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A B S T R A C T

Modifications of histone proteins are fundamental to the regulation of epigenetic phenotypes. Dysregulations of
histone modifications have been linked to the pathogenesis of diverse human diseases. However, identifying
differential histone modifications in patients with immune-mediated diseases has been challenging, in part due
to the lack of a powerful analytic platform to study histone modifications in the complex human immune system.
We recently developed a highly multiplexed platform, Epigenetic landscape profiling using cytometry by Time-
Of-Flight (EpiTOF), to analyze the global levels of a broad array of histone modifications in single cells using
mass cytometry. In this review, we summarize the development of EpiTOF and discuss its potential applications
in biomedical research. We anticipate that this platform will provide new insights into the roles of epigenetic
regulation in hematopoiesis, immune cell functions, and immune system aging, and reveal aberrant epigenetic
patterns associated with immune-mediated diseases.

1. Introduction

The field of epigenetics, which studies the links between genotypes
and phenotypes, has emerged to be key to our understanding of cellular
development and functions [1]. With the exception of antigen receptor
loci in lymphocytes, all cells in the human immune system, from he-
matopoietic stem cells to terminally differentiated immune cells, share
identical genomic content. Nevertheless, the diverse immune cell sub-
types (e.g. B, T, NK cells, and monocytes) and their distinct functional
subgroups (e.g. naïve and memory, helper and cytotoxic T cells) best
exemplify the degree of phenotypic variations that can be derived from
the same genome. At the individual level, rich data from twin-based
studies have found a large collection of human traits, including sus-
ceptibility to autoimmune diseases [2], discordant between genetically
identical twins [3], suggesting the importance of molecular mechan-
isms other than genetics underlying the heterogeneity of these human
traits.

In recent years, epigenetics often refers to research on chromatin-
based events that regulate DNA-templated biological processes [4].
Chromatin, the nuclear structure containing nucleic acids wrapped

around core histone proteins, is the physiologically relevant template
atop of which DNA-based biological processes, such as transcription,
replication, and recombination, occur. Compaction of chromatin into
higher-order structure precludes DNA-binding of transcription factors
and other trans-acting regulators to loci that are rendered inaccessible.
The extent to which chromatin is packaged and the accessibility of the
underlying DNA can thus influence transcription programs and other
biological functions, leading to diverse phenotypes without altering
DNA sequence. Post-translational modifications of histone proteins
(chromatin marks) are fundamental to the regulation of chromatin
dynamics [5]. For instance, covalent modifications of histone proteins
such as acetylation and phosphorylation modulate chromatin packa-
ging through disruption of DNA-histone electrostatic interactions [5].
Further, these chromatin marks create unique docking sites for mod-
ification-dependent protein-protein interactions at chromatin [6],
which stabilize chromatin binding of protein complexes mediating
chromatin remodeling or other unique DNA-templated biological
functions. Finally, distinct sequences and modification patterns of his-
tone variants relative to their canonical counterparts alter chromatin
structure, nucleosome stability, and interactions with chromatin-
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binding proteins [7]. Together, histone modifications act in concert
with other molecular mechanisms such as cytosine methylation and
noncoding RNAs to regulate chromatin dynamics and, therefore, epi-
genetic phenotypes.

Until recently, studying the regulatory roles of chromatin marks in
hematopoiesis and immune functions has been hindered by technical
difficulties associated with conventional experimental methods.
Chromatin immunoprecipitation (ChIP) and Western blotting require a
large number of cells and only generate averaged snapshots of cell
populations that are potentially heterogeneous. The results fall short of
demonstrating the individuality of immune cells and taking into ac-
count the heterogeneity within a population of cells. On the other hand,
although immunofluorescence and immunohistochemistry allow single-
cell measurements of chromatin marks, the low throughput and labor-
intensive protocols prevent the assays from being widely applied to
immunology research. To overcome these limitations, we leveraged the
multiplexing capacity and single-cell resolution of mass cytometry to
develop a new analytical platform, Epigenetic landscape profiling using
cytometry by Time-Of-Flight (EpiTOF), for profiling the cellular levels
of a diverse array of chromatin marks in single immune cells. In this
review, we first summarize the design of EpiTOF and the methods to
construct antibody panels for analyzing chromatin marks. We describe
the selection and validation of antibodies, sample processing, and data
pre-processing, normalization, analysis, and visualization. We discuss
how EpiTOF data will enrich our understanding of chromatin-based
regulation of epigenetic phenotypes, in the contexts of hematopoietic
development, immune responses against pathogens and/or external
stimuli, and the pathobiology of immune-mediated diseases.

2. EpiTOF assay design

The landmark invention of mass cytometry (i.e. Cytometry by Time-
Of-Flight or CyTOF) has revolutionized the fields of cytometry and
single-cell phenotypic and functional analyses [8]. Staining cells with
lanthanide-labeled antibodies followed by detection using mass spec-
trometry greatly increases the number of parameters that can be ex-
tracted from individual cells [9, 10]. This is a significant advancement
in comparison with the conventional fluorescence-based flow cyto-
metry, which is inevitably limited by spectral overlap between fluor-
ochromes. The latest generation of mass cytometer is tuned to detect
atomic mass between 75 and 209. Thirty-five lanthanides are readily
available commercially (Fluidigm, CA) to construct customized anti-
body panels. To establish antibody panels for EpiTOF, 35 lanthanide
channels are assigned to conjugate to three categories of antibodies: i)
antibodies targeting chromatin marks; ii) antibodies recognizing total
histones in a modification-independent fashion; and iii) antibodies
against immunophenotypic markers to reveal immune cell identity.

The sensitivity of mass cytometry to detect signals from different
lanthanide channels is not uniformly distributed across the mass
window. Thulium (Tm)-169 yields the greatest signal, and the sensi-
tivity declines for atomic mass with increasing distance from Tm-169.
For this reason, a recommendation has been to assign channels sur-
rounding Tm-169 for the detection of low-abundance markers [11]. We
generally place chromatin marks in the center of the mass window
where maximal sensitivity can be achieved. However, chromatin marks
known to be present at high levels in cells, for instance, di-methylation
of H4 at lysine 20 (H4K20me2) that has been shown to mark up to 85%
of all H4 molecules [12], may be detected using channels with less-
than-optimal sensitivity. Similarly, well-characterized im-
munophenotypic markers such as lineage-specific CD3, CD14, CD19
and CD56 may be detected using atomic mass distant from Tm-169. It is
important to note that methanol-based permeabilization is used in
EpiTOF to achieve maximal permeabilization in order to reveal epitopes
in nuclei. However, epitopes of many cell surface markers are sensitive
to methanol, and hence the selection of antibodies against im-
munophenotypic markers needs to be carefully validated.

Further, we incorporate several methods in EpiTOF to ensure that
high-quality data are collected and that accurate comparisons are made
between biological samples. First, we employ pulse treatment with the
DNA-intercalating drug cisplatin to distinguish live cells from dead cells
with compromised plasma membranes [13]. This viability staining is
especially crucial for cryopreserved clinical samples, where the viability
of cells can vary greatly due to sample processing and long-term sto-
rage. Second, we perform intracellular staining of chromatin marks in a
single tube where cells from independent samples are labeled with
palladium barcodes [14, 15]. Sample barcoding is essential for EpiTOF
in order to minimize technical variability and to eliminate doublet
events during data collection. Third, we integrate two antibodies re-
cognizing bulk histone proteins independent of modifications in EpiTOF
panels to serve as controls for single-cell variations in total histone
content, nuclear epitope accessibility, and background signals propor-
tional to proteome size and complexity. Lastly, we preferably select
monoclonal antibodies (over polyclonal antibodies) for EpiTOF to en-
hance long-term assay reproducibility.

3. Selection and validation of affinity reagents targeting
chromatin marks

Post-translational modifications (PTMs) of histone proteins have
been extensively studied, with greater than 130 modifications detected
at over 60 sites on histones [16]. Nucleosomes containing non-cano-
nical histone variants with unique PTM patterns further expand the
diversity of chromatin modifications [17]. We prioritize and select
chromatin marks for EpiTOF based on the following criteria: i) involved
in the regulation of pivotal cellular and/or physiological functions; ii)
known to be dysregulated or associated with human diseases; iii) gen-
erated and removed by known chromatin-modifying enzymes; iv) that
can be pharmacologically manipulated by approved or investigational
drugs; and v) against which highly specific affinity reagents are avail-
able (Fig. 1A).

The next critical steps in early EpiTOF development include the
identification and validation of chromatin mark-specific antibodies. We
adopt several strategies to test the specificity of commercially available
antibodies against chromatin marks and their compatibility with cyto-
metry-based assays. Only antibodies capable of detecting known
changes in chromatin marks in flow and/or mass cytometry assays are
selected.

3.1. Pharmacological inhibition of chromatin-modifying enzymes

The highly druggable characteristics of chromatin-modifying en-
zymes and the reversible nature of chromatin-based epigenetic phe-
nomena led to the development of many FDA-approved drugs and drug
candidates at various stages of clinical trials [18]. For instance, a potent
lysine methyltransferase EZH2 inhibitor, Tazemetostat (EPZ-6438), has
demonstrated promising efficacy in treating various forms of hemato-
logical malignancies and solid tumors [19, 20]. Inhibition of EZH2 by
Tazemetostat reduces the levels of all three degrees of methylation on
histone H3 at lysine 27 (H3K27me1/2/3). While several clones of
monoclonal antibodies can detect Tazemetostat-induced H3K27me re-
duction using western blotting (Fig. 1B), we found that clone MABI
0323 not only accurately detects repressed H3K27me3 levels in Taze-
metostat-treated cells but also demonstrates the best signal-to-noise
dynamic range in CyTOF (Fig. 1C). Based on the results, MABI 0323
was chosen for EpiTOF.

3.2. Manipulation of the expression of chromatin-modifying enzymes

During antibody validation, we altered the levels of enzymes that
catalyze the generation or removal of chromatin marks to create cells
with differential chromatin marks. Transient transfection of the deu-
biquitinases USP21 or USP49 reduces ubiquitination of H2A at lysine

P. Cheung et al. Clinical Immunology 196 (2018) 40–48

41



(caption on next page)

P. Cheung et al. Clinical Immunology 196 (2018) 40–48

42



119 (H2AK119ub) or H2B at lysine 120 (H2BK120ub), respectively [21,
22]. Ectopic overexpression of the lysine demethylase KDM4A/JMJD2A
removes di- and tri-methylation of H3 at lysines 9 and 36 (H3K9me2/3
and H3K36me2/3), resulting in the accumulation of the mono-methy-
lated species at these residues (H3K9me1 and H3K36me1) [23]. Simi-
larly, overexpression of KDM4D/JMJD2D leads to decreased H3K9me2
and H3K9me3 in cells [23]. Lysine methyltransferases SUV420H1 and
SUV420H2 catalyze di- and tri-methylation of H4 at lysine 20
(H4K20me2/3) using mono-methylated H4K20 residues as a substrate
[12]. Cells overexpressing SUV420H1 and SUV420H2 show elevated
H4K20me2/3 and decreased mono-methylation (H4K20me1) levels.
Using these cellular systems where the expression of chromatin-mod-
ifying enzymes is experimentally increased, we selected highly specific
monoclonal antibodies for EpiTOF.

Additionally, RNAi- or CRISPR-mediated depletion of key regulators
of chromatin marks may be employed to manipulate global levels of
chromatin marks. For instance, knocking down the expression of
WDR5, an essential component of several protein complexes that cat-
alyze H3 methylation at lysine 4 (H3K4me), by RNAi reduces the bulk
of di- and tri-methylation of H3K4. Similarly, RNAi-mediated depletion
of lysine methyltransferase SETD2 specifically reduces tri-methylation
of H3 at lysine 36 (H3K36me3) [24]. CRISPR-mediated deletion of
arginine methyltransferase PRMT1, which generates over 90% of
asymmetric di-methylarginine (ADMA) in cells [25], results in accu-
mulation of mono-methylarginine (MMA). Deletion of the allele of ly-
sine methyltransferase NSD2/MMSET/WHSC1 overexpressed in mul-
tiple myeloma cells carrying t(4;14) chromosomal translocation reduces
di-methylation of H3 at lysine 36 (H3K36me2). Using these experi-
mental systems, we identified additional monoclonal antibodies sui-
table for EpiTOF.

3.3. Induction of differential chromatin marks by external stimuli

Many chromatin marks are known to be induced in response to
external stimuli or under specific growth conditions. Genotoxic stress
such as neocarzinostatin (NCS) treatment induces phosphorylation of
H2AX at serine 139 (γ-H2AX), which then recruits DNA damage repair
machinery to double-strand break sites [26]. The chemotherapy agent
etoposide induces an apoptosis marker, phosphorylation of H2B at
serine 14 (H2BS14ph), in acute promyelocytic leukemia cells [27]. We
identified monoclonal antibodies recognizing γ-H2AX or H2BS14ph for
EpiTOF using NCS- or etoposide-treated cells, respectively. To find af-
finity reagents recognizing crotonylation marks, we cultured cells in
media containing high concentrations of crotonate, increasing in-
tracellular crotonyl-CoA concentrations and promoting protein croto-
nylation [28]. This system allowed the identification of an anti-croto-
nylated lysine antibody for EpiTOF.

3.4. Cell cycle-dependent changes in chromatin marks

Elevated phosphorylation of histones, in particular at several re-
sidues of H3, is a signature of mitosis [29]. Co-staining of cycling cells
with antibodies recognizing phosphorylated histones and reagents
measuring DNA content allows us to test if antibodies specifically mark

mitotic cells with duplicated DNA content. We adopted this strategy to
identify antibodies against H3 phosphorylated at serine 10 (H3S10ph)
[30] and H3.3 phosphorylated at serine 31 (H3.3S31ph) [31]. Toza-
sertib, which inhibits H3S10ph-catalyzing Aurora kinases, abolishes the
positive staining [32]. The same experimental system may be used to
validate other mitotic markers such as H3 phosphorylation at threonine
3 (H3T3ph) [33] and serine 28 (H3S28ph) [34]. Additionally, histones
that are newly-synthesized during S phase are marked with H4 acet-
ylation at lysine 5 (H4K5ac) [35]. We selected the antibody clone that
can optimally detect this enrichment in cells undergoing DNA replica-
tion for EpiTOF.

Despite an extensive search for affinity reagents against several
physiologically and pathologically important chromatin marks for
EpiTOF, we were unable to identify antibodies that can accurately de-
tect differential levels of several chromatin marks by CyTOF. For in-
stance, inhibition of lysine methyltransferase DOT1L by Pinometostat
reduces the bulk of H3 methylation at lysine 79 (H3K79me) [36].
Several monoclonal antibodies can identify reduced H3K79me in Pi-
nometostat-treated cells by western blotting under denaturing condi-
tions (Fig. 1D). However, none is able to detect similar changes in mass
cytometry assays, where chromatin structure is maintained in the na-
tive state (Fig. 1E). Similarly, we were unable to find affinity reagents,
either monoclonal antibodies or modification-recognizing protein
modules (e.g. methyl-CpG-binding domains (MBDs)) [37], to detect
azacytidine (DNA methyltransferase inhibitor)-induced reduction in
DNA methylation by CyTOF [38]. Given the critical functions of these
chromatin marks in normal physiological functions and in human dis-
eases, and that potent inhibitors modulating these modifications are
available and have been used in treating human patients, it is important
in future studies to identify or develop monoclonal antibodies against
these chromatin marks with high specificity and compatibility with
CyTOF.

4. Data pre-processing and normalization

For peripheral blood mononuclear cells (PBMCs) samples, approxi-
mately 1e05 cells are required to obtain sufficient events for rare im-
mune cells such as circulating dendritic cells and hematopoietic pro-
genitors. After identifying cells from individual samples using
palladium barcodes, the immune cell subtype of each event is de-
termined using immunophenotypic markers, generating a dataset con-
taining the levels of a broad spectrum of chromatin marks in millions of
individual single cells.

A regression model has been successfully employed to correct for
morphological variations between biological samples of flow cytometry
data [39]. Analysis of EpiTOF datasets comparing doublet with singlet
events shows approximately two-fold signals in doublets across all
chromatin marks and total histones, indicating the linear nature of
these measurements. We therefore applied a linear regression model
utilizing signals from total histones as predictor variables to obtain
normalized chromatin mark levels independent of the variations in total
histones. Using cells with differential levels of chromatin marks, in-
cluding Tezametostat-treated cells with reduced H3K27me3 and mul-
tiple myeloma cells carrying a t(4;14) chromosomal translocation with

Fig. 1. Selection and Validation of Affinity Reagents for EpiTOF.

(A) Overview of EpiTOF platform.
(B) Validation of H3K27me3 antibodies under denaturing condition. Western blotting analysis of whole-cell extract from Jurkat cells cultured in the absence or

presence of EZH2 inhibitor Tazemetostat using the indicated monoclonal antibodies. Control, DMSO-treated cells.
(C) Validation of H3K27me3 antibodies under native condition. Mass cytometry analysis of the cells as in (B) using the indicated monoclonal antibodies. Contour

plots: x-axis, antibodies against total histone H3; y-axis, antibodies against H3K27me3. Percentage of cells in each quadrant is shown.
(D) Validation of H3K79me antibodies under denaturing condition. Western blotting analysis of whole-cell extract from Jurkat cells cultured in the absence or

presence of DOT1L inhibitor Pinometostat using the indicated monoclonal antibodies. Control, DMSO-treated cells.
(E) Validation of H3K79me antibodies under native condition. Mass cytometry analysis of the cells as in (D) using the indicated monoclonal antibodies. Contour

plots: x-axis, antibodies against total histone H3; y-axis, antibodies against H3K79me. Percentage of cells in each quadrant is shown.
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elevated H3K36me2 (Fig. 2A), the residuals after correction by linear
model (normalized mark levels) are near normally distributed (Fig. 2B).
This suggests that our data analysis fully corrects the signals captured
by antibodies against total histones. This approach allows us to com-
pare the levels of chromatin marks between cells and between samples,
while taking into account the variability in histones expression and
non-specific signals shared by all antibodies (Fig. 2C).

5. EpiTOF data analysis and visualization

Typically, an EpiTOF dataset comprises billions of data points de-
rived from over 100,000 immune cells from each barcoded biological
sample. Over 70 parameters, including chromatin marks, im-
munophenotypic markers, viability staining and sample barcodes, are
collected from individual cells. The complexity of the dataset requires
extensive bioinformatic and biostatistical analyses.

5.1. An overview of chromatin modification profiles of various immune cell
populations

We utilize multi-dimension heatmaps to present a global view of a
typical EpiTOF dataset. Using EpiTOF analysis of three leukemia and
lymphoma cell lines, U937, Jurkat and OCI-Ly8, as an example
(Fig. 3A), averages of normalized chromatin mark levels (residuals after
correction by linear model) are computed for individual chromatin
marks in each cell line and are represented by the color in the heatmap.
Signals from each chromatin mark are rescaled, with 0 representing the
average across all three cell lines. Warm colors indicate higher-than-
average levels of chromatin marks, whereas cold colors show levels
lower than the average. Chromatin marks and the three cell lines are
shown at the x- and y-axes, respectively, which are both ordered based

on unsupervised clustering. Site-specific proteolytic cleavage of histone
H3 at threonine 22 (Thr22) is observed at a higher level in U937 cells in
comparison with Jurkat and OCI-Ly8 cells. The differential levels of
cleaved H3 Thr22 are validated by western blotting on whole cell ex-
tracts from these three cell lines (unpublished data). When multiple
biological samples are analyzed and the heatmap color represents the
averages of chromatin marks across several donors or patients, we use
circle size to demonstrate the biological heterogeneity using Simpson's
diversity index. This data visualization method allows us to gain a rapid
and high-level view on the chromatin modification profiles of in-
dividual immune cell subtypes and to compare differential levels of
chromatin marks between immune cell subsets.

5.2. Single-cell chromatin modification profiles

At the single-cell level, dimensionality reduction algorithms such as
principal component analysis (PCA) [40] are employed to visualize the
variance in chromatin modification profiles between and within im-
mune cell subtypes. Each principal component is a linear combination
of several chromatin marks that account for the maximal variance in
chromatin modification profile in the dataset. We can then plot single
cells in a reduced-dimension space (2D or 3D) where the first 2-3
principal components explain as much variance in the dataset as pos-
sible. Each data point represents a single cell, which is color-coded
based on the immune cell subtype. For instance, using the dataset de-
scribed in Fig. 3A, single cells from the three cell lines, painted with
distinct colors, are situated in a three-dimension space where each di-
mension (principal component) is calculated based on different com-
binations of chromatin marks (Fig. 3B). Despite the fact that all cells are
immortal, single cells from the three cell lines are clustered by cell lines,
suggesting that they remain distinct at the epigenetic level. Other

Fig. 2. Normalization of EpiTOF Data.

(A) Raw EpiTOF data. Mass cytometry analysis of control (DMSO) and Tazemetostat-treated Jurkat cells (top) or KMS11 and TKO1 cells (bottom) using the indicated
antibodies. Contour plots: x-axis, antibodies against total histone H3; y-axis, antibodies against H3K27me3 (top) or H3K36me2 (bottom). Percentage of cells in
each quadrant is shown.

(B) Distributions of linear regression residuals of EpiTOF data. Histograms of linear regression residuals of the data in (A). x-axis, residual levels; y-axis, numbers of
cells with given residual levels; top, H3K27me3 in DMSO (left)- or Tazemetostat (right)-treated Jurkat cells; bottom, H3K36me2 in KMS11 (left) or TKO1 (right)
cells.

(C) Normalized EpiTOF data. Box plots show the normalized H3K27me3 (top) or H3K36me2 (bottom) levels of the cells in (B). y-axis, normalized chromatin mark
levels (residuals of a linear model using total H3 as predictor variable).
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visualization tools can also be employed. For example, t-Distributed
Stochastic Neighbor Embedding (t-SNE) is a powerful dimensionality
reduction technique for identifying non-linear relationships between
single cells [41], which can be overlooked in PCA due to the linear
transformation of variables. t-SNE analysis of single cells from the three
cell lines described above reveals closer relationships between B cell
lymphoma OCI-Ly8 and T cell leukemia Jurkat cells, relative to their
distances from the myeloid lymphoma cells U937 (Fig. 3C). We have
used both PCA and t-SNE to visualize the segregations of single cells
between immune cell subtypes or biological samples based on their
chromatin modification profiles. Importantly, this analysis has the po-
tential to find previously uncharacterized immune cell subsets defined
by chromatin marks.

5.3. Clustering and segregation of biological samples based on epigenetic
markers

We used PCA to visualize the variance in chromatin modification
profiles between samples from different subjects or patients. For in-
stance, Fig. 3D shows the PCA of an EpiTOF dataset containing the
levels of 40 chromatin marks in 11 immune cell subtypes (440 data
points) from five healthy donors. The first principal component, which
explains 64.7% of the variance of the dataset, separates donors with
cytomegalovirus (CMV) infection from others who are CMV-ser-
onegative. Investigating the variables selected by PCA from the 440
parameters allows us to identify specific chromatin marks that best
contribute to the separation of subjects by the first principal compo-
nent. For EpiTOF datasets containing different groups of biological
samples, such as immune cells purified from healthy donors or patients
with rheumatic diseases, or clinical trial samples from placebo-con-
trolled or treatment arms, we performed PCA to find epigenetic sig-
natures shared by individual groups of samples and to identify chro-
matin marks segregating one group from another. Markers representing
individual samples on PCA plots can be labeled with different colors,
shapes, and sizes to present additional layers of clinical information
available for the samples, such as disease severity scores, treatment
groups, sex, and disease subtypes. Notably, batch effect should be
carefully addressed when samples from independent experiments are
compared in PCA. In experiments where combined processing and
staining of all samples are not possible due to large sample numbers, we
employed an empirical Bayes framework to correct for batch effects
prior to PCA [42].

5.4. Comparative analysis between biological samples

For comparative analysis, we compute effect sizes between different
groups of samples as a robust and reliable measurement of mean dif-
ferences between groups [43–45]. In Fig. 3E, we used a heatmap to
visualize the effect sizes of the 440 data points computed between
CMV-seropositive and -seronegative blood donors shown in Fig. 3D.

Warm colors represents chromatin marks elevated in specific cell types
in the experimental group (CMV-seropositive) versus the control group
(CMV-seronegative), and the cold colors indicate the repressed chro-
matin marks in the experimental group. Both x and y-axes are ordered
by unsupervised hierarchical clustering to facilitate data interpretation.
The heatmap provides a useful summary of the comparative analysis
results and allows us to find the following: i) Chromatin marks altered
in multiple or unique immune cell subsets. The immune cell subsets
where differential levels of chromatin marks are observed provide in-
sights into the hematopoietic stage at which alterations of chromatin
marks may have occurred. For instance, changes across multiple im-
mune cell subsets are likely due to reprogramming of chromatin marks
upstream in hematopoietic stem cells, whereas some changes may be
restricted to specific hematopoietic lineages or cell subtypes. ii) Con-
current change of functionally related chromatin marks. An open
chromatin state is generally associated with acetylated histones and
methylation of H3 at lysine 4 (H3K4me) and 36 (H3K36me), whereas
condensed and inaccessible chromatin is marked with tri-methylation
of H3 at lysines 9 (H3K9me3) or 27 (H3K27me3) or H4 at lysine 20
(H4K20me3). Systematic alterations of several of these chromatin
marks indicate global changes in chromatin accessibility, which may be
experimentally tested utilizing Assay for Transposase-Accessible Chro-
matin using sequencing (ATAC-seq) [46]. iii) Chromatin marks regu-
lated by the same groups of chromatin-modifying enzymes. The
homeostasis of chromatin marks is dynamically maintained by enzymes
that generate or remove chromatin marks. For instance, differential
levels of H3K27 di- and tri-methylation may suggest altered activities of
lysine methyltransferases EZH1 and/or EZH2, the enzymatic subunits
of polycomb repressive complex 2 (PRC2). In contrast, changes in
mono-methylation and/or acetylation of H3K27 suggest altered activ-
ities of KDM6A/UTX and/or KDM6B/JMJD3, two lysine demethylases
that catalyze the removal of H3K27me3 and conversion to a lower
degree of methylation. Ideally, studies where EpiTOF and transcription
profiling datasets are available from the same sample will allow us to
identify differential chromatin marks in addition to the altered ex-
pression of the corresponding chromatin-modifying enzymes. Experi-
mental manipulations of chromatin-modifying enzymes can provide
direct evidence for the involvement of the corresponding chromatin
marks in the phenotypes of interest.

6. Applications of EpiTOF to biomedical research

EpiTOF is a powerful platform that allows highly multiplexed ana-
lysis of chromatin modifications in single cells and facilitates the
identification of global changes of chromatin marks between biological
samples. We envision that it may be broadly employed to help us better
understand the roles of epigenetic mechanisms in the regulation of
hematopoietic differentiation and immune cell physiological functions.
Changes of chromatin marks can be studied in the context of lineage
commitment (e.g. lymphoid versus myeloid), maintenance of cell

Fig. 3. Data analysis and visualization of EpiTOF Data.

(A) Distinct chromatin modification profiles of immune cell subtypes. Heatmap representation of the normalized levels of 40 chromatin marks (x-axis) in three
leukemia and lymphoma cell lines (y-axis). Color, normalized chromatin mark levels. Means of individual samples are used for plotting and are centered
around the mean across all three samples. Warm colors, higher than the mean of all samples; cold color, lower than the means of all samples. Dendrograms,
unsupervised clustering.

(B and C) Segregations of single cells based on chromatin modification profiles. PCA (B) or t-SNE (C) analysis of EpiTOF data as in (A). Each dot represents a single
cell. Color represents the sample to which individual cell belongs (red, U937; yellow, Jurkat; blue, OCI-Ly8). The first three principal components (B) or
two t-SNE axes (C) computed from 20 chromatin marks are used to visualize the data.

(D) Segregation of blood donors based on chromatin modification profiles. PCA of EpiTOF data collected from five healthy subjects. Each dot represents a
single donor with label depicting the demographics. Principal components are calculated based on the levels of 40 chromatin marks in 11 immune cell
subtypes (440 data points) from individual donors. The percentage of variance each principal component explains is shown.

(E) Differential chromatin marks between CMV-seropositive and CMV-seronegative blood donors. Heatmap representation of the effect sizes of the levels of
the indicated chromatin mark (x-axis) and immune cell subtype (y-axis) pairs in CMV-seropositive over CMV-seronegative donors. Dendrograms, un-
supervised clusterings. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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identity (e.g. FOXP3+ regulatory T cells), activation in response to
stimulations such as cytokines and pathogens (e.g. changes at chro-
matin along with gene expression changes in these settings), aging of
the immune system [47], and other fundamental areas of immunology
research. Importantly, EpiTOF can be employed to identify chromatin
marks dysregulated in immune-mediated diseases, as the etiology of
many autoimmune and autoinflammatory disorders remain largely
unknown, and the discordance of disease incidence between genetically
identical monozygotic twins suggests a key role for epigenetic me-
chanisms in their pathogenesis and disease progression [2]. Ad-
ditionally, the use of EpiTOF to study the impacts of pathogens on the
host epigenome in patients with infectious diseases, the involvement of
epigenetic mechanisms in asthma and allergic diseases [48], epigenetic
changes associated with treatment response, and single-cell hetero-
geneity in chromatin modification profiles in hematological malig-
nancies will provide an unprecedented opportunity to discover new
therapeutic targets and biomarkers.

7. Conclusions

Epigenetics has emerged as a fast-moving area on many fronts of
biomedical research in recent years. However, understanding the phy-
siological roles of chromatin-related mechanisms in the human immune
system is still in its infancy. The development of new single-cell analytic
platforms, such as bisulfite sequencing to measure DNA methylation
[49, 50], ATAC-seq to measure chromatin accessibility [51, 52], chro-
mosome conformation capture (3C) to measure chromatin spatial or-
ganization [53], and now EpiTOF to measure global levels of chromatin
marks [47], allow interrogation of epigenetic mechanisms that regulate
immune functions and identification of the dysregulation of these me-
chanism in the context of human diseases. Between genetically un-
related individuals, over 99% of the genetic code is identical [54]. It is
almost certain that all morphological and phenotypic heterogeneity is
at least in part explained by variations in epigenetics or chromatin-
based regulation. The same concept also applies to the variability in
aging-dependent deteriorations of immune functions, disease suscept-
ibility, and responses to treatments and vaccines. We anticipate that in
the near future, an increasing number of epigenetic markers will be
identified to explain functionally-important variations in the human
immune system [55].
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