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Abstract

Objective. To address heterogeneity complicating primary SS (pSS) clinical trials, research and care by characterizing

and clustering patients by their molecular phenotypes.

Methods. pSS patients met American�European Consensus Group classification criteria and had at least one systemic

manifestation and stimulated salivary flow of 50.1 ml/min. Correlated transcriptional modules were derived from gene

expression microarray data from blood (n = 47 with appropriate samples). Patients were clustered based on this mo-

lecular information using an unbiased random forest modelling approach. In addition, multiplex, bead-based assays and

ELISAs were used to assess 30 serum cytokines, chemokines and soluble receptors. Eleven autoantibodies, including

anti-Ro/SSA and anti-La/SSB, were measured by Bio-Rad Bioplex 2200.

Results. Transcriptional modules distinguished three clusters of pSS patients. Cluster 1 showed no significant elevation

of IFN or inflammation modules. Cluster 2 showed strong IFN and inflammation modular network signatures, as well as

high plasma protein levels of IP-10/CXCL10, MIG/CXCL9, BLyS (BAFF) and LIGHT. Cluster 3 samples exhibited mod-

erately elevated IFN modules, but with suppressed inflammatory modules, increased IP-10/CXCL10 and B cell�attracting

chemokine 1/CXCL13 and trends toward increased MIG/CXCL9, IL-1a, and IL-21. Anti-Ro/SSA and anti-La/SSB were

present in all three clusters.

Conclusion. Molecular profiles encompassing IFN, inflammation and other signatures can be used to separate patients

with pSS into distinct clusters. In the future, such profiles may inform patient selection for clinical trials and guide

treatment decisions.
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Rheumatology key messages

. Transcriptional modules separate Sjögren’s patients into distinct clusters characterized by patterns of immune
dysregulation.

. Molecularly distinct clusters of Sjögren’s patients share similar demographics and clinical features.

. Molecular profiles spanning multiple immune pathways may support rational clinical trial design and treatment
selection.

Introduction

Primary SS (pSS) is an autoimmune disorder character-

ized by severe, persistent dryness of the mouth, eyes, and

other mucous membranes. These symptoms result from

exocrine gland dysfunction that is associated with infiltrat-

ing mononuclear cells and systemic autoimmunity. In

nearly half of pSS patients, systemic autoimmunity pro-

duces one or more extraglandular symptoms, such as

arthritis, vasculitis, lung disease and lymphoma. Despite

disabling manifestations of systemic autoimmunity, pSS is

primarily treated symptomatically [1], and options for dis-

ease-modifying treatment are limited.

Trials of disease-modifying immunomodulatory treat-

ments in SS have largely failed to meet their primary

endpoints, perhaps in part because of the clinical end-

points used and the clinical and immunologic heterogen-

eity of subjects meeting entry criteria. All of these factors

can potentially affect the probability of any given patient

responding to a particular intervention. For example,

baseline gene expression data in an open-label trial of

15 patients with pSS correlated with response to ritux-

imab [2]. In addition, the response to belimumab in an-

other pSS trial was independently associated with low

numbers of NK cells in the saliva and blood [3], and cel-

lular immune phenotypes in the blood identified pSS pa-

tient subsets with higher disease activity and glandular

immune infiltration [4]. These findings suggest that mo-

lecular phenotyping of pSS patients may support the

identification of subjects who will respond to therapy

and may ultimately lead to success in advancing dis-

ease-modifying therapies to the clinic [5]. However,

little is known about the different immunologic subsets

of patients with this disease.

Autoantibody profiles have been historically con-

sidered to identify subsets of pSS patients. In an

international cohort of 886 pSS patients meeting 2002

American�European Consensus Group classification cri-

teria, 76% exhibited anti-Ro/SSA antibodies and 49%

anti-La/SSB antibodies [6]. Individuals with anti-Ro/SSA

and/or anti-La/SSB antibodies demonstrated increased

infiltration of the exocrine glands, reduced salivary and

lacrimal duct function and an increased likelihood

of extraglandular manifestations [7]. Although less

common, anti-centromere and anti-mitochondrial auto-

antibodies in pSS correlate with additional clinical

signs such as Raynaud’s syndrome and major organ

damage [7].

Similar to other systemic autoimmune rheumatic dis-

orders, pSS also has been associated with a type I IFN

signature in many patients [8�11]. Further, patients with

pSS can be stratified by the relative extent of type I and

type II IFN activity [12, 13], and an elevated IFN signature

has been associated with increased rates and higher titres

of anti-Ro/SSA and La/SSB autoantibodies [14]. IFN gene

expression in the minor salivary glands has been asso-

ciated with extraglandular features such as arthritis, arth-

ralgia and RP [13]. However, IFN activation does not

consistently correlate with the severity of sicca features

of pSS [12], and many autoantibody-positive, IFN-positive

pSS patients have no major extraglandular involvement.

A better understanding of molecular heterogeneity in

pSS is necessary for more effective clinical trial design

and individualized therapeutic selection. To address this

need, we assessed a broad panel of whole blood gene

expression signatures, circulating immune and inflamma-

tory mediators and autoantibody profiles in patients with

pSS to identify different immunologic phenotypes that

may be useful for future research, clinical trials and, po-

tentially, clinical care.

Methods

Study design

This study evaluated patient samples from the base-

line visit in a study of baminercept for treatment of

SS (ClinicalTrials.gov identifier NCT01552681) [15].

Individuals with pSS (n = 47) were enrolled at nine sites

through the National Institute of Allergy and Infectious

Diseases�funded Autoimmunity Centers of Excellence

programme and appropriate samples for the present

analyses were available for 47 of these subjects. The

study complies with the Helsinki Declaration and was

approved by each site’s institutional review board

(Cedars-Sinai, Stanford, St. Francis Medical Center/

University of Connecticut, University of Chicago, Johns

Hopkins, University of Rochester Medical Center, Duke

University Medical Center, Oklahoma Medical Research

Foundation, University of Pittsburgh). Patients provided

written informed consent prior to participation. Inclusion

criteria included age between 18 and 75 years, fulfilment

of at least three of the four revised European criteria pro-

posed by the American�European Consensus Group for

pSS, stimulated salivary flow 50.1 ml/min and the pres-

ence of one or more systemic non-life-threatening SS

manifestations. Disease activity was measured by the

EULAR SS Disease Activity Index (ESSDAI) [16] and

visual analogue scales (VASs; range 0�100) for physician

and patient global assessments for dryness, fatigue and

joint pain [15]. Healthy controls for gene expression profil-

ing were derived from the Oklahoma Immune Cohort [17].

Study data for patients are available through ImmPort

under study SDY823.
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Gene expression profiling

Blood was collected into PAXgene blood RNA tubes

(PreAnalytiX, Hombrechtikon, Switzerland) and total cellu-

lar RNA was isolated and purified (PAXgene Blood RNA

kit, Qiagen, Valencia, CA, USA). RNA quality and quantity

were determined using the Agilent 2100 Bioanalyzer and

Agilent RNA 6000 Nano system (Agilent Technologies,

Santa Clara, CA, USA). After depletion of globin mRNA

(GLOBINclear-Human Kit, Thermo Fisher Scientific,

Waltham, MA, USA), RNA was amplified and transcribed

in vitro using the TargetAmp-Nano Labelling Kit for

Illumina Expression BeadChip (Epicenter Technologies,

Madison, WI, USA) and cDNA was hybridized to the 12-

sample HumanHT-12 v4.0 Expression BeadChip (Illumina,

San Diego, CA, USA). Chips were scanned using the

Illumina iScan system. Quality control of gene expression

data was performed with GenomeStudio version 2011.1

(Illumina) according to manufacturer’s protocol.

Autoantibody detection

The presence and concentration of serum autoantibodies

against Ro/SSA composite (52 kDa Ro and/or 60 kDa

Ro), La/SSB, centromere B, chromatin, Scl-70, dsDNA,

ribosomal P, Sm, SmRNP, nRNP composite (nRNP A

and/or nRNP 68) and Jo-1 were assayed using bead-

based multiplex assays on a BioPlex 2200 platform (Bio-

Rad Technologies, Hercules, CA, USA) as previously

described [18]. Autoantibodies were quantified using an

antibody index value based on the fluorescence intensity

of each of the autoantibody specificities, with a manufac-

turer-recommended positive cut-off of 1 on the antibody

index (range 0�>8). Anti-dsDNA was quantified with a

manufacturer-recommended positive cut-off of 10 IU/mL.

Soluble mediator detection

Serum levels of B lymphocyte stimulator (BLyS) and

LIGHT were assessed by ELISAs per the manufacturers’

protocol (Human BAFF/BLyS/TNFSF13B Quantikine

ELISA, R&D Systems, Minneapolis, MN, USA; Human

CD258/LIGHT Ready-Set-Go, Thermo Fisher Scientific/

Invitrogen, Waltham, MA, USA). B cell�attracting chemo-

kine 1 (BCA-1)/CXCL13 was quantified by singleplex xMAP

assay per the manufacturer’s protocol (ProcartaPlex

Human BLC/CXCL13 Simplex assay, Thermo Fisher

Scientific/Invitrogen).

Serum levels of other inflammatory mediators were as-

sessed using a custom multiplex panel (ProcartaPlex,

Thermo Fisher Scientific/Invitrogen) on the Bioplex 200

Luminex xMAP plate reader (Bio-Rad Technologies) as

previously described [19]. The analytes that passed qual-

ity control included IL-1a, IL-7, IL-21, IL-2RA, IFN-g-indu-

cible protein 10 (IP-10)/CXCL10, regulated upon

activation normal T cells expressed and secreted/CCL5,

macrophage inflammatory protein 1a/CCL3, macrophage

inflammatory protein 1b (MIP-1b)/CCL4, monocyte

chemoattractant protein-1/CCL2, monocyte chemo-

attractant protein-3/CCL7, monokine induced by IFN-g
(MIG)/CXCL9, stromal derived factor 1a, eotaxin-1/

CCL11, sE-selectin, ICAM-1, VCAM-1, VEGF-A, sCD40L,

TNFRI, TNFRII, TNF-related apoptosis-inducing ligand,

leukaemia inhibitory factor, plasminogen activator inhibi-

tor 1, PDGF-BB, leptin, resistin and stem cell factor. A

bridge control serum sample was included on each

plate (Cellect human AB serum, catalogue no. 2931949,

lot no. Q8823, MP Biomedicals, Solon, OH, USA) to con-

trol for plate-to-plate variation of soluble mediator assays.

The mean interassay coefficient of variance of these

assays (10.5%) was within that previously shown for

bead-based assays [20].

The limit of blank, limit of detection and limit of quanti-

fication were determined and used for quality control as

previously described [21]. Samples and standards below

the limit of detection were considered undetectable.

Analytes with >60% undetectable rate were excluded

from subsequent analyses. For analytes passing quality

control, concentrations were interpolated from five-par-

ameter logistic non-linear regression standard curves or

assigned a value of 0 if a sample was below the limit of

detection.

Statistical analysis

Analyses were performed with R version 3.3.3 (R

Foundation for Statistical Computing, Vienna, Austria).

Proportions were compared by �2 or by Fisher’s exact

test when fewer than five observations were expected in

any category. Continuous variables were compared be-

tween two groups by t test if normally distributed or by

Mann�Whitney if not normally distributed by the

Shapiro�Wilk test. P-values were adjusted for multiple

comparisons by the false discovery rate method.

Variables with no more than five unique values (VCAM-1)

were analysed as categorical variables. Heat maps and

radar plots present modified Z-scores.

For gene expression, background-subtracted expres-

sion data were log2 transformed and normalized with

the rank-invariant method using the lumiR package [22].

System-based modular analysis was performed at the

group level and individual-level module scores (M1�M6)

were calculated using second-generation modular frame-

works as previously described [23�25]. Briefly, transcrip-

tion levels of predefined sets of co-regulated module

genes for each patient were compared with the average

transcription levels of those genes in healthy controls to

determine the activity level of each module. These co-ex-

pression module scores were used for subsequent

random forest clustering models.

To identify molecularly similar patient clusters, random

forest was used to classify patients based on their modu-

lar expression scores (M1�M6) by simultaneously assess-

ing an ensemble of independent decision trees, as

previously described [21]. Random forest was performed

in R (version 4.6-12; https://cran.r-project.org/), with

mtry = 3, mtree = 4000 and the dissimilarity matrix defined

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� similarity

p
, where the similarity matrix was the

average similarities by repeating random forest clustering

100 times [26]. Batch effects were removed using the em-

pirical Bayes methods when gene expression data sets

were combined [27].
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Results

Molecular signatures distinguishing pSS patient
clusters

Analysis of previously defined transcriptional modules

[23�25] revealed molecular heterogeneity among pSS pa-

tients (Fig. 1). Based on these modules, random forest

identified three distinct clusters of pSS patients (Fig. 1A).

These clusters had significantly different IFN modular net-

work signatures. Looking at the IFN modules (M1.2, M3.4,

M5.12), Cluster 1 had the weakest IFN modular network

signature and Cluster 2 had the strongest IFN modular

network signature (Fig. 1B, C, and Supplementary Fig. 1,

available at Rheumatology online). Other key modular net-

work signatures were strongest in Cluster 2 and weakest

in Cluster 3, including inflammation (M3.2, M4.2, M4.13,

FIG. 1 Clustering pSS patients with molecular signatures

(A) Random forest using expression module scores identified molecularly similar pSS patient subsets. Each point in the

multidimensional scaling plot represents a patient. The distance between points represents dissimilarity between sub-

jects. (B) The size of each circle represents the absolute value of the median module score. Red indicates an increase

(positive scores); blue indicates a decrease (negative scores). (C) Median modified Z-scores are shown for each module.

(D) Columns represent individual patients, grouped by cluster; rows show relative activation (modified Z-scores) of select

modules. Purple indicates less activation and yellow more activation.
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M4.6, M5.1, M5.7), platelet/erythrocyte (M1.1, M3.1,

M6.18) and cell death/apoptosis/survival (M6.13, M6.6)

signatures.

Although these patterns were also observed at the in-

dividual level, the profiles varied between individuals

within the same cluster (Fig. 1D). For example, many pa-

tients in Cluster 2 had both a strong IFN modular network

signature and a strong inflammation modular network sig-

nature, but a few had only one of these signatures.

Further, two subsets of patients were apparent in

Cluster 3, one with an intermediate IFN modular network

signature and another with a low IFN modular network

signature. However, both subsets within Cluster 3 ex-

hibited low activity of the inflammation modules.

Together, these results highlight the molecular heterogen-

eity of pSS patients, particularly in IFN and inflammation

modules.

Demographics were similar between clusters (Table 1).

ESSDAI scores were fairly homogeneous across all pa-

tients, with ESSDAI scores >6 in six patients (12.8%)

and ESSDAI scores >10 in four patients (8.5%). ESSDAI

scores trended slightly higher in Cluster 2 compared with

the other clusters (overall P = 0.19, P = 0.24 vs Cluster 1,

P = 0.073 vs Cluster 3; Table 1). Clusters showed no sig-

nificant differences at baseline in patient-reported dry-

ness, fatigue, joint pain or global disease activity;

physician-assessed global disease activity or IgG levels

(Table 1). The slightly higher joint pain in Cluster 1 was

not significant (Table 1). Clusters showed no significant

differences in the use of HCQ (overall P = 0.546) or

corticosteroids (overall P = 0.766) (Supplementary Table

1, available at Rheumatology online).

Autoantibodies in clusters of pSS patients defined by
molecular signatures

To compare autoantibodies among clusters, we used a

multiplex assay that simultaneously detects 11 ANA speci-

ficities, including anti-Ro/SSA and anti-La/SSB. Across all

clusters, Ro/SSA and La/SSB were the predominant ANA

specificities, and anti-Ro/SSA and anti-La/SSB were pre-

sent in all clusters (Table 1, Supplementary Fig. 2, available

at Rheumatology online). Rates of La/SSB positivity

trended higher in Cluster 2 than in Cluster 1 (overall

P = 0.085, Cluster 2 vs 1 P = 0.056) and Cluster 2 had sig-

nificantly higher levels of La/SSB compared with Cluster 1

{median antibody index in Cluster 1: 0.2 [interquartile

range (IQR) 0.2�0.5], Cluster 2: 1.5 [IQR 0.375�8.0],

Cluster 3: 0.2 [IQR 0.2� 5.88]; overall P = 0.027; Cluster 2

vs Cluster 1 P = 0.008; Supplementary Fig. 2A, C, available

at Rheumatology online}. However, extremely high levels

of Ro/SSA and La/SSB occurred in all clusters

(Supplementary Fig. 2B, C, available at Rheumatology

online).

Differences in serum levels of soluble mediators
between pSS patient clusters

Next we tested whether pSS patient clusters defined by

expression modules also showed differences in systemic

measures of inflammation, such as cytokines, chemokines

and other soluble mediators of inflammation. Levels of

TABLE 1 Demographics and baseline clinical characteristics of the study population

Characteristics
All pSS patients

(n = 47)
Cluster 1
(n = 17)

Cluster 2
(n = 16)

Cluster 3
(n = 14) P-valuea

Age, years, median (IQR) 53 (47�59) 52.8 (42.4�63.1) 51.9 (41.1�62.6) 51.2 (39.5�62.9) 0.92

Female, n (%) 40 (85.1) 15 (88.2) 11 (91.7) 14 (100) 0.77
Race, n (%) 0.70

European American 34 (72.3) 11 (64.7) 12 (75.0) 11 (78.6)

African American 4 (8.5) 2 (11.8) 1 (6.2) 1 (7.1)

Hispanic 5 (10.6) 3 (17.6) 1 (6.2) 1 (7.1)
American Indian 2 (4.2) 1 (5.9) 1 (6.2) 0 (0.0)

Asian 2 (4.2) 0 (0.0) 1 (6.2) 1 (7.1)

Disease Activity Scores, median (IQR)b

ESSDAI 2 (1�4.5) 2 (0�4) 3.5 (2�5.25) 2 (0.25�2.75) 0.19

Physician Global Assessment 51 (37.5�51) 52.0 (42.0�65.0) 50.0 (40.8�56.0) 52.0 (18.8�73.8) 0.73

Dryness VAS 72 (63�80.4) 70.9 (53.9�87.9) 74.3 (54.6�88.0) 73.8 (58.2�89.4) 0.88

Fatigue VAS 70.0 (59.5�80.9) 76.0 (59.0�86.0) 72.4 (63.2�79.2) 64.5 (49.2�78.8) 0.47
Joint pain VAS 55 (33�67.3) 56.2 (35.8�76.7) 48.7 (19.9�77.4) 48.1 (26.7�69.6) 0.56

Patient Global Assessment 71 (62�79) 71.7 (56.5�83.9) 71.7 (55.3�88.1) 69.0 (47.8�90.2) 0.88

IgG, mg/dL, median (IQR) 1200 (988�1720) 1140 (884�1445) 1280 (1150�1908) 1265 (834�1823) 0.51

Anti-Ro/SSA, n (%) positive 28 (59.8) 8 (47.1) 11 (68.8) 9 (64.3) 0.45
Anti-La/SSB, n (%) positive 20 (42.6) 4 (23.5) 10 (62.5) 6 (42.8) 0.09

P-values compare the three clusters. aNormally distributed variables (age, dryness VAS, Patient Global Assessment) were

compared by analysis of variance. Variables that were not normally distributed (ESSDAI, Physician Global Assessment,
Fatigue VAS) were compared by Kruskal�Wallis test. Proportions were compared by �2 (anti-La/SSB) or by Fisher’s exact

test if they did not meet the assumptions of �2 (gender, race, anti-Ro/SSA). bHigher scores indicate more disease activity. The

VAS and Global Assessment scales have a minimum of 0 and maximum of 100.
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several soluble mediators varied between clusters (Fig. 2,

Supplementary Table 2, Supplementary Fig. 3, available at

Rheumatology online). Cluster 2 showed the highest levels

of the TNF superfamily members LIGHT and BLyS. Levels

of the IFN-induced mediators IP-10/CXCL10 and MIG/

CXCL9 appeared highest in Cluster 2, which had a

strong IFN gene expression signature, and intermediate

in Cluster 3, which had a moderate IFN signature.

Clusters 2 and 3 also had high levels of BCA-1/CXCL13.

In Cluster 3, levels of IL-1a, IL-21, IL-2RA, MIP-1b/CCL4

and sE-selectin trended higher than in the other clusters

(Fig. 2, Supplementary Table 2, available at Rheumatology

online). In addition, several mediators differed between

pSS patients and age, race and gender cohort-matched

healthy controls (Supplementary Table 3, Supplementary

Fig. 4, available at Rheumatology online). These observa-

tions reinforce both the immunologic heterogeneity

among pSS patients and the concept that pSS can involve

systemic dysregulation of multiple immune pathways.

Discussion

Immunologic heterogeneity in pSS poses a challenge

when assembling patient cohorts for research or clinical

trials. This study identified molecular profiles that differ

among pSS patients. These profiles can be used to sep-

arate pSS patients into distinct subsets characterized by

patterns of immune dysregulation.

Differences in inflammation, IFN and leucocyte modules

identified three distinct clusters of pSS patients, despite

relative homogeneity in ESSDAI scores across this cohort.

It is unclear how these or other modular network signa-

tures might vary among patients with higher ESSDAI

scores, particularly given the inconsistent relationship be-

tween clinical manifestations and IFN signatures [8, 12,

13]. These results reinforce that clinical disease activity

does not perfectly correlate with underlying immune dys-

function, perhaps due in part to limitations of current

measures of clinical disease activity. Larger studies and

broader discussions within the field may enable the devel-

opment of more nuanced clinical assessments that align

more closely with the underlying mechanisms of disease.

In addition, multimodal molecular-based tests are needed

to directly survey immune pathways that may influence

disease progression and response to treatment.

Two different patterns of immune activation emerged

in this study of pSS patients. In Cluster 2, the combin-

ation of a strong IFN modular network signature and

elevation of IFN-related soluble mediators (IP-10/

CXCL10, MIG/CXCL9) demonstrated IFN activation in

these patients. However, the specific IFNs involved

cannot be determined from the IFN modular network

signature. Furthermore, Cluster 2 exhibited increased

levels of the TNF superfamily members sCD40L/

CD154, LIGHT and BLyS, as well as slight elevations

in autoantibodies. LIGHT and CD154 synergize to in-

crease IFN-g production by T cells [28], and both type

I [29] and type II [30] IFN are capable of upregulating

BLyS. In activated immune cells, CD154 [31], LIGHT

[32] and BLyS [33] are proteolytically cleaved to soluble

forms that promote inflammation [34�37] and antibody

production [36�38], which in turn may contribute to pSS

pathogenesis.

Cluster 3 did not show an inflammation modular net-

work signature but exhibited moderate elevations in the

IFN modules and levels of IP-10/CXCL10 and MIG/

CXCL9. In addition, slight elevations in the T cell and cyto-

toxic/NK cell expression modules, along with a trend

toward elevated levels of IL-21 [39], suggest that dysre-

gulated T cell pathways may contribute to disease in this

cluster. Further, IL-21 induces the differentiation of naı̈ve

and memory B cells into plasma cells [40], consistent with

the active plasma cell module. Together, this suggests IL-

21 may help drive the autoantibodies in this subset of pSS

patients.

The final subset of pSS patients in this study (Cluster 1)

satisfied the inclusion criteria for the parent clinical trial yet

showed no increases in the IFN modules and minimal ac-

tivity of inflammation-related gene modules. Although they

present clinical features such as arthritis and/or elevated

ESSDAI scores, such patients may not be ideal candi-

dates for clinical trials of IFN, inflammation or immune-

modifying therapies. Pathology in these patients may

arise from other pathways, at least at the studied time

point.

Indeed, it is not clear whether these subsets represent

truly distinct disease subsets or different stages of dis-

ease that vary over time. Answering this question would

require longitudinal assessments in a prospectively col-

lected cohort. In addition, our sample size was limited,

and larger studies are needed to confirm these whole

blood findings, refine the identification of pSS patient sub-

sets and fully delineate the pathogenic pathways in vari-

ous pSS patient subsets. For example, this study

analysed modular network signatures that were previously

defined in patients with lupus. In particular, the relevance

of the inflammation signature in Cluster 2 is not clear.

Cluster 2 did have the highest levels of TNF superfamily

members (LIGHT and BLyS), consistent with inflamma-

tion, but it is possible that inflammation modules may

not reflect all aspects of inflammatory cytokines/chemo-

kines. Additional studies are needed to confirm these sig-

natures at the cellular and molecular level in pSS patient

subsets. Further, this study was not designed to dissect

the roles of type I and type II IFNs in the different patient

subsets. Moreover, pSS may involve pathogenic mechan-

isms evident in salivary glands but not peripheral blood,

such as epithelial dysfunction, altered muscarinic recep-

tors and fibrosis or other damage. However, this study

was not designed to address these possibilities. Future

studies may require analyses of cellular immune compos-

ition and responses within specific cell subsets, genetic

differences, epigenetic signatures and functional assays

of IFN activity.

These results demonstrate the feasibility of defining

pSS patient subsets using a broad panel of molecular

markers. Patients in different subsets may have different

responses to disease-modifying treatments, and profiles

that correlate with treatment effects may be useful for
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clinical trial design or treatment selection. In addition, mo-

lecular profiles that vary longitudinally may be useful for

monitoring disease activity or progression [24]. Further

studies are needed to validate these findings and delin-

eate the pathogenic mechanisms in molecularly defined

subsets of pSS patients.
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