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Despite the importance of the immune system in many diseases, there are currently no objective
benchmarks of immunological health. In an effort to identifying such markers, we used influenza
vaccination in 30 young (20–30 years) and 59 older subjects (60 to 489 years) as models for strong
and weak immune responses, respectively, and assayed their serological responses to influenza
strains as well as a wide variety of other parameters, including gene expression, antibodies to
hemagglutinin peptides, serum cytokines, cell subset phenotypes and in vitro cytokine stimulation.
Using machine learning, we identified nine variables that predict the antibody response with 84%
accuracy. Two of these variables are involved in apoptosis, which positively associated with the
response to vaccination and was confirmed to be a contributor to vaccine responsiveness in mice.
The identification of these biomarkers provides new insights into what immune features may be
most important for immune health.
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Introduction

The role of the immune system in human health is widely
recognized. This is particularly evident in aging, where the
immune response is often attenuated as observed in the
decreased protection following vaccination and high preva-
lence and severity of infectious diseases in the elderly. Of the
current estimated 36 000 influenza deaths in the United States
each year, 90% occur in people older than 65 years of age
(Thompson et al, 2003), and in this age group influenza alone
contributes to 64% of the estimated total economic annual
burden of $10.4 billion (Molinari et al, 2007). Moreover, the
most common causes of death in the older population,
including coronary heart disease, stroke and cancer, may also
be due, at least in part, to immune system dysfunction
(Hansson, 2005; de Visser et al, 2006).

The changes that occur with age affect both the innate and
the adaptive components of the immune system. These
include major alterations in cell subset composition, partly
due to thymic involution (Fagnoni et al, 2000), defects in
antigen presentation, reduced cytotoxic function, a restricted

T-cell repertoire and defects in antibody responses (Pawelec
and Larbi, 2008; Weiskopf et al, 2009).

Because of the complexity of the immune system, the
majority of the studies to date have measured a relatively small

number of variables. However, recent advances in technology

enable many parameters to be measured quickly and at low

cost, allowing much broader immune profiling. This ‘systems

immunology’ approach to vaccination has been pioneered in

the studies of Sékaly and colleagues (2008) and Pulendran and

colleagues (2009) in analyses of yellow fever vaccine, and

more recently in the study of Nakaya et al (2011) in influenza

vaccination, who used gene expression data from post-

vaccination samples to identify differences between respon-

ders and non-responders. Here we have used pre-vaccination

samples to determine whether it is feasible to find baseline

biomarkers from blood that could predict the serological

response to the trivalent, inactivated seasonal influenza

vaccine (TIV) in advance of its administration. We compre-

hensively characterized baseline young and older individuals’

blood using whole-genome DNA microarrays, peptide
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microarrays for detection of influenza-specific antibodies to
linear epitopes, multiplexed serum protein assays comprising
50 cytokines and chemokines, and high-resolution immune
phenotyping for 15 immune cell subsets. We also measured the
antibody responses to TIV and the signaling responses to
cytokines in various cell subsets from peripheral blood, using
antibodies to phosphorylated STAT proteins, also known as
phosphoFlow (pFlow).

A strong negative effect of pre-existing anti-influenza
antibodies with hemagglutinin (HA) inhibition (HAI) activity
on the fold-change HAI titer following vaccination has been
reported in several studies (Beyer et al, 1996; He et al, 2008).
We characterized the reactivity of influenza-specific antibodies
recognizing HA peptides from baseline serum samples with
the aim of (1) investigating the HA linear epitope specificities in
pre-vaccine antibodies and (2) finding the minimal set of
pre-existing antibodies that could potentially explain the
negative effect of baseline HAI titers on the response to the
influenza vaccine. We found a set of pre-existing antibodies
recognizing viral HA peptides that can distinguish individuals
with high versus low pre-vaccine HAI titers. We also identified
antibodies against HA peptides that associate with the HAI
response to the vaccine. Using a machine learning approach
to identify other relevant predictors of vaccine response, we
found age-related and -independent variables, which corre-
lated with and predicted the serological response with 84%
accuracy. Two of these markers were involved in apoptosis,
which was confirmed to be important in influenza vaccine
responses in mice.

The immune predictors found here may also be important in
the response to other vaccines and help to define metrics of
immunological health (Davis, 2008).

Results

Antibody responses to influenza vaccination in
young versus older vaccine recipients

We carried out an influenza vaccine study in 91 young and
older ambulatory subjects to better characterize immune
parameters from peripheral blood that associate with vaccine
responsiveness. Eighty-nine individuals’ serum specimen sets
(pre- and post-vaccine) were complete for testing the vaccine
response. The number of previous influenza immunizations,
history of influenza infection, demographic data and other
characteristics of the subjects are depicted in Table I. We
measured a comprehensive set of immune parameters in pre-
vaccine samples (day 0) (Figure 1) and the antibody responses
by the HAI assay at day 0 and 28±7 days after vaccination. We
used the HAI assay, because it is a direct measure of antibodies
produced in vivo against viral HA proteins in response to
infection or vaccination and is generally accepted as the gold
standard for gauging the effectiveness of influenza vaccines.
Seroconversion (defined as an HAI titer post-/pre-vaccine X4)
was computed for each strain in the vaccine. The individuals
were classified according to the breadth and magnitude of the
response as poor responders (PR), if seroconversion was
achieved for one strain or none, or good responders (GR),
if seroconversion was achieved for two or all three strains in
the vaccine (Figure 2A). By this definition, 80% of young

individuals were GRs and only 38% were GRs in the older
cohort (Figure 2B). These results are in agreement with several
previous studies.

An important feature of the immune response to influenza in
humans is the presence of pre-existing HAI antibodies, the titer
of which negatively correlates with responsiveness (fold
increase) to the vaccine (Beyer et al, 1996; He et al, 2008).
Pre-existing flu-specific memory CD4þ T cells seem to have
an important role by activating (CD56dim)-NK cells that are
able to inhibit antigen presentation by dendritic cells, thereby
suppressing the subsequent CD4þ T-cell help to B cells (He
et al, 2008). Therefore, we calculated for each subject the pre-
vaccine HAI geometric mean titer for all three strains in the
vaccine (pre-GMT) and compared pre-vaccine titer in young
individuals with older individuals. The older cohort had
significantly less pre-GMT than the young cohort (P¼ 0.0017;
Figure 2C), which suggests that pre-GMT is a stronger
determinant of the vaccine response in young than in older
adults. To address this in detail, we compared the pre-GMT
levels in PRs versus GRs in young or older individuals. The
differences between PRs and GRs were more pronounced for
the young group (P¼ 0.005) than for the older group
(P¼ 0.039; Supplementary Figure 1).

Pre-existing antibodies to HA peptides and pre-
vaccine HAI titer

To characterize the pool of pre-existing HAI antibodies with
more precision, we developed peptide microarrays for profil-
ing the antibody repertoire directed against viral HA peptides.
These studies were restricted to 76/89 subjects because of
limitations in the availability of serum from some subjects. Our
peptide microarray technology is able to cover B40% of the
HA protein sequence for each vaccine strain. Thus, to
maximize the number of positive hits, we selected an HA
region found in an H5N1 influenza strain containing epitopes
for neutralizing antibodies against different influenza strains
(broadly neutralizing antibodies; Khurana et al, 2009).

To determine whether the reactivity against these HA peptides
at baseline was associated with the presence of pre-existing
HAI antibodies, we compared individuals with high versus low

Table I Subjects’ baseline characteristics

Baseline characteristic Young Older

Age range (median) 20–30 (24.5) 61 to 489 (78)

Gender
Male 16 (53%) 21 (66%)
Female 14 (47%) 40 (34%)

Ethnicity
White 21 (70%) 59 (97%)
Asian 9 (30%) 2 (3%)

Body mass index (range) 19–44 (23.1) 18–47 (25.1)
Cytomegalovirus (þ ) 57% 59%
Epstein Barr virus (þ ) 53% 67%
Previous immunizations 1–20 (4) 2–30 (13)
Ever diagnosed with Flu 2 (7%) 4 (7%)
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pre-GMT (above versus below the group average, respectively).
As anticipated, there were significantly more GR within the
subjects with low pre-GMTcompared with those with high pre-
GMT (Po0.01 by Fisher’s exact test; Figure 3A). We identified
four peptides to which serum reactivity was significantly more
prevalent in individuals with high compared with low pre-GMT
(Po0.05, false discovery rate (FDR) Qo0.1; Figure 3B). This
result indicated that individuals with a high pre-vaccine HAI
titer, associated with poor responses here and elsewhere, are
more likely to have antibodies directed against peptides H1_23,
H3_5, H3_8 and BH14 corresponding to potential linear HA
epitopes from each of the virus strains in the vaccine.

Pre-existing antibodies to HA peptides and
prediction of the HAI response

We next addressed the possibility that the pre-existing
antibodies to HA peptides were also associated with and

could predict the HAI titer in response to the vaccine. To do so,
we used the ‘elastic net’ (Friedman et al, 2010) with fivefold
cross validation, a machine learning procedure that enables
the discovery of relevant features from high-dimensional data
and estimates the performance of the resulting prediction
model, such that the most informative factors are selected out
of the pool of available parameters in an automated manner, to
generate the model with the lowest error. In the fivefold cross
validation, the samples are randomly partitioned into five sets,
of which four sets are used to ‘train’ the algorithm and blindly
predict the outcome of the fifth set (test set). This process is
repeated iteratively five times until all sets are tested. Then a
cross-validated area under the ROC curve (cvAUROC) can be
computed to assess the goodness of the model without the
known problem of overfitting.

By this procedure, we built a first model (Model 1) that
included age, and identified a total of 19 potential epitopes
recognized by pre-vaccine antibodies, resulting in an

PBMCDensity gradient 
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Gene expression 47 k (Illumina HT-12v3 microarray)
Whole blood 

Serum

Serum cytokines 50-plex (Luminex MAP-200) 

Cell subset phenotyping 
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Figure 1 Study design. Blood samples are obtained before (d0) and 28±7 days (d28) after a single intramuscular inoculation of the seasonal inactivated influenza
vaccine. Samples from d0 are used for gene expression analysis, hemagglutinin 20-mer peptide microarrays, determination of serum cytokines and chemokines, cell
subset phenotyping and signaling responses to cytokine stimulations on CD4þ and CD8þ T cells, B cells and monocytes, as well as the phosphorylation of PLC-g and
Akt upon BCR crosslinking on B cells. Serum samples from d0 and d28 are utilized for determination of anti-influenza antibody titers by the HAI assay. Measurements
from d0 are processed and subjected to computational modeling for prediction of the antibody response.
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Figure 2 Antibody responses to the influenza vaccine in young and older subjects. Serum samples obtained from 89 vaccine recipients before and B3 weeks after
vaccination are assayed for HAI against each vaccine strain of the influenza virus to determine the antibody response to the vaccine. Seroconversion (X4-fold increase)
is calculated and the number of strains that subjects seroconverted against is used to define response categories; seroconversion to 0 or 1 strain is considered as a poor
response (PR), whereas seroconversion to 2 or all 3 strains is considered as a good response (GR) to the vaccine (A). (B) Percentage of PR and GR for young and older
subjects. (C) Pre-vaccine geometric mean titer for all strains in young versus older subjects. **P-value o0.01.
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cvAUROC¼ 0.754 (Figure 4A), which is significantly better
than the model including age alone (Model 2), which yielded
an cvAUROC¼ 0.686 (Po0.0001 by likelihood-ratio test). Not
surprisingly, in Model 1 age had the largest regression
coefficient (contribution to the model; Figure 4B). Of note,
two of the peptide predictors identified in Model 1 (H1_23,
NH2-FALSRGFGSGIINSNAPMD-COOH and H3_8, NH2-
SSGTLEFNNESFNWTGVTQ-COOH) were significantly more
prevalent in subjects with high pre-GMT (Figure 3B) and
neither of these peptide predictors were age-associated (see
below). Thus, we identified two HA peptides that contribute to
distinguish individuals with a high versus low pre-vaccine HAI
titer and to which high antibody levels are negatively
associated with the HAI activity in response to influenza
vaccination.

We then tested the predictability and changes in the
selection of predictors when age is removed from the model
(Model 3) and only peptide variables are used to predict the
HAI response. By performing this procedure, 26 peptides were
selected, yielding a cvAUROC¼ 0.711, only moderately better
than the model where age is used as the only predictor
(Po0.001, by likelihood-ratio test). Intriguingly, pre-vaccine
reactivity to several sets of adjacent peptides was computa-
tionally selected for the prediction model when the contribu-
tion of age was removed (Figure 4C). The fact that clusters of
adjacent peptides (both by sequence and within the three-
dimensional structure of HA) were selected in these models
highlights potential HA epitopes important for inhibiting the
binding of influenza virus to cells.

Age-related pre-existing antibodies against HA
peptides

To investigate whether reactivities to HA peptides were
different in young versus older individuals, we performed
simple regression analysis on each peptide variable and age,
and corrected for multiple testing using permutation tests
(Benjamini and Hochberg, 1995). Older subjects showed
differences in the pre-existing reactivity to 11/72 peptides at
an FDRo20% (Po0.05, FDR Qo0.2; Supplementary Table 1);

three of which were selected as predictors of vaccine response
in Model 1 and four in Model 3 (Figure 4C, asterisks).

These findings demonstrate that the levels of some pre-
existing antibodies targeting viral HA peptides correlate with
pre-vaccine HAI titers and with the magnitude of the HAI
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Figure 3 Pre-existing antibodies to HA peptides that correlate with pre-vaccine HAI antibody titers (pre-GMT). Individuals were sorted by pre-GMT levels and divided
into high or low pre-GMT (A) and reactivities against HA peptides were compared (B). A significantly higher fraction of samples reactive to peptides H1_23, H3_5, H3_8
and BH14 were found in individuals with high pre-GMT compared with low pre-GMT (Po0.05 by Student’s t-test). Red circles¼ young, green circles¼ older.
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antibody response to each of the three strains in TIV. The fact
that the antibody levels to some of these peptides are lower in
older subjects might reflect differences in influenza strain
exposure or changes in their antibody repertoire with age
(Yager et al, 2008).

Baseline parameters and prediction of the HAI
response: Models 1 and 2

We next tested the hypothesis that the baseline levels of
immune parameters and subjects’ characteristics are indica-
tive of an ability to respond to vaccination. To do so, we first
generated gene modules from whole-blood gene expression
data and estimated their corresponding regulatory programs
using a method similar to what has previously been described
(Segal et al, 2003). Of a total of 48 771 gene probes in the
microarray per sample, we derived 109 gene modules and their
corresponding regulatory programs (Supplementary Table 2
and Methods). In addition to these gene modules, we also
explored other immune parameters, including serum proteins,
immune cell subsets, signaling events and the subjects’
characteristics, such as demographics and CMV and EBV
serological status. A total of 241 variables were used for feature
selection and prediction of the antibody response. As with the
peptide microarray data, we performed cross validation using
the elastic net algorithm (Friedman et al, 2010), which is well
suited for scenarios having more features than samples.

We first generated two models as with the peptide array
data: Model 1 (including all features) that selected nine
relevant features, which correlated with the HAI response and
resulted in a cvAUROC¼ 0.844 (Figure 5A), and Model 2
in which the immune features are excluded and only age is
used to predict the HAI response. The latter model with age
alone predicted the HAI response with an accuracy of
cvAUROC¼ 0.694, which is significantly less accurate than
our full model (P¼ 0.000012 by likelihood-ratio test).

Only one of the nine features identified in Model 1 (gene
module 47) had a positive regression coefficient (Figure 5B).
This gene module is enriched in genes involved in apoptosis
(Po0.01; module ‘APO’), including (1) GSTP1, which sup-
presses the anti-apoptotic protein JNK (Gate et al, 2004; Yu
et al, 2004), (2) the STAT4 inhibitor PIAS4, which stimulates
transcriptional activity of p53 and increases Rb-dependent
corepression through recruitment to E2F-responsive promoter
(Bischof et al, 2006; Zhang et al, 2004), (3) IL17D, which acts
by downregulating Tcell-mediated immune hypereactivity and
proinflammatory cytokine production (Hamano et al, 2003;
Villarino et al, 2003; Owaki et al, 2008; Yoshimoto et al, 2008)
and (4) ZNF-148 (also known as ZBP-89), which encodes for a
protein that binds to p53 and p21 (waf1), enhancing their
transcriptional activity (Bai and Merchant, 2001; Zhang et al,
2010). Our regulatory program analysis indicated that the gene
module APO is likely repressed by IRF9, XBP-1 and Bcl-3,
among other transcription factors (Supplementary Figure 2)
that promote cell proliferation and survival in diverse cell
types, and negatively associate with apoptosis (Takaoka et al,
2003; Tsuno et al, 2009; Thorpe and Schwarze, 2010). Of note,
XBP-1 also controls expression of IL-6, which in turn, promotes
plasma cell growth and survival (Iwakoshi et al, 2003).

Age and pre-GMTwere selected as negative predictors of the
HAI response in Model 1, which is consistent with previous
reports (Beyer et al, 1996, 1999; Beyer et al, 2004; He et al,
2008). Gene module 85 had a negative regression coefficient as
well, and is composed of genes associated with the regulation
of B-cell proliferation (Po0.0001; module ‘PROL’), such as
CDK6, BCS1L, PBX4, CD320 and CD40L. The regulatory
program of the PROL module indicated that it is likely
repressed by TSC-22d1 (TGF-stimulated clone 22), implicated
in the TGF-mediated apoptosis (Uchida et al, 2000) and the
androgen receptor (AR) coregulator ARA70 (NCOA4), which is
known to be repressed by Akt and has been found to act as a
tumor suppressor by inducing AR-dependent apoptosis (Ligr
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et al, 2010). Activators of this gene module include the
following: (1) PHB2, an anti-apoptotic factor upregulated by
Myc (O’Connell et al, 2003) (2) ID3, a target of Blimp-1 and
essential for B-cell proliferation (Pan et al, 1999) and (3)
STAT4. Of note, PIAS4, a suppressor of STAT4, was found in
the APO module (Supplementary Table 2), a positive predictor
of vaccine response (see above).

This suggested that upregulation of genes in the APO
module and the concomitant downregulation of genes found
in the PROL module is beneficial for cell renewal and optimal
antibody production in response to immunization, which is
consistent with the notion that the limited niche availability
restricts the number of cells to respond to antigenic challenges
(Discussion and Franceschi et al, 2000). Indeed, interesting
data from Xiang et al (2007) demonstrated that crosslinking
the IgG receptor FcgRII induces apoptosis of bone marrow
plasma cells in mice and of plasmablasts in humans likely
contributing to cell turnover (Xiang et al, 2007). This prompted
us to compare the expression of the FcgRIIB gene (FCGR2B) in
PRs versus GRs. However, there was not sufficient variation in
the expression levels of FCGR2B for its selection and gene
module construction (Methods). Therefore, we focused on
FcgRIIA (FCGR2A), as in mice FcgRIIB and FcgRIIIA exert
similar pro-apoptotic characteristics (Fang et al, 2012), and
mouse FcgRIIIA is predicted to be the counterpart of human
FcgRIIA in terms of functionality and sequence similarity in
the extracellular portion.

Strikingly, FCGR2A clustered with a number of genes
participating in cell apoptosis in module 54 (Supplementary
Table 2), with differential expression between PRs and GRs
(Supplementary Figure 3) and selected for prediction of the
HAI response in Model 3 (see below). This suggests that
diverse pathways implicated in apoptosis must function
properly for a high cell turnover and the establishment of
new antibody-producing cells.

To determine whether apoptosis genes were also linked to
the presence of pre-existing antibodies to the potential linear

epitopes identified using the peptide array technology, we
divided the subjects according to their gene expression levels
of the module APO into high or low, if they were above or
below the group average, respectively (Figure 6A). As
anticipated, the fraction of GRs was much higher in
subjects with high expression of genes in the module
APO (P¼ 0.00007). Significant differences were also observed
in many of the pre-existing antibodies to linear determinants
(Po0.05, FDR Qo0.1; Figure 6B). Of note, some of these
antibodies (Figure 6B, asterisks) were identified to be
predictive of the HAI response in our previous analyses
(Figure 4).

For serum cytokines, we found that soluble Fas ligand
(sFasL) and IL-12p40 were negative predictors (Figure 5B).
sFasL prevents membrane-bound FasL from binding to Fas,
thereby decreasing susceptibility to apoptosis (Knox et al,
2003). This strengthens our previous findings and indicates
that the presence of soluble apoptosis inhibitors could affect
the antibody response to vaccination.

Additional immune features that were selected in Model 1
were the frequency of central-memory CD4þ and effector-
memory CD8þ Tcells, and the baseline STAT1 levels in CD8þ
T cells, which are elevated in the elderly and negatively
correlate with the pSTAT response to diverse cytokine stimuli.

Baseline parameters and prediction of the HAI
response: Model 3

We next tested the possibility that new immune features may
emerge from the classification model when age is excluded
from the list of candidate predictors (Model 3). Indeed,
excluding age resulted in the identification of a new set of
features in addition to those previously discovered
(Figure 7A), and yielded a cvAUROC¼ 0.700, which is similar
to Model 2 (age alone). Model 3 included four positive and four
negative additional associations (Figure 7A and B). The
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positive predictors were the CD8þ naive T-cell frequency,
gene module 34 (cell-to-cell signaling and interaction,
Po0.01), gene module 43 (RNA post-transcriptional modifica-
tion, Po0.01) and gene module 54 (cell death by apoptosis,
Po0.01). The negative predictors incorporated in Model 3
were the frequency of CD8þ CD28� cells and of NK cells, and
modules 79 and 92 both enriched for genes associated with
metabolism of carbohydrates (Po0.01). In addition to age and
pre-GMT, the frequency of CD8þ CD28� cells was the only
feature identified in previous studies to associate with poor
vaccine response in the elderly (Goronzy et al, 2001).

The fact that three apoptosis-related features (module 47,
module 54 and sFasL) correlated with a strong vaccine
response motivated us to investigate these findings in a mouse
model. Thus, we tested two strains of mice lacking CD95 (Fas);
MRL/Mpj-Faslpr/J) and B6.MRL-Faslpr/J. In addition to the
lack of Fas, plasma cells from these mice do not express
FcgRIIB and, therefore, they are also protected from FcgRII-
mediated apoptosis (Xiang et al, 2007). After vaccination with
TIV, mice lacking Fas on either genetic background showed a
significant reduction in their ability to produce influenza-
specific antibodies (Po0.05 by t-test) (Figure 8A and B), which
suggests a critical role of the apoptosis system in the antibody
response in vivo.

Age-dependent and independent predictors of
vaccine response

It has been well established that many older individuals fail to
generate protective antibody titers following vaccination with
TIV. Therefore, given our model for feature selection where
features are not necessarily orthogonal, i.e., they can correlate
with one another (Methods); some of the predictors could be
correlated with age. To identify age-dependent and -indepen-
dent features in our data, for each predictor we performed a

multiple regression analysis on all samples by age, gender and
CMV status (Supplementary Table 3). We used an FDR lower
than 5% (Po0.05; FDR Qo0.05) as a cut-off value for
significance. Of the 16 immune predictors selected in Model
3, only 2 were not associated with age (Supplementary
Figure 3, asterisks). These are the levels of sFasL and
expression of the PROL module (module 85). The elderly
expressed low levels of positive predictors and high levels of
negative predictors (Supplementary Table 3), with the excep-
tion of pre-GMT, which were reduced in older compared with
young subjects. This suggests that the effect of age on the
antibody response overcomes the effect of pre-existing
immunity to the vaccine.

Discussion

In this study, we comprehensively characterized the immune
system of young and older subjects across multiple technolo-
gical platforms and identified new candidate traits that
associate with and partially predict the humoral response to
vaccination in both a young and an old cohort.

We first characterized the reactivity of influenza-specific
antibodies recognizing HA peptides from baseline serum
samples with the aims of (1) examining the HA-linear epitope
specificities in the pre-vaccine antibodies and (2) finding the
minimal set of pre-existing antibodies that could potentially
explain the negative effect of baseline HAI titers on the
response to the influenza vaccine observed here and elsewhere
(Beyer et al, 1996; He et al, 2008). We found a set of four
peptides, the reactivities of which correlated with the pre-
vaccination HAI titer. In two of these, robust activity negatively
correlated with the HAI response to influenza vaccination.
Thus, our system can rapidly identify GRs from PRs based on
their pre-vaccination antibody repertoire against HA protein
regions with known neutralization activity (Khurana et al,
2009), as conserved sequences are characteristic for
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neutralization epitopes on HA across different influenza virus
strains (Yamashita et al, 2010). The negative effect of pre-
existing antibodies on the response to vaccination has been
suggested to be due to pre-existing flu-specific memory CD4þ
T cells that inhibit antigen-presentation by dendritic cells,
thereby suppressing the subsequent CD4þ T-cell help to B
cells (He et al, 2008). Therefore, it is possible that such
memory CD4þ T cells are able to maintain a background
T-cell-dependent antibody production represented by the
reactivities against the linear epitopes we found here. Further
studies are needed to clarify the mechanisms underlying these
observations.

We identified both negative and positive peptide predictors
of the HAI response, many of which were age-associated.
These may partially explain the overall poor response
observed in aging. However, neither of the reactivities to
peptides associated with pre-vaccine HAI changed with age,
although the levels of baseline HAI titers were lower in older
subjects. This could be due to the limitations of the assay that
(1) does not detect conformational epitopes and (2) does not
allow for the identification of antibodies that depend on
glycosylation for binding. Several previous studies have
compared the pre-GMT (baseline titers) with influenza in
elderly versus young individuals with no general consensus
(Clark et al, 2009; Vajo et al, 2010; Chen et al, 2011; Ehrlich
et al, 2012). These discrepancies have been examined in detail
by Sasaki et al (2011) who used plasmablast-derived poly-
clonal antibodies and found greater influenza-specific broad

reactivity of antibodies from older versus young vaccine
recipients. Thus, the pre-GMT in the elderly is more dependent
on their previous exposure history than that of young subjects.
This is relevant for vaccinology, as it suggests differential
strategies in young versus older subjects based on the
historical findings of circulating strains.

Additional predictors of vaccine response included various
immune features connected with apoptosis function. Consis-
tent with this, apoptosis-deficient (lpr) mice exhibited poor
serologic responses to the influenza vaccine. It is known that
the lpr mice have defects in T-cell and B-cell development.
Thus, our results might not be only due to apoptosis defects in
these mice (although this is suggested by the apoptosis gene
modules and sFasL), but these other factors. However, there is
no agreement as to whether the germinal center (GC)
formation and B-cell responses in these mice are normal
(Smith et al, 1995; Takahashi et al, 2001). In particular, our
results argue against a previous study that reported memory
and antibody-forming cell populations appear to be normal in
lpr mice (Smith et al, 1995). However, more recent studies
have shown that these mice have defects in clonal selection
and the establishment of the memory B-cell repertoire
(Takahashi et al, 2001).

Apoptosis has a fundamental role in lymphocyte develop-
ment and in the termination of the immune response. In the GC
reaction, an optimal apoptotic machinery ensures the survival
of only high-affinity plasmablasts (Smith et al, 2000;
Takahashi et al, 1999), which we found to decrease with age
in a recent study (Sasaki et al, 2011). In addition, a functional
Fas-mediated pro-apoptotic program is required for clearance
of reactive Tand B cells after an immune response takes place
(Nagata, 1999), as well as for augmentation and maintenance
of naive cells, which ultimately results in an optimal balance
between the naive and memory cell pools (Zhou et al, 1995).
When an immune response ends, the expanded clones of
effector cells must be reduced in size. This allows the immune
system to cope with new influenza virus challenges, such as
those originating from antigenic drift and/or found in a new
influenza vaccine preparation. Thus, the appropriate regula-
tion of apoptosis and rapid removal of reactive memory cells
may improve immune responses to newly encountered
antigenic challenges as observed in the study by Haynes et al
(2005), in which new functional CD4þ naive T cells
developed after CD4þ T-cell depletion in aged and young
mice, restoring optimal responses to antigen (Haynes et al,
2005). This has a number of implications for vaccination and
suggests possible ways to overcome, at least partially, the
immune system defects observed here. This would also
suggest competition and a restricted immunological niche
largely occupied by memory cells that, unless cross-reactive,
cannot respond optimally to novel antigens.

We also find an age-dependent reduction in the gene
modules associated with apoptosis. However, at the level of
the serum cytokine sFasL, there was no difference between
young and older subjects. This indicates that aging results in
the accumulation of factors contributing to less cell renewal
and complements previous observations of decreased suscept-
ibility to apoptosis in cells from older subjects (Zhou et al,
1995; Salvioli et al, 2001; Hsu and Mountz, 2010). Indeed, Hsu
et al (2006) showed that T cells from nonagenarians have
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Figure 8 Antibody responses to vaccination in apoptosis-deficient mice. Fas-
deficient (squares) or control (circles) mice were vaccinated with a single
intramuscular injection of the seasonal trivalent inactivated influenza vaccine and
specific anti-vaccine IgG levels were measured by ELISA before and B4 weeks
after vaccination. Results from four MRL/Mpj-Faslpr/J (Mpj/lpr) and four MRL/
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much higher levels of Fas and increased activation-induced
cell death than subjects 65 to 89 years old (Hsu et al, 2006),
suggesting that apoptosis is beneficial in maintaining good
immune health and attaining a longer life span. Although the
role of apoptosis in the maintenance of immune tolerance has
been well established, to the best of our knowledge, its
association with a robust antibody response to a vaccine has
not been shown previously.

The accumulation of memory cells in those older subjects
who do not respond to vaccination could also be due to chronic
antigenic stimulation. Thus, it has been postulated that the
constant activation of clonal T-cell populations may lead to
increasing numbers of memory cells filling the immunological
space and compromising responses to newly encountered
antigens (De Martinis et al, 2005). Our results indicate that the
increasing size of the memory compartment in older indivi-
duals that do not respond well could result from a loss of pro-
apoptotic activity and increased levels of cell survival factors.
Indeed, recent investigations have shown that memory CD4þ
Tcells are more resistant to apoptosis than naive CD4þ Tcells
(Grayson et al, 2002; Jaleco et al, 2003) and, at the gene
expression level, memory CD4þ Tcells express lower levels of
pro-apoptotic-related genes and higher levels of cell survival
and proliferation-related genes (Liu et al, 2001).

Our study also identifies a link between cell survival and
proliferation, and defective antibody responses. We found that
the CD40L gene clustered in a module enriched for prolifera-
tion genes (module PROL), which is a negative indicator of the
vaccine response. Although molecules in the gene module
PROL (e.g., CD40L, CD320) are critical for plasmablast growth
and survival, results from different studies suggest that
elevated proliferation signals from these molecules have a
detrimental effect. For example, heightened CD40 signaling
causes B cells to shunt into an extrafollicular plasma cell fate
and this prevents the generation of long-lived bone-marrow
plasma cells. This has consequences for the B-cell response,
including the premature termination of the humoral immunity
and the disruption of GC formation in vivo (Erickson et al,
2002). Therefore, it is appealing to hypothesize that weaker
responses to the vaccine in individuals with augmented CD40L
expression result from the preferential generation of extra-
follicullar plasma cells that compromise the accumulation of
somatic mutations in the GC B cells, dampening late-appearing
high-affinity antibodies, as demonstrated in transgenic CD40L
mice (Kishi et al, 2010). An interesting finding in support of
this hypothesis is the impairment in GC formation found in old
mice with poor responses to vaccine (Eaton et al, 2004).
Further studies in humans could potentially address this.

Our results also suggest the presence of other genes in the
PROL module with similar functions to that of CD40L, which
could contribute to the diminished antibody responses. For
example, the gene CD320 has been shown to participate in GC
differentiation by directing B cells to mature into plasma cells
(Zhang et al, 2001).

The large variation in the responses to vaccines in humans
creates a number of challenges. We have utilized a ‘systems
biology’ approach that allows us to embrace this variation and
to integrate diverse measurements in the same individuals to
generate hypothesis on how a system functions. Systems
biology approaches, which have been extensively applied in

the study of metabolism networks and genetics, have only
recently been utilized in vaccinology (Gaucher et al, 2008;
Querec et al, 2009; Nakaya et al, 2011). For instance, a recent
study by Nakaya et al (2011) has been successful in finding
features of the innate immune response, 3 and 7 days after
influenza vaccination, which partially predict the subsequent
antibody response in young, healthy adults. One of the genes
the authors found in their predictive signatures and confirmed
in a mouse model, encoding for the Ca2þ /calmodulin kinase
IV (CaMKIV), was inversely correlated with the HAI response
to the influenza vaccine. This kinase has been implicated in the
regulation of CRE-dependent transcription (Sato et al, 2006)
and, consistent with our findings, a recent study has shown the
requirement of CaMKIV for the accumulation of the anti-
apoptotic molecules Bcl-2 and Bcl-x and the survival of DCs
(Illario et al, 2008). Despite the fact that we did not find
CaMKIV in our predictive gene modules, we hypothesize that
CaMKIV could also prevent apoptosis in other immune cells,
resulting in an overall low cell renewal and poor immune
response. The study of Nakaya et al (2011) is therefore
complementary to the work described here, which identifies
biomarkers before vaccination in different compartments of the
human immune system, and across age groups. Being able to
predict whether or not an individual will respond productively
to a given vaccine is important clinically, because if the
prognosis is poor, one might choose not to vaccinate or choose
a more potent formulation. For example, in seasonal influenza
vaccines, there is a 4� formulation that has been reported to
be more efficacious than the standard one used here
(DiazGranados et al, 2013), and adjuvanted influenza vaccines,
although not yet licensed in the United States, are available in
many other countries.

In summary, we have used immune aging as a model for
impaired immunity and identified biomarkers that point to
what factors have the greatest role in the response to a
seasonal influenza vaccine, now recommended annually for
all persons older than 6 months of age with few exceptions. An
important feature of our approach is that each individual is
profiled for many facets of the immune system. This enables us
to observe within single individuals or across groups of
individuals the relationship between multiple factors as well
as the effects these factors have on the immune response.
Ultimately, this methodology, applied to further studies of
influenza or other vaccines and infections, should enable us to
gain a more complete understanding of immune system
function and dysfunction, as well as identifying key variables
and mechanisms of immunological health (Davis, 2008).

Materials and methods

Subjects and sample collection

Ninety-one healthy donors (ages 20 to 489 years) were enrolled in an
influenza-vaccine study at the Stanford-LPCH Vaccine Program during
the fall of 2008 of which eighty-nine completed the study. The protocol
of this study was approved by the Institutional Review Board of the
Research Compliance Office at Stanford University. Informed consent
was obtained from all subjects in the study. All individuals were
ambulatory and generally healthy as determined by clinical records.
Females of childbearing potential were tested for pregnancy by a urine
sample. Volunteers had no acute systemic or serious concurrent
illness, no history of immunodeficiency, nor any known or suspected
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impairment of immunologic function, including clinically significant
liver disease, diabetes mellitus treated with insulin, moderate to severe
renal disease, blood pressure 4150/95 at screening, chronic hepatitis
B or C, and recent or current use of immunosuppressive medication. In
addition, none of the volunteers were recipients or donors of blood or
blood products within the past 6 months and 6 weeks, respectively, nor
showed any signs of febrile illness on the day of enrollment and
baseline blood draw. A total of B40 ml per visit peripheral blood were
obtained at day 0 (pre-vaccine) and 28±7 days after receiving a single
intramuscular dose of trivalent seasonal influenza vaccine Fluzone
(Sanofi Pasteur). Each dose of the vaccine contained 15 mg HA each of
H1N1, H3N2 and B strains of the virus. Whole blood was used for gene
expression analysis (below). Peripheral blood mononuclear cells
(PBMCs) were obtained by density gradient centrifugation (Ficoll-
Paque) and frozen at � 801C for 24–48 h before transferring to LN2.
Serum was separated by centrifugation of clotted blood and was stored
at � 801C before use. Whole blood, PBMCs or serum from the first visit
(baseline: day 0) were processed and used for determination of gene
expression, leukocyte subset frequency, signaling responses to
stimulation, serum cytokine and chemokine levels, and CMV and
EBV serostatus by ELISA (Calbiotech, San Diego, CA). Serum samples
from day 0 and day B28 were used for HAI titer determination.

HA microarray design and fabrication

We printed streptavidin-surface glass slides (Arrayit, Sunnyvale, CA)
with biotinylated 19-mer peptides (Sigma Aldrich, St Louis, MO) at
0.5 mg/ml in PBS plus 2.5% glycerol (Sigma) in triplicate using a
VersArray ChipWriter Compact robotic microarrayer and ChipWriter
Pro software (BioRad). We then blocked printed peptide arrays with
biotin at 0.1 mg/ml (Sigma) in PBS for 10 min at room temperature
(RT) with 500 r.p.m. orbital agitation. After several washes with
peptide-binding buffer (PBB): 50 mM Tris pH 7.5, 150 mM NaCl, 0.05%
NP-40 plus 2.5% FCS, we incubated the arrays with the subject’s sera
diluted in PBB. Following primary incubation for 2.5 h at RTwith light
rocking agitation, we rinsed the arrays with PBB, then with PBST (PBS,
pH 7.5 with 0.05% Tween-20), before incubating with goat anti-mouse
IgG or goat anti-human IgG conjugated to Cy3 (Jackson ImmunoR-
esearch) diluted to 1.5mg/ml in PBST plus 20% FCS for 30 min at RT.
We then rinsed arrays several times in PBST, then with PBS and finally
with diH20, and dried arrays by centrifugation at 300 g for 5 min at RT.
We immediately scanned processed microarrays with an Axon digital
scanner and analyzed scanned images with Genepix Pro 6.1 software
(Molecular Devices, Sunnyvale, CA).

Whole-blood microarray analysis of gene
expression

Total RNAwas extracted from PAXgene blood RNA tubes (PreAnalytiX,
USA) using the QIAcube automation RNA extraction procedure
according to the manufacturer’s protocol (Qiagene, Valencia, CA).
The amount of total RNA, and A260/A280- and A260/A230-nm ratios
were assessed using the NanoDrop 1000 (Thermo Fisher Scientific,
Wilmington, DE). RNA integrity was assessed using the Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA). For each sample,
750 ng of total RNA were hybridized to Beadchips (HumanHT-12v3
Expression Bead Chip, Illumina, San Diego, CA) that contains 48 771
probes for around 25 000 annotated genes. The hybridized Beadchips
were scanned on an Illumina BeadScan confocal scanner and were
analyzed by Illumina’s GenomeStudio software, version 2.0. After
checking the quality of each individual array, the Feature Extraction
Files were imported into R Bioconductor and analyzed using the
Beadarray package for probe filtering, quantile normalization,
replicate probe summarization and log2 transformation. The original
microarray probe-level data files were entered into the GEO repository
under accession number GSE41080.

Leukocyte subset frequency determination

PBMCs were thawed in warm media, washed twice and stained with
three separate anti-human antibody cocktails containing: (1) anti-CD3

AmCyan, CD4 Pacific Blue, CD8 APCH7, CD28 APC; (2) CD3 AmCyan,
CD4 Pacific Blue, CD8 APCH7, CD27 PE, CD45RA PE-Cy5; and (3) CD3
AmCyan, CD19 Alexa Fluor700, CD56 PE, CD33 PE-Cy7, TCR APC, all
reagents from BD Biosciences. Incubation with antibodies was
performed for 40 min at 41C. Cells were washed with FACS buffer
(PBS supplemented with 2% FBS and 0.1% Na Azide) and
resuspended in 200 ml FACS buffer. Data were collected using DIVA
software in an LRSII instrument (BD Biosciences). Data analysis was
performed using FlowJo 8.8.6 by gating on live cells based on forward
versus side-scatter profiles, then using double gating for singlet
discrimination, followed by cell subset-specific gating.

Phosphorylation of intracellular proteins by pFlow

Cells were thawed in warm media and rested at 371C in RPMI with 10%
FBS. Cells were then distributed in 96 deep-well blocks (2 ml) and
stimulated with IFN-g, IL-2, IL-6, IL-7, IL-10 or IL-21 at 50 ng/ml or
with 104U/ml IFN-a for 15 min. After stimulation, cells were
immediately fixed with 1.5% PFA for 10 min at RT, washed with an
excess of plain PBS and permeabilized with 95% ice-cold methanol for
20 min on ice. Different stimuli conditions were barcoded using a 3� 3
matrix with Pacific Orange and Alexa Fluor 750 (Invitrogen Corp.) at
0.03 and 0.04mg/ml for low and 0.2 and 0.3 mg/ml for high staining,
respectively. Incubation with barcoding dyes was performed at 41C for
30 min. After several washes with FACS buffer, stimulated and
barcoded cells were pooled into single tubes and stained for 30 min
at 41C, with an antibody cocktail containing anti-pSTAT1 Alexa Fluor
488, pSTAT3 Alexa Fluor 647, pSTAT5 PE, CD3 Pacific Blue, CD4
PerCP-Cy5.5, CD20 PerCP-Cy5.5 and CD33 PE-Cy7 (all from BD
Phosflow). After washing, cells were resuspended in FACS buffer and
acquisition was performed on an LSRII instrument (BD Biosciences).
Data were collected using DIVA software. Data analysis was performed
using FlowJo 8.8.6. by gating on live cells, then using double gating for
singlet discrimination, followed by cell subset-specific gating. Phos-
phorylation of STAT1, 3 and 5 proteins in B cells, CD4� or CD4þ
CD3þ T cells, or monocytes was analyzed by deconvolution of
stimuli-specific gating. Baseline levels and fold increase between
stimulated and unstimulated conditions were calculated using the 90th
percentile fluorescence intensity of the pSTAT1, 3 or 5 signals.

Phosphorylation of Akt and PLC-g was assessed in B cells by
crosslinking of the B-cell receptor. After resting PBMC samples at 371C
(as conducted for cytokine stimulations), cells were distributed in
V-bottom 96-well plates at 0.5�106 cells per well, and incubated for
4 min at 371C in CO2 incubator with anti-IgM and anti-IgG both at
10mg/ml (BD Biosciences) and 3% H2O2 for phosphatase inhibition.
Cells were then fixed with 1.5% PFA for 10 min at RT. After washing
twice with plain PBS, cells were permeabilized by 20 min incubation in
95% ice-cold methanol. Cells were then washed with FACS buffer and
stained with an antibody cocktail containing: CD3 Pacific Blue, CD20
PerCp Cy5.5, CD27 PE Cy7, PLGg2 (BD Biosciences) and pAkt-S473
Alexa Fluor 488 (Cell Signaling Technologies, Danvers MA). After 30 min
incubation at 41C, cells were washed in FACS buffer and analyzed by
flow cytometry (as for cytokine stimulation). Median fluorescence
intensity was recorded and used for the calculation of baseline levels of
phosphorylated proteins and fold increase after BCR stimulation.

Serum cytokine levels determination

Cytokines were measured by a Luminex system (Luminex Corp.,
Austin, TX). The 50-plex kits were purchased from Millipore and were
used according to manufacturer’s recommendations, with modifica-
tions as described below. Briefly, serum samples were mixed with
antibody-linked polystyrene beads on 96-well filter plates and
incubated at RT for 2 h followed by overnight incubation at 41C.
Plates were then vacuum filtered and washed twice before 2 h
incubation with biotinylated detection antibody. Samples were filtered
as above, washed twice and incubated with streptavidin-PE for 40 min,
then filtered and washed twice again before resuspending in reading
buffer. Each sample was measured in duplicate. Plates were read using
a Luminex LabMap200 instrument with a lower bound of 100 beads
per sample per measured cytokine. The Luminex LabMap200 outputs
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the fluorescence intensity of each bead measured for a given cytokine
in a sample. For each well, we considered the median fluorescence
intensity (MFI) of all beads measured for a given cytokine and
averaged the MFI of the two replicates. Values were normalized to a
control sample ran in each of the plates.

HAI assay

The HAI assay was performed on sera from day 0 and day 28 using a
standard technique (Webster et al, 2002); serially diluted 25-ml aliquots
of serum samples in PBS were mixed with 25-ml aliquots of virus,
corresponding to 4 HA units, in V-bottom 96-well plates (Nunc,
Rochester, NY, USA) and incubated for 30 min at RT. At the end of the
incubation, 50 ml of 0.5% chicken red blood cells were added and
incubated for a minimum of 45 min before reading for HAI activity. The
HAI titer of a given sample was defined as the reciprocal of the last
serum dilution with no HA activity. A titer of five was assigned to all
samples in which the first dilution (1:10) was negative. Seroconversion
has been defined as an increase of at least fourfold in the antibody titer
from pre- to post-vaccination. Categories of vaccine PRs, if serocon-
version was achieved for 0 or 1 strain, and vaccine GRs, if
seroconversion was achieved for 2 or all 3 strains were utilized to
account for both the strength and the breadth of the response.

Vaccination of CD95� /� mice and ELISA for
detection of influenza-specific antibodies

Mutant mice MRL/Mpj-Faslpr/J (Mpj/lpr) and B6.MRL-Faslpr/J (B6/
lpr), and MRL/MpJ (Mpj) and C57BL/6L (B6) control mice were
obtained from Jackson Laboratories (Bar Harbor, ME). Young mice
(5–7 weeks of age) were housed at the Stanford Animal Facility until
the protocol was completed. All mice were handled in accordance with
APLAC and Stanford University animal care guidelines. Four male
mice per group in the Mpj background, six male B6/Lpr and three B6
mice were given a single intramuscular dose (1/50 dilution,B1 mg HA)
of the trivalent 2008 seasonal influenza vaccine Fluzone (Sanofi
Pasteur). Samples were obtained from tail blood draws before and B4
weeks after vaccination. Serum was separated by centrifugation and
stored at � 801C until collection of all samples. Vaccine-induced
influenza-specific antibodies levels were determined by ELISA as
follows. Ninety-six-well Vinyl Microtiter Microplates were coated with
2008 TIV (Fluzone) at 1 mg/ml in PBS. Plates were incubated
overnight at 41C, washed with wash buffer (0.1% of Tween 20 in
PBS) and blocked with blocking buffer (3% BSA in PBS) for 1 h at 371C.
Serum samples were serially diluted with blocking buffer, added to the
wells of coated/blocked plates and incubated for 1 h at 371C.
Wells incubated with blocking buffer only served as negative control.
The plates were then washed, incubated for 1 h at 371C
with peroxidase-conjugated goat anti-IgG (KPL) diluted 1:2000
with blocking buffer. After washing, the plates were developed with
TMB substrate (KPL) and the OD450nm of each well determined with
an ELISA plate reader.

pFlow normalization scheme

We analyzed 89 samples across 13 different plates. Fold change due to
stimulation was computed as the ratio of the cell, cytokine stimulation,
phospho-protein measure to the raw, unnormalized, cell phospho-
protein matching baseline that was measured on the same plate. Fold-
change values were then normalized by the median fold-change
difference of a given cell cytokine stimulation phospho-protein
measure within a given plate. We tested each assay for plate-dependent
differences and no significant differences between plates were detected
post-day normalization.

Gene module construction

Of a total of 48 771 gene probes in the microarray per sample, we first
selected 6234 (s.d. cutoff value of 0.24) and subsequently normalized

their expression by centering and scaling the expression so that each
gene’s expression across all subjects had euclidean norm equal to 1 for
purposes of clustering. We utilized hierarchical agglomerative
clustering with average linkage, euclidean distance and a height cutoff
value of 1.5 to derive 109 modules. For each gene module, we assigned
a set of regulatory genes (regulatory program), based on regression
analysis of genes in the modules onto expression of transcription
factors using a Akaike Information Criterion (AIC;Akaike, 1974). To do
so, we used a set of candidate regulators composed of known signaling
and transcription factors, 394 in total (Supplementary Table 4), of
which 188 met the s.d. cutoff value. Briefly, we performed linear
regression with elastic net penalty of each module’s expression
onto the set of regulators using LARS-EN algorithm with l2 penalty
weighted by 0.01. The LARS-EN algorithm provides fits of increasing
number of predictors. To select the best model among the outputs of
LARS-EN, we assessed quality of the resulting models by AIC,
with sample specific terms weighted by within-module variance. The
fit with the best AIC score was selected for each module. Gene modules
and their regulatory programs can be accessed at http://www.cs.
unc.edu/Bvjojic/fluy2/.

Cross validation and feature selection for
prediction of antibody response to vaccination

An integral part of our training algorithm is a procedure for fitting a
logistic regression model with l1 and l2 penalties, the elastic net
penalty, a regularization algorithm that uses cyclical coordinate
descent in a pathwise fashion as described (Friedman et al, 2007,
2010). The optimization cost can be stated as:

1

n

Xn

t¼ 1

logð1þ expð� ytðbTxt þ aÞÞÞþ l
Xp

i¼ 1

j bi j þ k
Xp

i¼ 1

b2
i ;

where n is the number of donors in the sample, p is the number of
predictors, xt denotes a vector of predictor values for subject t and yt is
the observed outcome (PRs versus GRs based on the seroconversion to
0–1 or 2–3 strains, respectively). We assume all of our predictors
are standardized to mean 0 and s.d. 1. The result of our fitting
procedure is the set of predictor weights b and intercept a for the
logistic regression model. In practice, penalty weights l and k in Eq. 1
are set by a data-driven procedure, such as cross validation. The
minimum lwas chosen to yield the highest AUC with the minimum set
of features. For prediction of vaccine response using peptide
predictors, we applied sevenfold cross validation with the aim of
including at least 10 subjects per set (these experiments were
conducted in 76 subjects only). For prediction of HAI response using
blood measurements (gene module expression levels, serum proteins,
pFlow conditions, immune cell subsets), all 89 subjects were included.
Hence, eightfold cross validation was performed to include at least 10
subjects per test set.

Gene enrichment analysis

Genes from each module were explored by using Ingenuity Pathway
Analysis for function enrichments. Data was imported and Core
Analysis was performed with the following setting: Data Source:
Ingenuity Expert Findings; Confidence: Experimentally Observed,
TarBase, Protein–protein Interactions, Additional interactions; Spe-
cies: Human. Most significant function enrichment for each module
were explored in selected modules and were used for quality control.
As an example, regression of each module by age and gender
(Supplementary Table 3) identified a gene module (106) highly
correlated with gender (r¼ 0.714, P-value¼ 7.9�10�14) of which 17
genes (42% of total genes in module) are Y chromosome-linked genes.

Function enrichment with highest significance, cell death and cell
cycle, is reported from predictive modules APO and PROL, respec-
tively. In addition, all genes in these modules and module regulators
with highest regression coefficient or with known function were
manually curated using a variety of sources including PubMed, IPA
and BIOBASE Knowledge Library.
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Data availability

Gene modules and their regulatory programs can be
accessed at http://www.cs.unc.edu/Bvjojic/fluy2/. Probe-level
expression data was submitted to the GEO repository under
accession number GSE41080.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Friedman J, Hastie T, Höfling Holger, Tibshirani Robert (2007)
Pathwise coordinate optimization. Ann Appl Stat 1: 302–332

Khurana S, Suguitan Jr AL, Rivera Y, Simmons CP, Lanzavecchia A,
Sallusto F, Manischewitz J, King LR, Subbarao K, Golding H (2009)
Antigenic fingerprinting of H5N1 avian influenza using
convalescent sera and monoclonal antibodies reveals potential
vaccine and diagnostic targets. PLoS Med 6: e1000049

Kishi Y, Aiba Y, Higuchi T, Furukawa K, Tokuhisa T, Takemori T,
Tsubata T (2010) Augmented antibody response with premature
germinal center regression in CD40L transgenic mice. J Immunol
185: 211–219

Knox PG, Milner AE, Green NK, Eliopoulos AG, Young LS (2003)
Inhibition of metalloproteinase cleavage enhances the cytotoxicity
of Fas ligand. J Immunol 170: 677–685

Ligr M, Li Y, Zou X, Daniels G, Melamed J, Peng Y, Wang W, Wang J,
Ostrer H, Pagano M, Wang Z, Garabedian MJ, Lee P (2010) Tumor
suppressor function of androgen receptor coactivator ARA70alpha
in prostate cancer. Am J Pathol 176: 1891–1900

Liu K, Li Y, Prabhu V, Young L, Becker KG, Munson PJ, Weng N (2001)
Augmentation in expression of activation-induced genes
differentiates memory from naive CD4þ T cells and is a
molecular mechanism for enhanced cellular response of memory
CD4þ T cells. J Immunol 166: 7335–7344

Molinari NA, Ortega-Sanchez IR, Messonnier ML, Thompson WW,
Wortley PM, Weintraub E, Bridges CB (2007) The annual impact of
seasonal influenza in the US: measuring disease burden and costs.
Vaccine 25: 5086–5096

Nagata S (1999) Fas ligand-induced apoptosis. Ann Rev Genet 33:
29–55

Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining
WN, Means AR, Kasturi SP, Khan N, Li GM, McCausland M,
Kanchan V, Kokko KE, Li S, Elbein R, Mehta AK, Aderem A,

Subbarao K, Ahmed R, Pulendran B (2011) Systems biology of
vaccination for seasonal influenza in humans. Nat Immunol 12:
786–795

O’Connell BC, Cheung AF, Simkevich CP, Tam W, Ren X, Mateyak MK,
Sedivy JM (2003) A large scale genetic analysis of c-Myc-regulated
gene expression patterns. J Biol Chem 278: 12563–12573

Owaki T, Asakawa M, Morishima N, Mizoguchi I, Fukai F, Takeda K,
Mizuguchi J, Yoshimoto T (2008) STAT3 is indispensable to IL-27-
mediated cell proliferation but not to IL-27-induced Th1
differentiation and suppression of proinflammatory cytokine
production. J Immunol 180: 2903–2911

Pan L, Sato S, Frederick JP, Sun XH, Zhuang Y (1999) Impaired
immune responses and B-cell proliferation in mice lacking the Id3
gene. Mol Cell Biol 19: 5969–5980

Pawelec G, Larbi A (2008) Immunity and ageing in man: Annual
Review 2006/2007. Exper Gerontol 43: 34–38

Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A,
Gernert K, Deng J, Marzolf B, Kennedy K, Wu H, Bennouna S, Oluoch
H, Miller J, Vencio RZ, Mulligan M, Aderem A, Ahmed R, Pulendran B
(2009) Systems biology approach predicts immunogenicity of the
yellow fever vaccine in humans. Nat Immunol 10: 116–125

Salvioli S, Bonafe M, Capri M, Monti D, Franceschi C (2001)
Mitochondria, aging and longevity–a new perspective. FEBS Lett
492: 9–13

Sasaki S, Sullivan M, Narvaez CF, Holmes TH, Furman D, Zheng NY,
Nishtala M, Wrammert J, Smith K, James JA, Dekker CL, Davis
MM, Wilson PC, Greenberg HB, He XS (2011) Limited efficacy of
inactivated influenza vaccine in elderly individuals is associated
with decreased production of vaccine-specific antibodies. J Clin
Invest 121: 3109–3119

Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K,
Morishita Y, Asahara H, Ohya K, Yamaguchi A, Takai T, Kodama T,
Chatila TA, Bito H, Takayanagi H (2006) Regulation of osteoclast
differentiation and function by the CaMK-CREB pathway. Nat Med
12: 1410–1416

Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N
(2003) Module networks: identifying regulatory modules and their
condition-specific regulators from gene expression data. Nat Genet
34: 166–176

Smith KG, Light A, O’Reilly LA, Ang SM, Strasser A, Tarlinton D (2000)
bcl-2 transgene expression inhibits apoptosis in the germinal center
and reveals differences in the selection of memory B cells and bone
marrow antibody-forming cells. J Exp Med 191: 475–484

Smith KG, Nossal GJ, Tarlinton DM (1995) FAS is highly expressed in
the germinal center but is not required for regulation of the B-cell
response to antigen. Proc Natl Acad Sci USA 92: 11628–11632

Takahashi Y, Cerasoli DM, Dal Porto JM, Shimoda M, Freund R, Fang
W, Telander DG, Malvey EN, Mueller DL, Behrens TW, Kelsoe G
(1999) Relaxed negative selection in germinal centers and impaired
affinity maturation in bcl-xL transgenic mice. J Exp Med 190:
399–410

Takahashi Y, Ohta H, Takemori T (2001) Fas is required for clonal
selection in germinal centers and the subsequent establishment of
the memory B cell repertoire. Immunity 14: 181–192

Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H,
Sasaki S, Imai K, Shibue T, Honda K, Taniguchi T (2003) Integration
of interferon-alpha/beta signalling to p53 responses in tumour
suppression and antiviral defence. Nature 424: 516–523

Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson
LJ, Fukuda K (2003) Mortality associated with influenza and
respiratory syncytial virus in the United States. JAMA 289: 179–186

Thorpe JA, Schwarze SR (2010) IRE1alpha controls cyclin A1
expression and promotes cell proliferation through XBP-1. Cell
Stress Chaperones 15: 497–508

Tsuno T, Mejido J, Zhao T, Schmeisser H, Morrow A, Zoon KC (2009)
IRF9 is a key factor for eliciting the antiproliferative activity of
IFN-alpha. J Immunother 32: 803–816

Uchida D, Kawamata H, Omotehara F, Miwa Y, Hino S, Begum NM,
Yoshida H, Sato M (2000) Over-expression of TSC-22 (TGF-beta

Biomarkers predicting influenza vaccine responses
D Furman et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 13



stimulated clone-22) markedly enhances 5-fluorouracil-induced
apoptosis in a human salivary gland cancer cell line. Lab Invest 80:
955–963

Vajo Z, Tamas F, Sinka L, Jankovics I (2010) Safety and
immunogenicity of a 2009 pandemic influenza A H1N1 vaccine
when administered alone or simultaneously with the seasonal
influenza vaccine for the 2009-10 influenza season: a multicentre,
randomised controlled trial. Lancet 375: 49–55

Villarino A, Hibbert L, Lieberman L, Wilson E, Mak T, Yoshida H,
Kastelein RA, Saris C, Hunter CA (2003) The IL-27R (WSX-1) is
required to suppress Tcell hyperactivity during infection. Immunity
19: 645–655

Webster R, Cox N, Stohr K (2002) WHO Manual on Animal Influenza
Diagnosis and Surveillance. World Health Organization, CDS/CSR/
NCS/2002.5

Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of
the immune system. Transpl Int 22: 1041–1050

Xiang Z, Cutler AJ, Brownlie RJ, Fairfax K, Lawlor KE, Severinson E,
Walker EU, Manz RA, Tarlinton DM, Smith KG (2007)
FcgammaRIIb controls bone marrow plasma cell persistence and
apoptosis. Nat Immunol 8: 419–429

Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman
MA (2008) Age-associated decline in Tcell repertoire diversity leads
to holes in the repertoire and impaired immunity to influenza virus.
J Exp Med 205: 711–723

Yamashita A, Kawashita N, Kubota-Koketsu R, Inoue Y, Watanabe Y,
Ibrahim MS, Ideno S, Yunoki M, Okuno Y, Takagi T, Yasunaga T,
Ikuta K (2010) Highly conserved sequences for human
neutralization epitope on hemagglutinin of influenza A viruses
H3N2, H1N1 and H5N1: Implication for human monoclonal

antibody recognition. Biochem Biophys Res Commun 393:
614–618

Yoshimoto T, Morishima N, Mizoguchi I, Shimizu M, Nagai H, Oniki S,
Oka M, Nishigori C, Mizuguchi J (2008) Antiproliferative activity of
IL-27 on melanoma. J Immunol 180: 6527–6535

Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J, Lin A (2004)
JNK suppresses apoptosis via phosphorylation of the proapoptotic
Bcl-2 family protein BAD. Mol Cell 13: 329–340

Zhang CZ, Chen GG, Lai PB (2010) Transcription factor ZBP-89 in
cancer growth and apoptosis. Biochim Biophys Acta 1806: 36–41

Zhang J, Xu LG, Han KJ, Wei X, Shu HB (2004) PIASy represses TRIF-
induced ISRE and NF-kappaB activation but not apoptosis. FEBS
Lett 570: 97–101

Zhang X, Li L, Jung J, Xiang S, Hollmann C, Choi YS (2001) The distinct
roles of Tcell-derived cytokines and a novel follicular dendritic cell-
signaling molecule 8D6 in germinal center-B cell differentiation.
J Immunol 167: 49–56

Zhou T, Edwards 3rd CK, Mountz JD (1995) Prevention of age-related T
cell apoptosis defect in CD2-fas-transgenic mice. J Exp Med 182:
129–137

Molecular Systems Biology is an open-access
journal published by the European Molecular

Biology Organization and Nature Publishing Group. This
work is licensed under a Creative Commons Attribution-
Noncommercial-No Derivative Works 3.0 Unported Licence.
To view a copy of this licence visit http://creativecommons.
org/licenses/by-nc-nd/3.0/.

Biomarkers predicting influenza vaccine responses
D Furman et al

14 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

	title_link
	Introduction
	Results
	Antibody responses to influenza vaccination in young versus older vaccine recipients
	Pre-existing antibodies to HA peptides and pre-vaccine HAI titer

	Table 1 
	Pre-existing antibodies to HA peptides and prediction of the HAI response

	Figure™1Study design. Blood samples are obtained before (d0) and 28PlusMinus7 days (d28) after a single intramuscular inoculation of the seasonal inactivated influenza vaccine. Samples from d0 are used for gene expression analysis, hemagglutinin 20-mer pe
	Figure™2Antibody responses to the influenza vaccine in young and older subjects. Serum samples obtained from 89 vaccine recipients before and sim3 weeks after vaccination are assayed for HAI against each vaccine strain of the influenza virus to determine 
	Age-related pre-existing antibodies against HA peptides

	Figure™3Pre-existing antibodies to HA peptides that correlate with pre-vaccine HAI antibody titers (pre-GMT). Individuals were sorted by pre-GMT levels and divided into high or low pre-GMT (A) and reactivities against HA peptides were compared (B). A sign
	Figure™4Hemagglutinin peptides targeted by pre-existing antibodies that predict the antibody response to the influenza vaccine. Pre-vaccine serum reactivity to HA peptides for each of the three strains was subjected to feature selection and prediction of 
	Baseline parameters and prediction of the HAI response: Models 1 and 2

	Figure™5Baseline blood measurements that predict the antibody response to the influenza vaccine. Diverse measurements from pre-vaccine samples were used for feature selection and prediction of the HAI response. The cross-validated area under the ROC curve
	Baseline parameters and prediction of the HAI response: Model 3

	Figure™6Pre-existing antibodies to HA peptides that correlate with expression of apoptosis module. Individuals were sorted and divided by expression levels of genes in the APO module (A) and reactivity to HA peptides was compared between individuals with 
	Age-dependent and independent predictors of vaccine response

	Discussion
	Figure™7Immune features from Model 3 that associate with and predict the HAI response to TIV. The cross-validated area under the ROC curve (cvAUROC) for Model 3 is depicted in A and the selected immune features that associate with and predict the HAI resp
	Figure™8Antibody responses to vaccination in apoptosis-deficient mice. Fas-deficient (squares) or control (circles) mice were vaccinated with a single intramuscular injection of the seasonal trivalent inactivated influenza vaccine and specific anti-vaccin
	Materials and methods
	Subjects and sample collection
	HA microarray design and fabrication
	Whole-blood microarray analysis of gene expression
	Leukocyte subset frequency determination
	Phosphorylation of intracellular proteins by pFlow
	Serum cytokine levels determination
	HAI assay
	Vaccination of CD95-sol- mice and ELISA for detection of influenza-specific antibodies
	pFlow normalization scheme
	Gene module construction
	Cross validation and feature selection for prediction of antibody response to vaccination
	Gene enrichment analysis

	Data availability
	A6
	Supplementary informationSupplementary information is available at the Molecular Systems Biology website (www.nature.com/msb).We are grateful to all our volunteers for agreeing to participate in this study. We also thank Yueh-hsiu Chien, Rob Tibshirani, J

	ACKNOWLEDGEMENTS
	A7




