distribution better fits asymmetrical populations 

than traditional gating approaches that are based on 
Gaussian mixture modelling. FLAME is designed to 
create an optimal number of clusters by comparing the 
average scale-free intracluster distance with the average 
scale-free intercluster distance. If the optimal number 
of populations has been assigned, the average scale-free 
intracluster distance will be smaller than the average 
scale-free intercluster distance (Figure 2). 

FLAME seems to be effective when the populations can 
be distinguished by surface markers whose expression is 
binary. However, certain combinations of markers, such 
as those used in the study of cell cycle and differentiation, 
have staining patterns that are too irregular to be well-
approximated by the skew-t distribution. These combi-
nations include distributions with concave perimeters 
or distributions with ‘U’, ‘L’, or ‘S’ shapes. Fortunately, 
DBM uses the density contours of the data itself to define 
the gates for each population and is better-suited for 
irregularly shaped distributions than FLAME.19 DBM 
detects inflection points in the data, much as experi-
enced immunologists do when gating manually. Unlike 
FLAME, DBM becomes computationally inefficient 
beyond three dimensions. 

FLAME and DBM are marked advances in automated 
cell-population gating, which is of great importance for 
complex datasets that can require the gating of a large 
number of distinct cell populations across each biologi-
cal sample in the dataset. However, manually reviewing 
all of the automatically assigned gates to confirm that 
they have been properly applied can be time consuming. 

Visualizing flow cytometry data—SPADE
As an alternative to automated gating approaches that 
attempt to approximate manual gating, SPADE16,20 is a 
visualization tool that organizes clusters into a 2D tree 
representation on the basis of their similarities across all 

Figure 1 | Application of new immune-monitoring technologies to rheumatology. Samples for biomarker discovery can be 
generated during clinical research and actual clinical trials. For comprehensive immune monitoring, these samples are 
subjected to multiple assays at the proteomic and genomic level. Moreover, computational tools are applied to organize 
and better analyze the complex data sets that are generated, as well as to integrate heterogeneous data types. The end 
result should be the discovery of new actionable biomarkers, which aid disease diagnosis, prognosis, therapeutic targeting 
and contribute knowledge to the mechanism of action of a specific therapy. Abbreviations: CyTOF, cytometry by time of 
flight; FACS, fluorescence-activated cell sorting; SNP, single nucleotide poymorphism.
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markers selected by the user. By displaying clusters in a 
2D tree structure, and using size and colour to denote 
cell density and marker expression, SPADE enables 
users to rapidly review large, high-dimensional datasets 
(Figure 3). Importantly, the density-dependent down-
sampling and agglomerative clustering employed by 
SPADE can prevent rare cellular phenotypes from being 
‘drowned out’ by more highly represented cell types.21

One caveat of SPADE is that the user must specify the 
number of clusters to be found in the dataset, rather than 
have the number of clusters be driven by the data itself. 
In our experience, the user must specify that SPADE find 
a large number of clusters in order to ensure that rare cel-
lular phenotypes are represented in the ensuing SPADE 
trees. This requirement causes SPADE to overcluster the 
data. We think, therefore, that SPADE needs to imple-
ment a formal methodology for determining when a 
single cluster cannot be further subdivided on the basis 
of the data being analyzed. This methodology should, 
at a minimum, take into consideration the empirically 
determined resolution limit of the detection platform, 
whether it be CyTOF or conventional fluorescence-based 
flow cytometry. If all differences between cells in a cluster 
fall below this resolution limit, then no further division 
into subclusters would be permitted. In addition, SPADE 
should enable groups of files to be compared using the 
same tree structure (such as comparing patients with 
healthy controls in which the tree structure is defined 
by data from the healthy controls). Currently, groups of 
files can only be compared if all data files are submitted 
to the program at one time, and no group-level statistical 
comparisons are available.

Protein and peptide microarrays
Microscope-slide-based linear antigen arrays were devel-
oped over a decade ago and have proven particularly 

useful for studying antibody responses to a large panel 
of different antigens in autoimmune, rheumatologic, 
and allergic diseases.22 The initial methodology was 
simple and involved printing purified or recombinant 
peptides or proteins on glass microscope slides coated 
with materials such as poly‑L lysine, epoxy, and nitro
cellulose to enhance noncovalent binding of the printed 
target peptides to the slide surface.22–25 Printing was, 
and still is, usually performed using contact printing 
and standard robotic microarrayers, but has evolved 
to include delivery using piezoelectric arrays, among 
other methods. Array content for the characterization 
of autoantigens has also progressed to include arrays of 
proteins, peptides, carbohydrates, and even lipids.26–28

Many groups still construct their own custom micro
arrays for individual diseases and applications. Investi
gators who lack the instrumentation or expertise to set 
up an array facility can purchase commercially available 
large-scale arrays containing over 10,000 recombinant 
proteins.29,30 The majority of array methodologies employ 
fluorescence or chemiluminescence for detection; new 
technologies for detection include multiplexed surface 
plasmon resonance,31 Raman spectral measurement,32,33 
and magnetic particles on giant magnetoresistive 
sensors.34 If antigen array techniques are to alter the 
clinical practice of rheumatology, they will most likely do 
so in clinical laboratories or even at point-of-care using 
sophisticated sensors to read out the array data.

Rheumatology has several factors that make it par-
ticularly well-suited to the use of protein array technol-
ogy. First, many rheumatic diseases are characterized 
by the presence of serum autoantibodies that predate 
development of clinical disease. These proteins are 
useful for diagnosis and prognosis, and, as some of 
them can be directly pathogenic, offer important clues 
for understanding disease pathogenesis.35 Second, a large 
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Figure 2 | Alternative analysis approaches for high-complexity flow cytometry data. a | Example of a bivariate Gaussian 
distribution as used in Gaussian mixture modelling. b | Example of a bivariate skew‑t distribution as used in FLAME.  
c | Comparison of average intracluster distance and average intercluster distance. The average distance between events 
within the green gate (intracluster distance) is very large so it is likely to be composed of multiple distinct populations. The 
average distance between events within the red gate or within the blue gate (intracluster distance) is much smaller than 
the average distance between events in the red and blue gates (intercluster distance). d | Illustration of flow cytometry data 
showing normal human B cell development in bone marrow.95 Continuous distributions such as this poorly fit with Gaussian 
mixture modelling, FLAME, or DBM, but the phenotypic relationships are well-visualized by SPADE. Abbreviations: DBM, 
density-based merging; FLAME, flow analysis with automated multivariate estimation; SPADE, spanning-tree progression 
analysis of density-normalized events.
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number of rheumatic and other inflammatory diseases 
are thought to be autoimmune in nature, yet the target 
antigen(s) have yet to be identified. Third, autoantibody 
identification might prove useful for development of 
antigen-specific therapies36,37 or for selecting treatment 
modalities, such as belimumab or other biologic thera-
peutics, that are known to reduce levels of autoantibodies 
in treated patients.

New approaches in SLE 
Systemic lupus erythematosus (SLE) is a model auto
immune disease that has been extensively studied using 
multiplex assays. SLE is characterized by multisystem 
organ involvement and the production of high-titre, 
highly specific autoantibodies directed against mol-
ecules found in the nucleus (anti-nuclear antibodies).38 
SLE is an extremely heterogeneous disease and, as 
such, is poorly understood, has few good biomarkers, 

and had no approved therapeutics until 2011. A strik-
ing finding in SLE and SLE-related diseases, including 
dermatomyositis, polymyositis, and systemic sclerosis, 
is that a majority of prominent autoantigens exist as 
particles containing one or more polypeptides that are 
associated with nucleic acids, such as RNA and DNA.39 
Antigen arrays, whether spotted onto microscope slides 
or developed as bead-based arrays, have been used to 
simultaneously measure antibodies directed against all of 
the particles, individual polypeptides from the particles, 
and even linear epitopes modelled on each polypeptide, 
for both SLE and SLE-related diseases.22,40–43

Peripheral blood mononuclear cells (PBMCs) from a 
large subset of patients with SLE contain what has been 
referred to as an interferon biosignature.36,44 Several 
groups have demonstrated that mRNA transcript profiles 
from this SLE subset are highly similar to mRNA tran-
script profiles from PBMCs from healthy individuals that 
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Figure 3 | Example of a SPADE representation of CyTOF data from analysis of peripheral blood mononuclear cells from  
two healthy individuals. The SPADE algorithm was used to perform unsupervised clustering of cells according to their 
expression of 23 cell surface markers. The algorithm then arranged the clusters into a consensus ‘tree’ structure, to show 
which clusters are most related to one another. Annotation of major cell lineages was added manually, based on the 
observed expression of known lineage markers in each ‘branch’ of the tree. Cluster size is proportional to cell number in 
the sample analyzed. Colouring shows relative CD45RA staining intensity in each cluster. Note the difference in CD45RA 
expression on the surface of natural killer cells in the two different individuals (arrows). SPADE is thus a powerful way to 
visualize differences between samples, without the bias introduced by traditional flow cytometry gating and enables a much 
more defined subset analysis of cells. Abbreviations: CM, central memory; CyTOF, cytometry by time-of-flight; EM, effector 
memory; SPADE, spanning-tree progression analysis of density-normalized events.
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are exposed, in vitro, to type I interferons (IFN-α and 
IFN-β).44,45 This observation led to the hypothesis that 
defects in type I interferons and/or interferon-related 
signalling pathways could underlie the disease a large 
subset of patients who develop SLE, and could lead to 
therapies targeting this pathway.46,47

Multiplexed protein measurements have now been 
used to broadly characterize serum analytes; patients 
with SLE who possess the interferon biosignature were 
identified as part of the Autoimmune Biomarkers 
Collaborative Network,44 to test the hypothesis that, just 
as interferon-inducible transcript profiles in PBMCs 
are strongly associated with SLE, interferon-inducible 
serum cytokine and chemokine expression can be found 
in blood from patients with SLE. Bauer et al.48 used a 
method called rolling circle amplification to compare 
protein levels of a panel of 160 cytokines, chemokines, 
growth factors, and soluble receptors in patients with SLE 
with those in healthy controls.48 The same analytes were 
also measured in supernatants prepared from PBMCs 
from healthy donors that had been stimulated for varying 
periods of time with IFN‑α. Surprisingly, ~30 circulat-
ing factors were markedly upregulated in blood from 
patients with SLE, many of them interferon-inducible. 
This striking observation provided early biochemical 
evidence that the interferon biosignature was not just an 
epiphenomenon, but rather was directly linked to the 
biology of the underlying disease. Importantly, these 
findings seem to be clinically actionable, as measurement 
of just three of the chemokines (namely CCL2, CCL19 
and CXCL10, performed using a high-throughput 
method chemiluminescent assay) accurately predicted 
disease activity and clinically meaningful disease flares 
over a 1‑year period in a cohort of 267 patients with 
SLE.49 In fact, measurement of these three chemokines 
proved to be superior to standard clinical rheumatology 
assays including those that measure C3, C4, double-
stranded DNA, erythrocyte sedimentation rate, and 
C‑reactive protein level.49 Taken together, these results 
provide a rationale for multiplexed measurement of 
cytokines and chemokines in other autoimmune dis-
eases, including RA, in which a subset of cytokines have 
been shown to be elevated and associated with aggressive 
disease,50 and multiple sclerosis, in which a multiplexed 
bead-based assay demonstrated that IL‑17F levels were 
elevated in patients with multiple sclerosis who failed to 
respond to IFN-β treatment.51

Are autoantibody profiles associated with the inter-
feron signatures described above? The research group 
of one of the authors (P. J. Utz) has used arrays con-
taining over 100 antigens to analyse the same serum 
samples used by Bauer et. al.,48 and demonstrated a 
strong association with autoantibodies directed against 
particles associated with RNA and DNA; this association 
has now been replicated in two additional SLE cohorts 
(P. J. Utz, unpublished work). We hypothesize that 
immune complexes composed of these RNA-containing 
and DNA-containing antigens are internalized by B cells 
and dendritic cells, at which point the RNA and DNA 
moieties dissociate from the immune complexes and 

activate proinflammatory Toll-like receptors including 
TLR3, TLR7, TLR8 and TLR9.52

Autoantibody profiles have been used by other groups 
to study cohorts of patients with SLE, RA, and multiple 
sclerosis. Multiple ongoing studies by one of the authors 
(P. J. Utz) are focused on characterizing antibody profiles 
in patients who are exposed to investigational drugs, with 
the goal of identifying predictive biomarkers.53 Although 
beyond the scope of this Review, antigen arrays have 
been extremely useful in studying mouse models of 
lupus, particularly mice lacking genes encoding inter-
feron signalling molecules, retrogenic mice, and mice 
with altered MHC molecules.37,54–57

Clearly, multiplexed protein measurements will be 
crucial for elucidating pathogenic mechanisms in rheu-
matic diseases. Newer methods, such as high-throughput 
immunophenotyping using transcription (HIT) and 
Intel® (Intel Corporation, Santa Clara, CA, USA) peptide 
arrays synthesized using photolithography on the surface 
of silicon wafers, will enable more rapid and accurate 
measurement of serum analytes than ever before.58,59

High-throughput DNA sequencing
Immunoglobulin and TCR profiling
Prior to the development of ‘next-generation’ DNA 
sequencing instruments in the first decade of the 
21st century, sequencing costs limited the characteriza-
tion of B-cell receptor (BCR) and T-cell (TCR) popula-
tions. The experimental landscape has changed with the 
commercialization of several sequencing technologies 
that now make it possible to obtain thousands to mil-
lions of TCR or immunoglobulin sequences at a relatively 
low cost.40,60–68 Currently, the major issues are: how best 
to prepare immune-receptor-sequence libraries, which 
sequencing technologies to use, how to analyze the data, 
and how to relate sequence data with functional activities 
of the immunoglobulin or TCR complexes.

One can break down the kinds of analysis enabled by 
high-throughput DNA sequencing of TCR or immuno
globulin rearrangements into three main categories. 
First, this method can be used to measure overall reper
toire features, including: V, D and J segment usage 
frequencies (Figure 4); junctional properties, such as 
exonuclease digestion and non-templated base addi-
tion; the pattern of amino acid usage in the CDR3 
region; evidence of receptor editing; heavy-chain isotype 
usage and hypermutation of rearranged gene segments 
(in the case of antibodies); and the number of distinct 
sequences present, which can be used to estimate reper-
toire diversity. Second, the receptors expressed by clon-
ally expanded B cells or T cells (Figure 4) can be detected 
and characterized, whether or not one knows the antigen 
specificity or other functional features of the expanded 
clones. Third, B-cell or T-cell clones of interest that have 
previously been identified and correlated with known 
function can be tracked. Each of these kinds of analysis 
can yield insights into lymphocyte populations but the 
features of T-cell and B-cell repertoires that distinguish 
autoimmune disease patients from healthy individuals 
have not yet been fully explored.

REVIEWS

© 2012 Macmillan Publishers Limited. All rights reserved



NATURE REVIEWS | RHEUMATOLOGY 	 VOLUME 8  |  JUNE 2012  |  323

Sequencing methodologies
The key variables in high-throughput DNA sequenc-
ing are read length, throughput, accuracy, and cost. 
Although this technology is rapidly developing, most 
published work on high-throughput sequencing of 
immunoglobulin and TCR to date has used either the 454 
platform (Roche, Basel, Switzerland), owing its long read 
lengths (~450 bases) and moderate throughput (1 million 
reads per run), or the Illumina platform (Ilumina, San 
Diego, CA, USA) with its higher throughput (tens to 
hundreds of millions of reads per run) for comparable 
cost, but shorter read lengths (up to 150 bases from each 
end of a DNA molecule). The 454 instrument can capture 
a full immunoglobulin heavy chain V(D)J sequence in a 
single read, which is very helpful when studying patterns 
of hypermutation in clonally related IgH.40,43,61,64,68–70 TCR 
sequences can be captured by shorter reads covering the 
V(D)J junction, and can take advantage of the Illumina 
platform throughput.62,65,71

The number of sequences that must be measured to 
provide meaningful data depends on the biological ques-
tion being asked. Features of the immune repertoire such 
as segment usage, junctional nucleotides, hypermutation 
rates, and clonality can be analysed with thousands to 
tens of thousands of sequences. Deeper sequencing can 
detect progressively rarer populations. Typically, the 
detection of very rare sequences will only be meaningful 
if one has a prior reason for being interested in them, 
such as knowing the binding activity of these sequences, 
having previously observed clonally-related sequences in 
the same individual, or having seen similar sequences in 
other individuals. In addition, the finite rate of sequenc-
ing errors or PCR errors in a deep-sequencing experi-
ment leads to the generation of artifactual sequence 
variants that can complicate estimation of the true diver-
sity of an immunoglobulin or TCR library, particularly 
if the number of input B cells or T cells is not known, or 
if conservative filtering and replicate sample sequencing 
steps are not taken.63,72

For library preparation, multiplexed PCR reactions 
using large numbers of primers specific to the fami-
lies of genes that encode the V and J segments have the 
advantage of relatively efficiently capturing sequences for 
amplification, but are difficult to optimize and usually 
confer amplification bias to some sequences. Heavily 
hypermutated immunoglobulin sequences are expected 
to be under-represented in all datasets owing to muta-
tions in primer binding sites. The use of a variety of 
primer sets, including primers located in the relatively 
less-mutated leader regions of genes encoding the 
V segment, can alleviate this problem.73 An alterna-
tive strategy requires using a protocol involving rapid 
amplication of complementary DNA ends (5' RACE), 
which does not rely on gene segment-specific primers. 
Our current knowledge of human variation in immuno
globulin and TCR germline loci is incomplete, and copy 
number variants (both deletions and amplifications), 
allelic variants, and other germline locus features might 
affect detection strategies.74,75 Choice of template can also 
affect data interpretation, as genomic DNA is normalized 

to one copy of a V(D)J rearrangement per cell, and repli-
cate libraries generated from genomic DNA aliquots give 
information about distinct cell populations. As mRNA is 
present in multiple copies, sequencing from cDNA actu-
ally limits the ability to distinguish between expanded 
clonal populations compared with high levels of mRNA 
expression by a single cell.
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Figure 4 | The use of high-throughput DNA sequencing of immunoglobulin or  
T-cell receptor gene rearrangements to detect dynamic changes in lymphocyte 
repertoire and clonal expansions. In this example, the data show the response of 
a healthy individual to vaccination with a meningococcal polysaccharide vaccine, 
with the upper panel showing the peripheral blood B‑cell repertoire 
prevaccination, and the lower panel showing the clonal B‑cell response stimulated 
by the vaccine at day 7 postvaccination. Immunoglobulin heavy-chain V(D)J 
rearrangements were PCR-amplified from peripheral blood B cells from each 
sample, in sixfold replicate, using genomic DNA as the PCR template. 
Approximately 2,000–3,000 V(D)J rearrangements were sequenced from the 
libraries generated from each sample. If sequences with the same V, D, and J 
segments and junctions are detected in more than one replicate library from a 
sample, it provides evidence of a clonally expanded B-cell population. Expanded 
B‑cell clones are displayed as squares of progressively larger size and warmer-
spectrum (yellow, orange, red and white) colour. Clones detected in two replicates 
are shown by a small yellow square; clones detected in all six replicates are 
shown by a large white square. Small blue dots indicate VDJ combinations for 
which sequences were found in only a single replicate. The x‑axis indicates the  
V segment used for a particular V(D)J rearrangement. The large y‑axis rows show 
the J segment. The fine y‑axis rows within each J segment row indicate the  
D segment. This method can be used to detect expanded clonal populations with 
a sensitivity limited mainly by the amount of sample available, and by the depth of 
sequencing carried out. Application of this approach to study the clonal 
populations of B cells and T cells in rheumatologic disorders should enable 
detailed tracking of lymphocyte populations that are correlated with disease 
activity and with therapeutic responses.
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BCR and TCR rearrangements in autoimmunity 
The initiating events of human autoimmune disorders 
are uncertain, and, despite clear evidence that adaptive 
immune responses have an important role in disease 
pathogenesis, it remains unknown whether T cells or 
B cells, or neither, are the site of primary dysregulation 
leading to immune-mediated damage of host tissues. 
Studies of the overall repertoire may shed light on 
abnormal selection processes for T cells and B cells 
in patients with autoimmune disease, as suggested by 
reports of alterations in the receptor repertoire fol-
lowing negative selection of self-reactive B cells, and 
impairment of selection checkpoints in patients with 
SLE.42,76–78 DNA sequence-based understanding of the 
underlying immunoglobulin and TCR repertoires, and 
of the receptors expressed by expanded clonal B-cell 
and T-cell populations in patients, might offer impor-
tant new information for classification and monitoring 
of these diseases.

Will it transpire that the overall repertoires of 
immunoglobulin or TCR gene rearrangements in 
patients with autoimmune diseases are pathognomonic 
in gene segment usage or detailed sequence features, or 
that they have any other distinguishing parameter when 
compared with the repertoires of healthy individuals? 
The answer is currently unknown. It is possible that 
public TCR or immunoglobulin rearrangements (that is, 
identical receptors used to respond to the same antigen 
in more than one person, despite the huge diversity of 
possible receptors) could be essential pathologic fea-
tures of some autoimmune diseases. However, aberrant 
immune responses in different patients with the same 
diagnosis apparently target multiple self-antigens, dif-
ferent subsets of self-antigens, and multiple epitopes 
on those antigens, decreasing the likelihood that a par-
ticular immunoglobulin or TCR rearrangement will be 
a highly specific or sensitive disease marker. Indeed, 
phage display of human single-chain variable anti
bodies has shown that many distinct sequences can bind 
the same antigen; over 1,000 distinct immunoglobulin 
heavy-chain rearrangements result in molecules that 
bind human B‑lymphocyte stimulator (BLyS, also known 
as TNF ligand superfamily member 13B), with little 
overall stereotyping of this repertoire.79 Nevertheless, 
a high-throughput DNA sequencing study of monozy-
gotic twins showed that an individual’s germline genomic 
DNA sequence might be the strongest determinant of 
the usage of V, D and J segments in the immunoglobulin 
repertoire, providing a potential mechanism for some of 
the heritable predisposition to developing autoimmune 
disorders.80 Other results have highlighted that extensive 
public rearrangements contribute to immunoglobulin 
light-chain repertoires.81

If autoimmune disease-specific public TCR or BCR 
signatures prove difficult to identify, tracking of clon-
ally expanded (and presumably antigen-stimulated) 
B-cell or T-cell populations over the course of disease 
and treatment could act as a filter, to identify clones of 
cells that are likely to be involved in disease pathogenesis 
in a particular patient. Persistence of particular clones 

of B cells or T cells, and their correlation with disease 
activity, response to therapy, and likelihood of relapse, 
could guide immunosuppressive medication regimens. 
Studies of lupus nephritis demonstrated that the T cells 
in renal infiltrates are relatively oligoclonal, and that 
related clone members can also be detected in blood 
samples.82–84 In one study, a clonal CD8+ T‑cell lineage 
found in blood and renal tissue samples from a patient 
with lupus nephritis was still detectable in a subsequent 
renal biopsy sample taken 6 years later, suggesting that 
persistent and long-lived clones are a relevant feature of 
this disease.84 Further investigation of these topics will 
be greatly enhanced by the use of high-throughput DNA 
sequencing, by the more comprehensive measurement 
of TCR or immunoglobulin rearrangements present in 
a given blood or tissue sample, as well as by establish-
ing age-adjusted normal-range measurements of the 
clonality of T cells and B cells in healthy individuals. 
Elderly individuals have high rates of oligoclonal and 
frequently cytomegalovirus-specific T‑cell populations 
in the blood, particularly in the CD8+ compartment.85,86 
Ensuring that such persistent clonal expansion of these 
T cells are interpreted with caution is an important 
factor in studies of autoimmunity.85,86 Tracking of clon-
ally related B cells and T cells in patient samples over 
time, particularly if functional data have been obtained 
to identify pathologically important cell lineages, might 
offer the best hope of monitoring disease in a patient-
specific fashion. This approach might be challenging, 
given the imperfect correlation or lag between the 
presence of both B cells and T cells that express auto
reactive sequences, or the detection of autoantibodies 
in the serum, and the development of disease signs or 
symptoms in the patient.35,77 

In summary, high-throughput sequencing of immuno
globulin and TCR sequences offers a number of opportu-
nities to expand our knowledge of human autoimmune 
biology. Global signatures might be present in some 
autoimmune diseases, but even in the absence of such 
signatures, tracking of B-cell and T-cell clones in indivi
dual patients could be used to monitor disease status 
and responses to therapy. We predict that the pairing of 
immunoglobulin or TCR sequencing with other experi-
mental methods (such as selection of antigen-specific 
cells, or sorting of phenotypic lymphocyte populations 
of interest) should be particularly powerful for evaluating 
disease phenotypes.

Heterogeneity of samples
In many cases, the biological samples analyzed by tech-
nologies such as microarrays are heterogeneous; that 
is, they are composed of multiple different cell types, 
each with its own gene and protein expression signa-
tures. The frequency of different cell types might vary 
markedly between specimens, as it does, for example, in 
peripheral blood samples (2–10-fold differences in fre-
quency among various cell types).87 In the case of gene 
expression microarrays, for example, the tissue sample 
is lysed to isolate the mRNA, which is then analysed by 
microarray. Traditional microarray analysis methods 
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do not take into account any information on cell-type 
heterogeneity in the sample and so cannot distinguish 
between variations in gene expression attributable to 
an actual physiological change in a cell type and those 
attributable to differences in actual cell-type frequency. 
Moreover, the contributions of the different cell types 
to the total measured gene expression cannot be iden-
tified.88–90 Therefore, the ability of these methods to 
detect differentially expressed genes is strongly affected 
by variation in the frequencies of different cell types in 
the sample;88,89,91 moreover, the interpretation of results 
is made difficult as transcripts are described as part of 
a single system, without cellular boundaries or context 
(Figure 5A, right). Techniques to circumvent this issue 
by isolating specific cell types and profiling each type 
separately affect the underlying biology to a varying 
extent and make a strong underlying assumption on  
the cell type of interest. As a result, the perspective of the 
overall system is missing; that is, any information about 
non-profiled cell types is unknown and the effects of 
cell-to-cell interaction are lost (Figure 5A, left).

A methodological innovation is to use statistical 
deconvolution techniques to achieve a middle ground 
between cell-type specific and system-wide information 
levels (Figure 5A, middle; Figure 5B). This approach 
exploits the fact that the majority of genes are expressed 
to a varying degree in multiple cell types. By tracking how 
gene expression fluctuates between samples in relation 
to cell-frequency changes, the average gene expression 
of each cell type within an analyzed group of samples, 
as well as the cell-type specific expression differences 
between groups, can be accurately estimated in silico.92–94 
The sensitivity of cell-type specific expression analysis 
performed in this manner is often orders of magnitude 
higher than that obtained by analyzing heterogeneous 
tissue samples, yet is likely to be lower than that achieved 
by isolating the individual cell types. Moreover,  as the 
deconvolution methodology does not require any cell 
separation, the cell type responsible for any detected 
differences in expression can be identified whilst avoid-
ing the requirement to isolate the cell type of interest. In 
contrast to traditional techniques, increased variation in 
cell frequencies between samples actually improves the 
performance of statistical deconvolution in accurately 
estimating cell-type specific expression  and group dif-
ferences.94 Groups of specific cell types have been shown 
to be reliably detected for cells whose frequency in the 
sample is as low as 5–10%, though the minimal cell-type 
frequency for which detection of group differences is 
possible can only be determined empirically owing to 
the large number of factors involved.94 Notably, statisti-
cal deconvolution-based techniques are not restricted to 
microarray gene expression but may be easily adapted  
to a large number of other assays (including deep sequen
cing, intracellular flow cytometry, mass cytometry, and 
protein arrays, as well as bead-based profiling) in which 
the biological samples analyzed are heterogeneous with 
respect to cell type. 

As in all analyses performed in humans, a large 
amount of variability exists between samples, which 

is attributable to genetic differences, environmental 
factors, medical conditions and medication taken. A 
balanced experimental design between study groups to 
control for major factors (such as gender, age, BMI and 
so on)is recommended, yet accounting for all factors 
within the study is nearly impossible. We therefore 
recommend a combined solution comprising: a careful 
and detailed documentation of as many confound-
ing variables as possible; rigorous statistical testing to 
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Figure 5 | Statistical deconvolution enables detection of system-wide cell-type 
specific differences between groups without cell-type isolation. a | The majority of 
biological samples comprise multiple cell-types that can vary dramatically in 
frequency from one sample to another. Traditional sample profiling, either by 
isolating specific cell-types of interest or by profiling heterogeneous tissues, 
provide a system-level understanding or cellular context respectively. Statistical 
deconvolution-based techniques offer a middle ground by providing system-wide 
cell-type specific differences between groups. b | The csSAM methodology 
provides a high-resolution and sensitive differential expression analysis that is 
localized to a specific cellular context. Quantifying the frequency of the different 
cell-type subsets in each sample enables the average gene expression profile of 
each cell type in each group to be estimated by statistical deconvolution. These 
estimated expression profiles can then be utilized to detect cell-type specific 
differences without sorting of the heterogeneous tissue, and reconstitute whole 
tissue as individual samples that are independent of frequency variations 
associated with cell type. Abbreviation: csSAM, cell type–specific significance 
analysis of microarrays. Permission obtained for part b from Nature Publishing 
Group © Shen-Orr, S. et al. Nat. Methods 7, 287–289 (2010).
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measure the effects of the confounder variables at the 
start of the analyses, and the introduction of the major 
variables into the statistical model, sample size allowing, 
as per the classical statistical literature; post-discovery 
retesting of the relationship between findings and con-
founder variables; and follow-up experiments aimed at 
testing detected relationships between main findings 
and confounder variables.

Conclusions
In this Review, we have discussed new technologies 
that will be used in future immune phenotyping ana
lyses: mass cytometry, peptide and protein arrays, and 
BCR and TCR sequencing. These novel assays offer the 
promise of new information to improve the manage-
ment of autoimmune disease and represent the latest 
methodology for analyzing cells, soluble proteins, and 
genes, respectively. New technologies for the analysis of 
gene expression in whole blood samples and for decon-
volution of the resultant datasets enable the expression 
of specific genes to be assigned to cell subsets, without 
isolation and manipulation of the blood cells; in this 
way they offer a much improved method of looking for 
actionable biomarkers. From such highly multiplexed 
analytical approaches, panels of actionable biomark-
ers will undoubtedly be extracted that will be useful 
for diagnosis, prognosis, clinical subtyping, and selec-
tion and monitoring of therapy. Given the complexity 

of the immune system and the high degree of crosstalk 
between cells, biomarkers would be expected to be 
not only of a single measure, but also of relationships 
between measures. It may be too early to tell which of 
these new methods will prove most practical and useful, 
but we strongly believe that future clinical decisions 
may be guided, in part, by biomarkers that can only be 
defined at as high dimensional. Hence, we advocate for 
increased training in quantitative methods.
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