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SUMMARY

Post-translational modifications of histone proteins
and exchanges of histone variants of chromatin are
central to the regulation of nearly all DNA-templated
biological processes. However, the degree and vari-
ability of chromatin modifications in specific human
immune cells remain largely unknown. Here, we
employ a highly multiplexed mass cytometry anal-
ysis to profile the global levels of a broad array of
chromatin modifications in primary human immune
cells at the single-cell level. Our data reveal markedly
different cell-type- and hematopoietic-lineage-spe-
cific chromatin modification patterns. Differential
analysis between younger and older adults shows
that aging is associated with increased heterogene-
ity between individuals and elevated cell-to-cell vari-
ability in chromatin modifications. Analysis of a twin
cohort unveils heritability of chromatin modifications
and demonstrates that aging-related chromatin al-
terations are predominantly driven by non-heritable
influences. Together, we present a powerful platform
for chromatin and immunology research. Our discov-
eries highlight the profound impacts of aging on
chromatin modifications.
INTRODUCTION

Histone proteins are subject to a wide range of covalent post-

translational modifications (PTMs), such as phosphorylation,

acetylation, and methylation. These chemical moieties alter the

architecture of chromatin (Kouzarides, 2007) or serve as docking

sites for ‘‘reader’’ proteins that dictate higher-order chromatin

compaction or recruit protein complexes with DNA-related bio-

logical functions (Taverna et al., 2007). Cell-cycle-independent

incorporation of histone variants further diversifies chromatin
states and provides an additional layer of regulation to DNA-tem-

plated processes (Maze et al., 2014). Nucleosomes constituted

with histone variants change the structure and stability of chro-

matin and, through unique protein motifs or variant-specific

PTMs, alter interactions with chromatin binding proteins (Talbert

and Henikoff, 2017). Collectively, chromatin modifications (chro-

matin marks), including histone PTMs and histone variants,

along with the underlying DNA, regulate epigenetic phenotypes.

Despite the crucial roles of chromatin marks in diverse physi-

ological functions and human diseases, studying chromatin

biology in human immune cells has been challenging. While

recent technologic breakthroughs have allowed investigations

of chromatin dynamics using a small number of cells or even sin-

gle cells (Buenrostro et al., 2015; Corces et al., 2016; Gomez

et al., 2013; Rotem et al., 2015; Schwartzman and Tanay,

2015), a high-throughput method to measure the overall cellular

levels of chromatin marks in individual cells has not been

described.

Here, we report the development of epigenetic landscape

profiling using cytometry by time-of-flight (EpiTOF) to measure

the cellular levels of 8 classes of histone modifications and 4 his-

tone variants, in 22 major immune cell subsets. The high-dimen-

sional and single-cell nature of these datasets allow the creation

of an immune cell epigenetic atlas based on their chromatin

modification profiles. EpiTOF analysis of 24 healthy cytomegalo-

virus (CMV)-seronegative subjects reveals cell-type-specific

chromatin modification profiles in quiescent immune cells and

distinct patterns shared by cells derived from lymphoid and

myeloid lineages. Unique profiles of chromatin marks in single

cells form a molecular signature that can predict immune cell

identity. Further, EpiTOF identifies differential chromatin marks

between CD56bright and CD56dim natural killer (NK) cells, be-

tween naive and memory T cell subsets, and in regulatory

T cells. Recent reports have found substantial chromatin

changes as a result of aging (Moskowitz et al., 2017; Ucar

et al., 2017). Comparative analysis of younger and older adults

reveals that increased variations between individuals and

elevated cell-to-cell variability in chromatin marks are signatures

of aging. Through analysis of 19 twin pairs, we find that 70% of
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the chromatin modification variance is explained by environ-

mental influences. Divergent chromatin modification profiles in

older monozygotic twin pairs than in younger pairs indicate

that increased variations of chromatin marks with age are largely

attributed to non-heritable factors. Together, we develop a high-

throughputmultiplexed assay to interrogate chromatinmodifica-

tions at the single cell level in the human immune system. Our

data provide insights about how aging affects the epigenomic

landscape and the relative contribution of nature and nurture to

chromatin dynamics in aging human cells.

RESULTS

Establishment of EpiTOF for Profiling Chromatin Marks
in Single Cells
We leveraged the highlymultiplexed capacity and single-cell res-

olution of mass cytometry (Bendall et al., 2011) to develop

EpiTOF for simultaneous measurement of chromatin marks in

single immune cells. We characterized over 150 commercial

antibodies to create panels of highly specific antibodies

directed against chromatin marks. Strategies used to validate in-

dividual antibodies included ectopic overexpression or RNAi- or

CRISPR-mediated depletion of chromatin modifying enzymes,

cell stimulations, and treatments with small molecules such

as the lysine methyltransferase EZH2 inhibitor, Tazemetostat

(Data S1). We selected 40 validated antibodies to construct two

panels of lanthanide-labeled antibodies for EpiTOF (Table S1).

Two antibodies targeting total histone proteins, one against the

globular domain of H3 and one against the unstructured tail of

H4, were integrated to control for variations in histone expres-

sion, nuclear epitope accessibility and antibody background.

Together with immunophenotypic markers to reveal the identity

of immune cells and channels for viability and sample barcodes,

over 70 parameters were analyzed in each sample (Figure 1A).

Cell-Type-Specific Chromatin Modification Profiles in
Healthy Immune System
We analyzed peripheral blood mononuclear cells (PBMCs)

purified from 12 healthy CMV-seronegative subjects, comprising
Figure 1. Lineage-Specific Chromatin Modification Profiles in Human

(A) Overview of the EpiTOF platform.

(B) Experimental design. Two EpiTOF panels measuring 9 classes of chromatin

12 healthy CMV-seronegative subjects (bio rep 1) and an independent cohort wi

(C) Cell-type-specific chromatin modification profiles in major immune cell subse

normalized chromatin mark levels of the indicated 40 chromatin marks (x axis) in 1

on themean of the total PBMCs.Minimum andmaximum values are shown. Color

and diameter of circle, subject-to-subject variability measured by Inverse Simps

(D) Validation of EpiTOF data by western blotting on sorted immune cells. West

indicated antibodies.

(E) Higher expression of lysine methyltransferases EZH1 and EZH2 in common ly

expression analysis of EZH1 and EZH2 in CLPs (blue) and CMPs (red) using a pu

the indicated genes.

(F) Differential enrichment of H3K27me3 and H3K4me3 are associated with gene

Top: Venn diagrams show the numbers of overlapping genes between genes enric

T cells over monocytes and differentially expressed genes in CLPs over CMPs

expression in CLPs over CMPs). Numbers of shared genes and p values of th

overlapped genes from the two Venn diagrams. p values for enrichment with the

diagram are shown.

See also Figure S1, Table S1, and Data S1.
6 subjects under 25 years old (3 males; 3 females) and 6 subjects

over 65 years old (3 males; 3 females) (bio rep 1) and replicated

our results in an independent 12-subject cohort with identical

demographics (bio rep 2) (Figure 1B). A linear regression model

was applied to perform data normalization for each chromatin

modification using total histones as predictor variables. After

normalization, we found that CD14+ monocytes contain abun-

dant proteolytically cleaved histone H3 at threonine 22 (cleaved

H3 Thr22) and express higher levels of peptidylarginine deimi-

nase 4 (PADI4) relative to B, T, and NK cells (Figures 1C and

S1A). In contrast, monocytes contain reduced levels of the his-

tone variant H3.3 and tri-methylation of histone H3 at lysine 27

(H3K27me3). Within the lymphocyte compartment, CD4+ and

CD8+ T cells share similar patterns, whereas NK cells contain

reduced levels of a broad range of chromatin marks than other

cell subtypes. Chromatin marks known to be present at low

levels in unperturbed cells, such as DNA double-strand break-

induced g-H2AX (Rogakou et al., 1998), and citrullination marks

(Cuthbert et al., 2004; Wang et al., 2004b) had very low signals

in EpiTOF. Despite distinct genetic backgrounds between the

12 subjects, Inverse Simpson’s Diversity Index (ISDI) analysis

showed modest subject-to-subject variability in chromatin

marks, with acetylation of H3 at lysine 14 (H3K14ac), cleaved

H3 Thr22 and H2A.Z showing the most variability (average

ISDI = 36%, 45%, and 47%, respectively) and macroH2A,

PADI4, and ubiquitination of H2B at lysine 120 (H2BK120ub)

demonstrating the least variability (average ISDI = 85%, 82%,

and 79%, respectively) between subjects. Together, our results

indicate that individual immune cell subtypes are characterized

by distinct profiles of chromatin marks.

Next, monocytes, B, T, and NK cells were sorted by fluores-

cence-activated cell sorting (FACS) independently from two sub-

jects for western blot analysis (Figures 1D and S1B). The results

agreed with the normalized mark levels by EpiTOF across

several classes of chromatin modifications. EpiTOF analysis on

6 subjects in duplicate showed a correlation coefficient of 0.96

between replicates, demonstrating high technical reproducibility

(Figure S1C). Further, between the two biological replicates, the

correlation coefficient of 0.93 (Figure S1D) suggests that the
Immune Cells

marks were employed to analyze PBMCs derived from a cohort containing

th identical demographics (bio rep 2).

ts. EpiTOF analysis of subjects from bio rep 1. Heatmap representation of the

1 major immune cell subsets (y axis). The normalized mark levels are centered

, mean across 12 subjects; dendrograms, unsupervised clustering at both axes;

on’s Diversity Index.

ern blot analysis of the whole-cell extract from sorted immune cells using the

mphoid progenitors (CLP) than in common myeloid progenitors (CMPs). Gene

blicly available RNA-seq dataset: GEO: GSE74246. y axis, expression levels of

expression reprogramming during lymphoid and myeloid lineage commitment.

hed with H3K27me3 (left light-blue circle) or H3K4me3 (right light-blue circle) in

(left pink circle, lower expression in CLPs over CMPs; right pink circle, higher

e overlaps are shown. Bottom: gene ontology enrichment analysis using the

indicated gene ontology terms and examples of shared genes in each Venn
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heatmaps in Figures 1C and S1A represent the chromatin modi-

fication profiles in healthy human immune system.

Lineage-Specific Chromatin Modification Profiles
Unsupervised clustering of immune cells by chromatin modifica-

tion profiles revealed that cells from lymphoid and myeloid line-

ages contain distinct patterns of chromatin marks (y axis in Fig-

ures 1C and S1E). Reduced H3.3 and H3K27me3 and elevated

cleaved histone H3 Thr22, mono-methylation of H3 at lysine 36

(H3K36me1), and the expression of PADI4 are signatures of

myeloid cells relative to lymphocytes. The profile of chromatin

marks in Lin�CD45dimCD34+ hematopoietic progenitors resem-

bles the patterns in myeloid cells. Using publicly available RNA

sequencing (RNA-seq) data from sorted immune cells (GEO:

GSE74246) (Corces et al., 2016), we found that the expression

of EZH1 and EZH2, the two lysine methyltransferases catalyzing

H3K27me3, is significantly higher in common lymphoid progen-

itors (CLPs) and in peripheral T cells than in common myeloid

progenitors (CMPs) and in monocytes (Figures 1E and S1F).

The results support a model in which divergence of H3K27me3

occurs during CLP and CMP differentiation, and the profiles

are established during the commitment of hematopoietic stem

cell to common lymphoid or myeloid progenitors. Together,

we conclude that the cell-type-specific chromatin modification

profile is indicative of the hematopoietic lineages from which

individual populations are derived.

To investigate the influences of altered chromatin modifica-

tions on gene expression programming during hematopoiesis,

we performed analysis on a chromatin immunoprecipitation

sequencing (ChIP-seq) dataset (GEO: GSE18927) from the

Roadmap Epigenomics Mapping Consortium, where hallmarks

of gene silencing and active transcription and H3K27me3 and

H3 tri-methylation at lysine 4 (H3K4me3), respectively, were pro-

filed in sorted peripheral CD3+ T cells and CD14+ monocytes

(Bernstein et al., 2010). In agreement with EpiTOF findings,

H3K27me3 showed higher peak intensity in T cells, whereas

the peak intensity of H3K4me3 was higher in monocytes (Fig-

ure S1G). Similarly, using a false discovery rate (FDR) of 5% as

threshold we identified more genes differentially enriched with

H3K27me3 in T cells than in monocytes (7,048 vs. 4,008) but

fewer genes differentially enriched with H3K4me3 in T cells

than in monocytes (637 vs. 4,097). Comparison with a transcrip-

tion profiling dataset (GEO: GSE74246) (Corces et al., 2016)

revealed that H3K27me3-enriched genes were transcriptionally

repressed and H3K4me3-enriched genes were actively tran-

scribed, indicating comparable transcription activities and chro-

matinmodification profiles between both datasets. Among 7,048

genes enriched with H3K27me3 in T cells, a significant propor-

tion (n = 1,590, p < 2.2 3 10�16) was transcriptionally repressed

in CLPs in comparison with the expression in CMPs (FDR < 5%)

(Figure 1F). The results suggest that this group of genes is differ-

entially regulated, at the levels of both H3K27me3 enrichment

and transcription, during the lineage commitment of CLPs

and CMPs. Gene ontology (GO) enrichment analysis revealed

that a significant number of these genes are involved in

the differentiation of megakaryocyte-erythroid progenitors

(MEPs) and granulocyte-monocyte progenitors (GMPs), such

as GATA1, PU.1, and C/EBPa (Pevny et al., 1991; Scott et al.,
4 Cell 173, 1–13, May 31, 2018
1994; Zhang et al., 1997), in addition to myeloid cell-specific

markers, such as CD33 and PADI4. Similarly, 97 of 637 genes

(p < 3.8 3 10�11) enriched with H3K4me3 in T cells are upregu-

lated in CLPs relative to CMPs (FDR < 5%), whose programming

of H3K4me3 and transcription also likely occurs during CLP and

CMP lineage commitment. This group of genes contains key reg-

ulators of lymphocyte differentiation, such as BLIMP1, FOXP1,

and IL7R (Hu et al., 2006; Mazzucchelli and Durum, 2007; Turner

et al., 1994). Together, the results support a model in which

chromatin modification profiles undergo drastic changes and

are associated with gene expression reprogramming during

hematopoietic lineage determination, in accordance with our

EpiTOF findings.

Chromatin Modification Profiles Predict Immune Cell
Identity
Principal component analysis (PCA) using single-cell EpiTOF

data distinguished between immune cell types based on the pro-

files of chromatin marks (Figures 2A and S2A), suggesting that

cells within the same subset share a cell-type-specific pattern.

Euclidean distances computed from chromatin modification

profiles between immune cell subtypes found the greatest sep-

aration between monocytes and various lymphocyte subsets,

reflecting the divergence between lymphoid and myeloid line-

ages. Distances between lymphocyte subtypes are approxi-

mately 4-fold lower than those betweenmonocytes and lympho-

cytes (Figures 2A and S2A).

Next, we used L-1 regularized logistic regression models

(Friedman et al., 2010) to classify immune cells based on chro-

matin marks alone utilizing single-cell data from bio rep 1 as

the training dataset. Using either EpiTOF panel, monocytes,

B, T, and NK cells can be distinguished from the remaining

PBMCs with high accuracy (Figure 2B). We validated the models

with the single-cell data from bio rep 2. The coefficients derived

from bio rep 1 (Table S2) accurately identified the corresponding

immune cell types in bio rep 2 (Figure 2C). These results demon-

strate that a set of chromatin marks form an epigenetic signature

that allows accurate prediction of immune cell identity.

Differential Chromatin Marks in T Cell Functional
Subsets
Next, we developed T-cell-focused EpiTOF panels measuring

the levels of 40 chromatin marks in 11 T cell subsets (Table S3)

to analyze the same cohorts described above (Figures 3A and

S3A). A correlation between the two biological replicates demon-

strates high biological reproducibility of our results (Figure S3B).

Unsupervised clustering based on chromatin marks revealed

that T cells expressing ab T cell receptors (TCRs) are character-

ized by a distinct chromatin modification profile when compared

with T cells expressing gd TCRs, which have specialized func-

tions in immune responses (Chien et al., 2014) (Figures 3A and

S3A). Both CD4+ and CD8+ CD197+CD45RO� naive T cells clus-

tered together. In contrast, CD197�CD45RO� effector and

CD45RO+ memory subsets showed divergence in chromatin

marks from the naive populations. The results demonstrate the

plasticity of chromatin marks in T cells, which are likely reconfig-

ured as they differentiate to assume specialized immunological

functions in adaptive immunity.



Figure 2. Single-Cell Chromatin Modification Profile Predicts Immune Cell Identity and Uncovers Relationships between Chromatin Marks

(A) Segregation of immune cell subsets based on chromatin modification profiles. Left: PCA of single-cell EpiTOF data described in Figure 1C (bio rep 1). Each dot

represents a single cell, and each principal component depicts variations of 20 chromatin marks measured using each EpiTOF panel. Analyses using single-

cell data collected by EpiTOF panel 1 (top) and 2 (bottom) are shown. Cells are color-coded by immune cell types. Right: Euclidean distances of chromatin

modification profiles between the indicated immune cell subtypes.

(B and C) Patterns of chromatin modifications in single-cells predict immune cell identity. ROC curves discriminate between the indicated immune cell lineages

from the remaining PBMC subsets using a regularized logistic regression model. The AUCs, which measure the sensitivity and specificity of the separation for the

indicated cell types, are shown (B). The model from (B) (training dataset, bio rep 1) is applied to the validation dataset (bio rep 2) to test prediction power. ROC

curves and AUCs from the validation dataset are shown (C).

See also Figure S1 and Table S2.
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Differentiation of naive to memory cells is associated with

markedchanges in the chromatinmodification profile (Figure 3B).

Consistent trends were found in CD4+ and CD8+ T cells in both

biological replicates. In memory T cells, phosphorylation of H3

at serine 10 (H3S10ph), which is detected at the transcription

start sites of actively transcribed genes (Agalioti et al., 2002), is

highly elevated. Together with the discoveries of higher euchro-

matin-associated H3K27me1 and H3K36me1 (Barski et al.,

2007; Wagner and Carpenter, 2012) and lower heterochro-

matin-associated H3K27me3, H4K20me3, and H3K9me2 (Trojer

and Reinberg, 2007) in memory T cells, our results suggest

that chromatin in memory T cells is maintained in a more acces-

sible state than in the naive subsets.

Differential analysis of chromatin marks in CD4+CD25+

FOXP3+ regulatory T cells (Tregs) over total CD4+ T cells re-

vealed that H3K27me1 and H3K27ac are highly elevated in

Tregs, in addition to a reduction in H3K27me3 (Figure 3C). The

essential roles of EZH2 in the functions of Tregs have been stud-

ied extensively (Arvey et al., 2014; DuPage et al., 2015). We

found that in addition to the upregulation of EZH1 and EZH2

in Tregs, the expression of KDM6A/UTX and KDM6B/JMJD3,

which catalyze H3K27 demethylation (Shi, 2007), is also elevated
(Figure S3C). Our data highlight the importance of studying

the biological significance of lower H3K27 methylation state

and H3K27ac in Tregs (Li et al., 2014).

Profiles of Chromatin Marks Segregate CD56bright NK
Cells from the CD56dim Subset
In CD56+ NK cells, chromatin marks measured by EpiTOF

panel 1 showed especially high coefficient of variation (CV)

(data not shown). We thus performed PCA to examine the rela-

tionships between the variations of the 20 chromatin marks in

EpiTOF panel 1 and the two classical NK cell markers, CD56

and CD16 (Figures 3D and S3D). PC1 explained 80.1% of

the variance and separated NK cells into two subsets. The

bimodal distribution of PC1 score was highly similar to the

segregation by MixTools using CD56 (Benaglia et al., 2009).

The CD56dim subset, which accounts for approximately 90%

of total NK cells, has stronger cytotoxic killer cell functions

than the low-abundance CD56bright population (Lanier et al.,

1986), whereas the latter is the major source of secreted cyto-

kines (Cooper et al., 2001). EpiTOF analysis identified several

increased acetylation marks in the CD56bright subset. PADI4

expression and cleaved histone H3 Thr22, the two myeloid
Cell 173, 1–13, May 31, 2018 5



Figure 3. Heterogeneity of Chromatin Modification Profiles in Lymphocytes Originated from Diverse Functional Subsets

(A) T-cell-specific chromatin modification profiles. EpiTOF analysis on the same cohort used in Figure 1C (bio rep 1) focusing on T cell subsets. Heatmap

representation of the normalized chromatinmark levels used in Figure 1C for the indicated 40 chromatin marks (x axis) in 11 T cell subsets (y axis). The normalized

mark levels are centered on the mean of total CD3+ T cells. Minimum and maximum values of normalized mark levels are shown. The mean of each chromatin

mark and T cell subset pair across 12 subjects is used for plotting. Dendrograms, unsupervised clustering; diameter of circle, subject-to-subject variability

measured by Inverse Simpson’s Diversity Index.

(B) Memory T cells are characterized by unique patterns of chromatin marks. Heatmap representation of the effect sizes of the levels of 40 chromatin marks in the

indicated memory T cells over the naive subsets in both biological replicates. Dendrogram at y axis, unsupervised clustering.

(legend continued on next page)
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lineage-specific markers, were higher in the CD56bright subset

(Figure 3E). Reanalyzing PBMC EpiTOF data revealed that the

CD56bright NK cells do not cluster with the CD56dim population

or with other lymphocytes (Figure S3E). While the CD56bright

subset is historically considered the precursor of CD56dim

NK cells, recent evidence suggests that the two subsets

differentiate from independent hematopoietic lineages (Wu

et al., 2014). Our data provide insights into the ontological

relationships at the level of chromatin between both NK cell

subsets.

EpiTOF Reveals Aging-Associated Changes in
Chromatin Modification Profiles and Increased
Heterogeneity between Individuals
Hallmarks of aging include declining hematopoietic output,

defective immune cell functions, and an elevated proportion of

CD45RO+ memory T cell subsets as we observed in our cohort

(Figure S4A) (Wertheimer et al., 2014). Next, we compared chro-

matin modifications in younger (<25 years) and older (>65 years)

subjects from both biological replicates. To increase statistical

power, data from both biological replicates were merged for

combined analysis (Figure S4B). CD4+ and CD8+ T cells in the

original EpiTOF analysis (Figures 1C and S1A) were replaced

with the data from the T-cell-focused analyses (Figures 3A and

S3A), creating an atlas of 40 chromatin marks in 20 immune

cell types (800 data points) for each of the 24 healthy participants

(Figure 4A). PCA of 800 data points revealed that PC 1 and 2,

which together explained 72.7% of the variance in the dataset,

best separated the subjects by age, whereas sex had negligible

contribution to the variance (Figure 4B). Notably, the chromatin

modification profiles in younger subjects were relatively homo-

geneous; in contrast, heterogeneity markedly increased among

older subjects. The levels of the vast majority of the 800 data

points were elevated in older subjects in both biological repli-

cates (Figures 4C and S4C). This was not due to changes in total

histone content, as the cellular levels of histone H3 and H4 were

not significantly different between younger and older subjects

(Figure S4D). Collectively, we found that with age the levels of

a wide range of chromatin marks increase in diverse immune

cell types.

In contrast, 34 of the 40 chromatin marks in CD45RO+CD197+

central memory CD8+ T cells were repressed in older subjects

(Figure 4C). This observation is accompanied by statistically

significant reductions in both histone H3 and H4 (Figure S4D).

Aging-associated histone loss has been reported in several spe-

cies, and reduced nucleosome occupancy with age has been

implicated in changes in chromatin dynamics and transcription

activities (Booth and Brunet, 2016). Our results suggest a

unique mode of aging at chromatin in central memory CD8+

T cells.
(C) Differential chromatin marks in regulatory T cells. Heatmap representation of th

in the indicated biological replicates.

(D and E) Differential chromatinmarks separate CD56bright NK cells from the CD56

dot represents a single NK cell plotted based on CD56 (y axis) and CD16 (x axis) le

panel 1. Density plot of the two populations segregated byMixTool (green, CD56br

effect sizes computed for the levels of the indicated chromatin marks in CD56bri

See also Figure S3 and Table S3.
Increased Cell-to-Cell Variability in Chromatin
Modifications with Age
Recent publications have described increased variability in the

immune systems of older versus younger human beings (Brodin

and Davis, 2017; Kaczorowski et al., 2017). To test if cell-to-cell

variability in chromatin modifications changes with age, we per-

formed multiple t tests comparing CVs of 40 chromatin marks in

20 immune cell subsets at the single-cell level between younger

and older subjects. Strikingly, we found that 61.8% of the 800

tests showed increased single-cell variability in older subjects

(Figure S5A). After correcting for multiple hypotheses, out of

30 significant chromatin mark and cell-type pairs (FDR < 5%),

29 tests showed higher cell-to-cell variability in older subjects

(Figure 5A). We conclude that increased cell-to-cell variability

in chromatin marks is a signature of aging in immune cells.

Elevated Single-Cell Variability in Polycomb-Repressive
Complex-Mediated Modifications with Age
Among the 29 chromatin mark- and cell-type combinations that

showed a statistically significant increase in CV in older subjects

(FDR < 5%), more than 50% (17 of 29) involved H3K27me3,

H3K27me2, and H2AK119ub, all of which are catalyzed by poly-

comb-repressive complex 1 or 2 (PRC1 or PRC2) (Di Croce and

Helin, 2013; Wang et al., 2004a) (Figure 5B). Increased cell-to-

cell variabilitywithageof thesechromatinmarkswas foundacross

a broad array of immune cell types (Figure S5B). Pivotal roles of

PRCs in transcription silencing and chromatin compaction have

been extensively described (Margueron and Reinberg, 2011).

Our data argue that the levels of chromatin marks directly medi-

ated by PRCs become highly variable from cell to cell upon aging.

H3K27me3-Marked Genes Are Associated with Higher
Transcriptional Variability with Age
Next, we tested if the increased instability of chromatin state with

age is associatedwith elevated transcriptional noise (Raj and van

Oudenaarden, 2008). Because single-cell RNA-seq (scRNA-seq)

on an aging cohort withmatchingChIP-seqdata has not yet been

described in humans, we performed analyses on a scRNA-seq

dataset on naive CD4+ T cells purified from an inbred mouse

strain (C57BL/6J, M. musculus domesticus), where Martinez-

Jimenez et al. (2017) reported aging-associated increases in

single-cell transcriptional variability. We analyzed the data in

conjunction with a ChIP-seq dataset mapping H3K27me3 and

H3K4me3 occupancies at genes with vital immune functions

and critical roles in cell differentiation in naive CD4+ T cells puri-

fied from the same C57BL/6J substrain (Wei et al., 2009). Our

EpiTOF data showed that single-cell variability in H3K4me3

is not altered significantly with age across several immune cell

subtypes (Figure S5C). To test the relationship between noise in

chromatin marks and noise in transcription, we compared the
e effect sizes of the levels of 40 chromatin marks in Tregs over total CD4+ T cells

dim subset. Scatterplot of single-cell EpiTOF data fromNK cells (bio rep 1). Each

vels. Color, PC1 computed from the 20 chromatin marks measured by EpiTOF
ight; red, CD56dim) using CD56 level is shown (D). Heatmap representation of the
ght over CD56dim subsets. Data from both biological replicates are shown (E).
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Figure 4. Increased Variations in Chromatin Modification Profiles with Age

(A) Data integration for aging-related analyses. Two biological replicates are merged using empirical Bayes framework to correct for batch effect. Data collected

from 9 major immune cell types in the initial EpiTOF analysis (Figures 1C and S1A; exclude total CD4+ and CD8+ T cells) are integrated with data from 11 T cell

subsets (Figures 3A and S3A) to create a dataset of 40 chromatin marks in 20 immune cell subsets (800 data points) for each of the 24 subjects.

(B) Increased subject-to-subject variability with aging. PCA of EpiTOF data from 24 healthy subjects described in (A) (salmon, >65 years; cyan, <25 years; circle,

female; square, male). Each dot represents a single subject situated in the PCA plot, where each principal component summarizes the variance of 800 data points.

The percentage of variance each principal component explains is shown.

(C) Aging is associated with alterations of a broad range of chromatin marks. Heatmap representation of the effect sizes of the levels of the indicated chromatin

mark (x axis) and immune cell type (y axis) pairs in older over younger subjects. Dendrogram, unsupervised clustering.

See also Figure S4.
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transcriptional noise of H3K27me3-marked geneswith the genes

enriched with H3K4me3. Between both datasets, we identified

43 genes marked by H3K27me3 (without H3K4me3) and 210

with H3K4me3 (without H3K27me3). We found that H3K27me3-

marked genes are largely repressed, while H3K4me3-marked

genes are actively transcribed (Figure S5D), indicating that the

gene expression activities measured by both independent

studies are highly comparable. Importantly, the selected genes

were not differentially expressed between young and old mice

(Figure S5D), allowing us to directly compare transcriptional

noise between both age groups. We found that genes enriched
8 Cell 173, 1–13, May 31, 2018
with H3K27me3 showed significantly higher transcriptional vari-

ability with age than genes marked by H3K4me3 (Figure 5C).

Our data suggest a model in which elevated epigenomic noise,

in particular PRC-mediated H3K27me3, results in variations in

chromatin states between single cells and ultimately leads to

higher transcriptional noise during aging.

Variations in the Chromatin Modification Profiles Are
Largely Driven by Non-heritable Influences
Our earlierwork indicating that thevastmajority (77%)of variables

in the human immune system are driven by non-heritable



Figure 5. Cell-to-CellVariabilityofChromatin

Modification Profiles Increases with Age

(A) Aging is associated with elevated single-cell

variations in chromatin modifications. t test com-

parison of the CVs of 800 data points between

subjects from the two age groups. x axis, p values;

directionality, CV higher in subjects <25 years

(left) or higher in subject >65 years (right); color,

FDR (dark blue, <5%; orange, 5%–10%; light

blue, >10%). Test results are ranked by FDRs from

top to bottom.

(B) H3K27me2, H3K27me3, and H2AK119ub show

the greatest increase in cell-to-cell variability with

age. The numbers of immune cell types (y axis) in

which the indicated chromatin marks (x axis) show

statistically significant (FDR < 5%) increase in CVs

in older subjects. Red, chromatin marks generated

by PRC1 or PRC2; gray, chromatin marks that are

not catalyzed by PRCs.

(C) H3K27me3-marked genes are associated with

increased cell-to-cell transcriptional variability with

age. Changes in transcriptional variability (DCV)

between naive CD4+ T cells purified from old and

young M. musculus domesticus of the indicated

gene subsets are computed. Transcription profiling

data and lists of genes occupied by H3K27me3

or H3K4me3 are derived from publicly available

scRNA-seq (Martinez-Jimenez et al., 2017) and

ChIP-seq (Wei et al., 2009) datasets, respectively.

Transcriptome-wide increased transcriptional noise

with age is shown. p values, Wilcoxon’s paired

rank-sum test.

See also Figure S5.
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influences (Brodin et al., 2015) led us to postulate that environ-

mental and/or other non-heritable factors are the primary driving

force for variations in chromatin modification profiles in immune

cells. We conducted EpiTOF analysis using both the broad im-

mune cell EpiTOF panels and the T-cell-focused panels on a

cohort of 9 pairs of monozygotic (MZ) and 10 pairs of dizygotic

(DZ) twins selected from the twin registry described in the Brodin

et al. (2015) study. All subjectswereCMV-seronegative andeither

between 15 and 29 (younger twins) or 52 and 72 (older twins) in

age (Figure 6A). We analyzed data utilizing the classical ACE

model, which calculates the fractions of variance attributed to ad-

ditive genetics (A), common environment (C) or unique environ-

ment (E) (Rijsdijk and Sham, 2002). Non-heritable factors explain

70% of the variance in chromatin modifications in immune cells,

whereas genetics accounts for 30% of the variance (Figure 6B).

Within non-heritable factors, shared and unique environment

explain 13.5% and 56.5% of the variance, respectively. While

largely driven by non-heritable influences, genetic contributions

to the variance are not trivial. Specifically, CD45RO-CCR7+ naive,

CD45RO+CCD7+ central memory and CD45RO+CCD7� effector

memory CD4+ T cells, whose frequencies in the CD4+ T cell

compartment are driven significantly by heritable factors (Brodin

et al., 2015), were among the top cell subsets in which genetics

showed prominent influences on chromatin marks (Figure 6B).

Together, our results indicate that the variance in chromatinmodi-

fication profiles is largely driven by non-heritable influences, with

considerable contributions from genetic influences.
Divergence of Chromatin Modification Profiles between
Genetically Related Twins Widens with Age
We next investigate our discoveries of aging-associated pheno-

types at chromatin in the twin cohort. Consistent with our find-

ings in Figure 4C, the vast majority of the chromatin marks

were elevated in older twin subjects (Figure S6A). We further

observed globally repressed chromatin marks in central memory

CD8+ T cells with age (Figure S6A). We also found that 68.8% of

the 800 chromatin mark- and cell-type pairs showed higher CVs

in older twins (Figure S6B). Collectively, our findings from the in-

dependent twin cohort confirm and extend our earlier findings.

Next, we performed PCA on the twin subjects based on 800

data points. PC1 and PC2, which together explained 92.7% of

the variance in the dataset, showed increased heterogeneity be-

tween older twin pairs (Figure 6C). Euclidean distances based on

800 data points between each twin pair revealed that older twins

(Figure 6D, left) and randomly selected genetically unrelated

older subjects (Figure 6D, right) showed higher heterogeneity

in chromatin modification profiles, indicating that increased var-

iations in chromatin modification profiles with age are largely

driven by non-heritable influences. Younger MZ twins are more

concordant in chromatin marks than DZ twins and randomly

paired subjects (Figure 6E, top), suggesting the importance of

additive genetics and/or the epigenome in zygotes in deter-

mining chromatin modification profiles in early life. However,

Euclidean distances between older twins, both MZ and DZ, are

indistinguishable from randomly paired subjects (Figure 6E,
Cell 173, 1–13, May 31, 2018 9



Figure 6. Non-heritable Influences Explain Most Variations in Chromatin Modification Profiles

(A) Overview of heritability analyses. Nine pairs of monozygotic (MZ) twins and ten pairs of dizygotic (DZ) twins were subjected to EpiTOF analysis utilizing four

EpiTOF panels covering major immune cells and T cell subsets.

(B) Variance in chromatin modification profiles is largely driven by unique environmental factors. Heatmap representation of the proportions of variance explained

by additive genetics (left), common environment (middle), or unique environment (right) for the indicated chromatin mark and immune cell subset pairs. Chromatin

marks are ranked from top to bottombased on the average influences from additive genetics. Immune cells are ranked from left to right by the averages of additive

genetics influences across all chromatin marks. The average influences of each component on all 800 data points are shown.

(C and D) Aging is associated with divergent chromatin modification profiles between twins. PCA of younger (cyan) and older (salmon) twin subjects. Each dot

represents a single twin subject, and the twins are connected. Principal component, variance of 800 data points. The percentage of variance explained by each

principal component is shown (C). Euclidean distances of 800 chromatin mark- and cell-type pairs are computed for each pair of twins (left) or randomly selected

genetically unrelated subjects (right) from separate age groups (cyan, younger subjects; salmon, older subjects). p values for the statistical significance of

increased Euclidean distance in older pairs are shown (D). Error bars, SE.

(E) Concordance of chromatin modification profiles in younger MZ twins diminishes with age. Euclidean distances calculated from the 800 data points between

MZ (left), DZ (middle) twins, and randomly paired genetically unrelated individuals (right). Top, younger subjects; bottom, older subjects. p values for the statistical

significance of distinct Euclidean distance are shown. Error bars, SE.

(F) Non-heritable influences drive the increased variability in chromatin modifications with age. Spearman’s rank correlations of 40 chromatin marks across

20 immune cells types are computed for younger and older MZ twins. Each dot represents a chromatin mark. x axis, correlation between older twin pairs; y axis,

correlation between young twin pairs. Dashed line, equal correlation in younger and older MZ twins. Arrows indicate the directions of higher concordance in

younger pairs (upper left) or in older pairs (lower right).

See also Figure S6.
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bottom), suggesting impacts of environmental influences and/or

somatic mutations accumulated through the lifetime of an indi-

vidual on chromatin modifications. To further strengthen our

findings, the concordance of 32 of the 40 chromatin marks in

MZ twins, where genetics and the epigenome in zygotes are

completely controlled, was higher between younger pairs than

older pairs (Figure 6F), underscoring the prominent effects of

non-heritable influences on the variation of chromatin marks

between individuals.

DISCUSSION

In this study we present a mass cytometry-based analytical plat-

form focusing on epigenetic markers that is broadly applicable to

several areas of chromatin and immunology research. The versa-

tility of EpiTOF can be seen by the fact that different immunophe-

notypic markers can be used to interrogate unique immune cells

(e.g., antigen-specific T cells) or single-cell suspensions derived

from solid tissues, such as skin, kidney, and synovium. Next,

EpiTOF can be employed to identify chromatin marks dysregu-

lated in immune-mediated diseases, cancer, and other human

conditions to facilitate the development of therapeutic agents

targeting chromatin modifying enzymes.

The process of aging is known to involve multiple genes

and pathways and, importantly, epigenetic regulation (Benayoun

et al., 2015; Dorshkind et al., 2009). In this studywe report a num-

ber of epigenetic signatures at chromatin associated with aging

in human immune cells. Variations of chromatin modification

profiles between individuals increase with age, suggesting that

aging does not affect chromatin marks uniformly with time.While

variations increase between individuals, we observe elevations

of most chromatin marks with age across three independent co-

horts. Consistent increases in chromatin marks in a broad array

of cell subtypes from hematopoietic progenitors to terminally

differentiated immune cells suggests that systemic changes

may result from the reprogrammed chromatin state in hemato-

poietic progenitors or further upstream in hematopoietic stem

cells (HSCs). Our findings are in agreement with a compre-

hensive study showing increases in both H3K4me3 and

H3K27me3 marks in murine HSCs from old mice (Sun et al.,

2014). We extend this observation to a broad array of chromatin

marks and show that the increases are not due to histone loss.

Importantly, we demonstrate that increased cell-to-cell vari-

ability in chromatin modifications within each immune cell sub-

type is a molecular signature of aging. Elevated single-cell

transcriptional variability with age has been reported in several

studies (Bahar et al., 2006; Enge et al., 2017; Martinez-Jimenez

et al., 2017); however, the molecular mechanisms underlying

the transcriptional variability remain unclear. Our data suggest

a compelling model in which increased epigenomic noise, which

we define by single-cell variability in chromatin marks, is a major

mechanism that results in elevated transcriptional noise with

age. While the origins of increased epigenomic noise with age

remain to be defined, it is possible that the variability arises

from distinct clones of HSCs from which immune cells are

derived, and the chromatin modification profiles of independent

clones of HSCs diverges with age. In addition, the discoveries

of increased variability of PRC-mediated repressive chromatin
marks with age and higher transcriptional noise of H3K27me3-

target genes further strengthen the links between epigenomic

noise and single-cell transcriptional variability. Sporadic loss of

silencing of transcriptionally inactive genes may be one of the

molecular mechanisms that results in changes in gene expres-

sion programs with age. Transient reactivation of certain genes

may confer growth advantages to cells and result in long-term

transcriptional alterations.

Finally, our data from the twin cohort show that the variations in

chromatinmarks are predominantly driven by non-heritable influ-

ences (70%). Increased variations in chromatin marks between

twin pairs in olderMZ twins further suggest that environmental in-

fluences play a key role in the divergence. However, our results

also find considerable involvement of heritable factors (30%).

Our findings are highly similar to results from twin analyses

on DNA methylation, where environmental influences explain

approximately 80% of the variance in DNA methylation (McRae

et al., 2014; van Dongen et al., 2016). Closer concordance in

MZ twins than in DZ twins in DNA methylation suggests that her-

itable influences are not trivial (Kaminsky et al., 2009). It has been

proposed thatMZ twins start with identical epigenomes in the zy-

gotes and, therefore, remain more similar to each other than DZ

twins, who develop from independent zygotes with distinct epi-

genomes (Petronis, 2010). This hypothesis helps explain our

results on chromatin modifications in twins; however, a unified

mechanism for the patterns of chromatin modifications to be re-

established during mitotic cell division remains unclear (Zhu and

Reinberg, 2011). Our data highlight the importance of identifying

the molecular mechanisms by which chromatin marks are in-

herited through cell cycle and possibly through generations.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-Histone H3 (clone D1H2) Cell Signaling Technology 4499 (custom formulation*)

Rabbit monoclonal anti-phospho-Histone H2A.X (Ser139) (clone 20E3) Cell Signaling Technology 9718 (custom formulation*)

Rabbit monoclonal anti-acetyl-Histone H2B (Lys5) (clone D5H1S) Cell Signaling Technology 12799 (custom formulation*)

Mouse monoclonal anti-phospho-Histone H3 (Ser10) (clone MABI 0312) Active Motif 39636

Mouse monoclonal anti-acetyl-Histone H4 (Lys5) (clone MABI 0405) Active Motif 61523

Rabbit monoclonal anti-cleaved-Histone H3 (Thr22) (clone D7J2K) Cell Signaling Technology 12576 (custom formulation*)

Mouse monoclonal anti-phospho-Histone H3.3 (Ser31) (clone 1A8G10) Active Motif 61671

Rabbit monoclonal anti-acetyl-Histone H3 (Lys23) (clone RM169) RevMAb Biosciences 31-1087-00 (custom formulation*)

Mouse monoclonal anti-acetyl-Histone H3 (Lys9) (clone 2G1F9) Active Motif 61663

Rabbit monoclonal anti-phospho-Histone H2B (Ser14) (clone D67H2) Cell Signaling Technology 6959 (custom formulation*)

Rabbit monoclonal anti-ubiquityl-Histone H2A (Lys119) (clone D27C4) Cell Signaling Technology 8240 (custom formulation*)

Rabbit monoclonal anti-acetyl-Histone H3 (Lys18) (clone RM166) RevMAb Biosciences 31-1055-00 (custom formulation*)

Mouse monoclonal anti-acetyl-Histone H3 (Lys56) (clone 12.1) Active Motif 61061

Mouse monoclonal anti-peptidylarginine deiminase 4 (PADI4) (clone OTI4H5) OriGene CF504813

Rabbit monoclonal anti-ubiquityl-Histone H2B (Lys120) (clone D11) Cell Signaling Technology 5546 (custom formulation*)

Mouse monoclonal anti-crotonyllysine (clone 4D5) PTM Biolabs PTM-502

Rabbit monoclonal anti-citrullinated-Histone H3 (Arg2) (clone EPR17703) abcam ab176843

Rabbit monoclonal anti-acetyl-Histone H3 (Lys14) (clone D4B9) Cell Signaling Technology 7627 (custom formulation*)

Rabbit polyclonal anti-citrullinated-Histone H3 (Arg2/8/17) abcam ab5103 (lot GR276206-1)

Rabbit monoclonal anti-acetyl-Histone H4 (Lys16) (clone E2B8W) Cell Signaling Technology 13534 (custom formulation*)

Mouse monoclonal anti-Histone H4 (clone 31830) abcam ab31830

Mouse monoclonal anti-acetyl-Histone H3 (Lys27) (clone MABI 0309) Active Motif 39685

Mouse monoclonal anti-monomethylarginine (MMA) (clone 5D1) abcam ab415

Rabbit monoclonal antisymmetric dimethylarginine (SDMA) Cell Signaling Technology 13222 (custom formulation*)

Mouse monoclonal anti-dimethyl-Histone H3 (Lys4) (clone MABI 0303) Active Motif 39679

Mouse monoclonal anti-dimethyl-Histone H3 (Lys9) (clone 5E5-G5) BioLegend 815501

Mouse monoclonal anti-monomethyl-Histone H3 (Lys9) (clone 7E7.H12) BioLegend 824201

Rabbit monoclonal anti-trimethyl-Histone H3 (Lys36) (clone RM155) RevMAb Biosciences 31-1051-00 (custom formulation*)

Mouse monoclonal anti-monomethyl-Histone H3 (Lys27) (clone MABI 0321) Active Motif 61015

Rabbit monoclonal anti-asymmetric dimethylarginine (ADMA) Cell Signaling Technology 13522 (custom formulation*)

Mouse monoclonal anti-dimethyl-Histone H3 (Lys36) (clone MABI 0332) Active Motif 61019

Mouse monoclonal anti-dimethyl-Histone H3 (Lys27) (clone MABI 0324) Active Motif 61435

Mouse monoclonal anti-dimethyl-Histone H4 (Lys20) (clone MABI 0422) Active Motif 61533

Rabbit monoclonal anti-Histone H3.3 (clone EPR17899) abcam ab176840

Mouse monoclonal anti-trimethyl-Histone H4 (Lys20) (clone 6F8-D9) BioLegend 827701

Mouse monoclonal anti-macroH2A (clone 14G7) Millipore MABE61

Mouse monoclonal anti-trimethyl-Histone H3 (Lys4) (clone G.532.8) ThermoFisher MA5-11199 (custom formulation*)

Rabbit monoclonal anti-Histone H2A.Z (clone EPR6171(2)(B)) abcam ab150402

Rabbit monoclonal anti-monomethyl-Histone H3 (Lys36) (clone EPR16993) abcam ab176920

Mouse monoclonal anti-trimethyl-Histone H3 (Lys27) (clone MABI 0323) Active Motif 61017

Mouse monoclonal anti-monomethyl-Histone H4 (Lys20) (clone 5E10-D8) BioLegend 828001

Mouse monoclonal anti-CENP-A (clone 3-19) MBL D115-3

Mouse monoclonal anti-human CD45-89Y (clone HI30) Fluidigm 3089003B

(Continued on next page)
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Mouse monoclonal anti-human CD4 (clone RPA-T4) BioLegend 300541

Mouse monoclonal anti-human CD8 (clone SK1) BioLegend 344727

Mouse monoclonal anti-human CD34 (clone 8G12) BD 348050 (custom formulation*)

Mouse monoclonal anti-human CD11c (clone Bu15) BioLegend 337221

Mouse monoclonal anti-human CD14 (clone M5E2) BioLegend 301843

Mouse monoclonal anti-human CD33 (clone WM53) BioLegend 303419

Mouse monoclonal anti-human CD16 (clone B73.1) BioLegend 360702

Mouse monoclonal anti-human CD123 (clone 9F5) BD 555642

Mouse monoclonal anti-human CD3 (clone UCHT1) BioLegend 300443

Mouse monoclonal anti-human CD38 (clone HIT2) BioLegend 303535

Mouse monoclonal anti-human CD56 (clone NCAM16.2) BD 559043

Mouse monoclonal anti-human CD19 (clone HIB19) BioLegend 302247

Mouse monoclonal anti-human HLA-DR (clone L243) BioLegend 307651

Mouse monoclonal anti-humanIL-17A (clone BL168) BioLegend 512331

Mouse monoclonal anti-human TCRg/d (clone B1) BioLegend 331202

Mouse monoclonal anti-human CD197 (CCR7) (clone G043H7) BioLegend 353237

Mouse monoclonal anti-human CD294 (CRTH2) (clone BM16) BioLegend 350102

Mouse monoclonal anti-human CD45RO (clone UCHL1) BioLegend 304239

Mouse monoclonal anti-human TBX21 (T-bet) (clone 4B10) BioLegend 644825

Mouse monoclonal anti-human FOXP3 (clone 259D/C7) BD 560044

FITC-mouse monoclonal anti-human CD45 (clone HI30) BioLegend 304038

PE/Cy7-mouse monoclonal anti-human CD3 (clone UCHT1) BioLegend 300420

Alexa Fluor 647-mouse monoclonal anti-human CD19 (clone HIB19) BioLegend 302220

PE-mouse monoclonal anti-human CD14 (clone M5E2) BioLegend 301806

FITC-mouse monoclonal anti-human CD56 (clone NCAM16.2) BD 340723

Rabbit monoclonal anti-neutrophil elastase (clone EPR7479) abcam ab131260

Rabbit monoclonal anti-lambda light chain (clone RM127) RevMAb Biosciences 31-1029-00

Rabbit polyclonal anti-granzyme B Cell Signaling Technology 4275S

* Custom formulation: PBS, > 1mg/mL, carrier-free, azide-free.

Biological Samples

Buffy coat from whole blood (for bio rep 1 and 2) Stanford Blood Center https://bloodcenter.stanford.edu/

research-labs/research-products-

and-services/blood-products/

PBMCs from twin subjects Brodin et al. (2015) study

(PMID: 25594173)

http://www.cell.com/cell/fulltext/

S0092-8674(14)01590-6

Chemicals, Peptides, and Recombinant Proteins

Ficoll-Paque PLUS GE Healthcare 17-1440-02

RBC lysis buffer (10X) BioLegend 420301

DMSO Sigma D2650

TCEP ThermoFisher 77720

Sodium azide Sigma S2002

EDTA Fisher BP120-500

16% paraformaldehyde Electron Microscopy

Sciences

15710

Methanol Fisher Scientific A454-4

PBS ThermoFisher 10010-072

Software and Algorithms

FlowJo FlowJo, LLC https://www.flowjo.com/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Other

SepMate-50 STEMCELL Technologies 85460

Human AB serum heat-inactivated Valley Biomedical HP1022HI

Maxpar X8 multi-metal labeling kit Fluidigm 201300

Antibody stabilizer (PBS-based) Boca Scientific 131 000

RPMI 1640 media ThermoFisher 22400-105

Fetal bovine serum ATCC 30-2020

Bovine serum albumin Sigma A3059

Cisplatin ENZO Life Sciences ALX-400-040-M250

DNase/RNase-free distilled water ThermoFisher 10977-023

Cell-ID 20-Plex Pd Barcoding Kit Fluidigm 201060

Human TruStain FcX for Fc receptor blocking BioLegend 422302

Cell-I Intercalator-Ir—500 mM Fluidigm 201192B

EQ four element calibration beads Fluidigm 201078

Zombie aqua fixable viability kit BioLegend 423102
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,

Alex J. Kuo (alex0229@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Written informed consent was obtained from all participants and the study was conducted in accordance with the guidance of

Stanford Research Compliance Office for Human Subject Research. The protocol was approved by Stanford Institutional Review

Board (IRB-30494, ACE: Autoimmunity Center of Excellence at Stanford). Bio rep 1 and 2 blood samples from healthy subjects

were collected at Stanford Blood Center. All subjects provided a confidential medical history card and completed informed

consent to donate blood for clinical or research uses. We exclude subjects with known diseases, including but not limited to

HIV, hepatitis and infections, subjects taking medications, or who were pregnant. We specified that the study participants were

either < 25 or > 65 in age and CMV-seronegative determined by ELISA. Purification of buffy coat from whole blood was performed

at Stanford Blood Center to enrich for leukocytes prior to PBMC isolation. Twin subject inclusion and exclusion criteria and PBMC

collection procedures have been described in the influenza vaccination studies reported by Brodin et al. (2015) (PMID: 25594173).We

only selected twin subjects who were either between 16 and 21 (younger twins) or between 52 and 72 (older twins) in age, and were

CMV-seronegative as determined by ELISA. All samples were from the final blood draw collected 28-days post-vaccination. After

sample processing and data collection, a subject from one identical twin pair was found to show signs of upper respiratory tract

infection with fever prior to the day 28 visit and was on medications for symptomatic treatment. The twin pair was thus removed

from downstream analyses.

METHOD DETAILS

PBMC Isolation
Mononuclear cells were purified from buffy coat by density gradient centrifugation using Ficoll-Paque Plus (GE Healthcare) in

SepMate tubes (STEMCELL Technology). Crude PBMCs were treated with RBC lysis buffer (BioLegend) for 5 minutes to remove re-

sidual red blood cells followed by 3 PBS washes. Aliquots of 20 million PBMCs were resuspended in human AB serum (Valley

Biomedical) containing 5% DMSO (Sigma) for cryopreservation.

Lanthanide Labeling of Antibodies for Mass Cytometry
Antibodies were conjugated with the lanthanides listed in Tables S1 and S3 using MAXPAR antibody labeling kit (Fluidigm),

following the manufacturer’s protocol. TCEP (ThermoFisher) was added in 100-fold molar excess to generate sulfhydryl groups
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for maleimide-mediated conjugation of metal-chelating polymers. Conjugated antibodies were diluted in antibody stabilizing solution

(Boca Scientific) containing 0.05% sodium azide (Sigma) for storage.

Mass Cytometry (Sample Processing, Staining, Barcoding and Data Collection)
Cryopreserved PBMCs were thawed and incubated in RPMI 1640 media (ThermoFisher) containing 10% FBS (ATCC) at 37�C for

1 hour prior to processing. Cisplatin (ENZO Life Sciences) was added to 10 uM final concentration for viability staining for 5 minutes

before quenching with CyTOF Buffer (PBS (ThermoFisher) with 1% BSA (Sigma), 2mM EDTA (Fisher), 0.05% sodium azide). Cells

were centrifuged at 400 g for 8minutes and stained with lanthanide-labeled antibodies against immunophenotypic markers in CyTOF

buffer containing Fc receptor blocker (BioLegend) for 30 minutes at room temperature (RT). Following extracellular marker staining,

cells were washed 3 times with CyTOF buffer and fixed in 1.6% PFA (Electron Microscopy Sciences) at 1x106 cells/ml for 15 minutes

at RT. Cells were centrifuged at 600 g for 5minutes post-fixation and permeabilized with 1mL ice-coldmethanol (Fisher Scientific) for

20minutes at 4�C. 4mL of CyTOF buffer was added to stop permeabilization followed by 2 PBSwashes.Mass-tag sample barcoding

was performed following the manufacturer’s protocol (Fluidigm). Individual samples were then combined and stained with intracel-

lular antibodies in CyTOF buffer containing Fc receptor blocker (BioLegend) overnight at 4�C. The following day, cells were washed

twice in CyTOF buffer and stainedwith 250 nM191/193Ir DNA intercalator (Fluidigm) in PBSwith 1.6%PFA for 30minutes at RT. Cells

were washed twice with CyTOF buffer and once with double-deionized water (ddH2O) (ThermoFisher) followed by filtering through

35 mm strainer to remove aggregates. Cells were resuspended in ddH2O containing four element calibration beads (Fluidigm) and

analyzed on CyTOF2 (Fluidigm) in Stanford Shared FACS Facility. Raw data were concatenated and normalized using calibration

beads following the manufacturer’s protocol for downstream processing.

Immune Cell Population Definitions (Gating Strategies) and Data Pre-Processing
Raw data were pre-processed using FlowJo (FlowJo, LLC) to identify cell events from individual samples by palladium-based mass

tags, and to segregate specific immune cell populations by immunophenotypic markers. A detailed gating hierarchy is described in

Data S2. Single-cell data for various immune cell subtypes from individual subjects were exported from FlowJo for downstream

computational analyses.

FACS and Western Blotting
Fresh PBMCs or cells recovered from cryopreservation were resuspended in PBS containing Zombie Aqua reagents (Biolegend) and

incubated for 15minutes at RT for viability staining before quenching with CyTOF buffer. Cells were centrifuged at 400 g for 8minutes

and resuspended in CyTOF buffer containing antibodies against immunophenotypic markers for 30 minutes. Markers for sorting:

APC anti-CD19 (Biolegend) for B cells, PE-Cy7 anti-CD3 (Biolegend) for T cells, PE anti-CD14 (Biolegend) for monocytes, FITC

anti-CD56 (BD) for NK cells, and FITC anti-CD45 (BD) for total PBMCs. Cells were washed once in CyTOF buffer and twice in sorting

buffer (PBS containing 0.1% BSA). FACS was performed on sorters in Stanford Shared FACS Facility. Sorted cells collected in

CyTOF buffer were centrifuged at 400 g for 8 minutes and resuspended in 5X SDS sample buffer (250mM Tris-HCl pH = 6.8, 10%

SDS, 30% glycerol, 5% b-mercaptoethanol, 0.02% bromophenol blue) at 1x106 cells per 100ul. Samples were sonicated using

Bioruptor (Diagenode) for 10 minutes to obtain homogenized lysates for western blot analysis.

Data processing, normalization, and visualization
We normalized single-cell chromatin data to basal levels of histone proteins to account for changes in mark levels due to changes in

global amounts of chromatin. We applied a multi-variate linear regression model to each chromatin mark across all cell types and

subjects. The model is defined as

Mi;j = b0 + b1H3i + b2H4i
where H3 and H4 represent the raw values for the respective hist
one proteins in cell i andMi;j is the raw value for a given chromatin

mark j in cell i across all cell types and subjects. We defined our normalized chromatin score Si;j as the residual of the regression,

corresponding to

Si;j =Mi;j � dMi;j ;
where dMi;j indicates the best fit of themultivariate regressionmode
l. We found the residuals were normally distributed, indicating that

the linear model adequately fit the data. For each mark after correction, we computed the mean level of the mark in a given cell type

across all subjects. We measured heterogeneity between subjects using the inverse of the Simpson’s Diversity Index.

Integrated ChIP-seq and transcriptional analysis of lymphoid and myeloid cells (Figures 1E and 1F)
We analyzed genome-wide occupancy of H3K27me3 and H3K4me3 in human CD3+ T cells and CD14+monocytes using a published

ChIP-seq dataset (GEO: GSE18927) from the Roadmap Epigenomics Mapping Consortium (Bernstein et al., 2010). We calculated
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peak intensity from WIG files as the ratio between read counts for a given peak divided by the length of the peak and by the total

sequencing coverage of the sample. Comparisons of peak intensities between different marks and cell types was performed using

theWilcoxon’s Rank Sum test.We performed transcriptional analysis of human common lymphoid progenitors and commonmyeloid

progenitors using a published RNA-seq dataset (GEO: GSE74246) (Corces et al., 2016). We identified differentially expressed genes

using the DESeq2 algorithm on the read count matrix (Love et al., 2014). We identified genes differentially enriched with chromatin

marks between T cells and monocytes, and differentially expressed genes between CLP and CMP using a FDR threshold of 5%. We

performed the Gene Ontology (GO) enrichment analysis using the DAVID algorithm (https://david.ncifcrf.gov).

Classification of immune cell type using chromatin marks (Figures 2A–2C)
We used the phenotype markers from the standard panels to group cells into five general cell types: T cells, B cells, monocytes, NK

cells, and Others. We performed Principal Component Analysis (PCA) to evaluate the ability of chromatin marks to separate immune

cell subtypes. Euclidean distances were computed from chromatin modifications profiles between immune cell subsets.We built two

L-1 regularized logistic regression models, one for each panel, to distinguish a given cell type from all others using normalized chro-

matin marks from the bio rep 1 cohort. We validated each of the 10models in the bio rep 2 cohort using the coefficients obtained from

the bio rep 1 cohort. We quantified the accuracy of the models using the area under a receiver operating characteristic

curve (AUROC).

Single-cell analysis of the relationship between chromatin mark pairs (Figure 2D)
We quantified the relationship between chromatin mark pairs at a single cell level across all cell types and all subjects using mutual

information, which also identifies non-linear relationships. Because of the large number of cells analyzed, a small change in the level

of either mark can skew the results. Therefore, for every mark, we excluded all single-cell data points within one standard deviation

from the mean. We rescaled the mutual information scores between 0 and 1 by dividing them by their respective channel capacity

values (Cover and Thomas, 2012). Finally, we assigned a direction (positive or negative) to our mutual information scores based on

the direction of the Spearman’s rank correlation for the same pair of chromatin marks. We compared results between bio rep 1 and

bio rep 2 by calculating the Pearson’s correlation coefficient of the mutual information scores across all mark pairs.

Discovery of chromatin-defined cell subsets in NK cells (Figure 3)
We performed a principal component analysis (PCA) of normalized chromatin marks for NK cells for each individual subject and

panel. We tested for the presence of a bimodal distribution along the first principal component usingHartigan’s unimodality test. After

identifying chromatin-defined NK cell subsets, we estimated their overlap with the known CD56bright/dim NK subsets. We used the

mixtools package in R to distinguish CD56bright/dim NK subsets based on CD56 expression using a Gaussian mixture model.

Subject-level analysis of chromatin profiles (Figure 4)
We performed subject level analysis by calculating the mean of the normalized chromatin marks across all cell types and subjects for

both panel 1 and panel 2. We combined the means from both panels (separately for standard and T cell focused panels) and inte-

grated multiple batches by applying ComBat normalization (Johnson et al., 2007). We performed ComBat normalization indepen-

dently for samples profiled using the standard and T cell panels and then combined them afterward. To avoid overlapping measures,

we removed data from CD4+ and CD8+ T cells from the standard panels when combined with the T cell panels. To measure changes

in chromatin levels associatedwith age, we usedHedge’s g, defined as a difference ofmeans divided by pooled standard deviation. It

has repeatedly been shown to be a robust measure of a difference in means as it accounts for the variance between the two groups

being compared (Andres-Terre et al., 2015)

Quantification of cell-to-cell variation in chromatin levels (Figure 5)
Wemeasured cell-to-cell variation in chromatin levels by using the coefficient of variation (CV) (Martinez-Jimenez et al., 2017; Raser

and O’Shea, 2004). We computed the CV of single-cell normalized chromatin values for every mark in every cell type for every

subject. To avoid negative CV values due to negative means, we systematically added the smallest mean value to all means to solely

have positive values. We combined CV values from subjects profiled in the bio rep 1 and bio rep 2 cohorts using ComBat normali-

zation. We used theWilcoxon’s rank sum test to compare CV values between groups, and corrected p values for multiple hypotheses

using FDR. We performed transcriptional analysis of using single-cell RNaseq dataset published by Martinez-Jimenez et al. using

normalized expression data (Martinez-Jimenez et al., 2017). We computed CV levels for every gene in every subject and calculated

difference in mean between old subjects (case) to young (controls). We identified genes bound by H3K27me3 and H3K4m3 using

ChiP-seq data published by Wei et al. (2009) on the same cell type profiled by Martinez-Jimenez et al. (CD4+ Naive T cells in mouse)

and compared them to results obtained using the whole transcriptome using the Wilcoxon’s rank sum test.

Heritability analysis of the twin cohort (Figure 6)
We estimated the heritable and non-heritable fraction for each chromatinmark in each cell type using a structural equationmodel that

incorporates additive genetics, common environment, and non-shared Environment (ACE model) (Brodin et al., 2015; Rijsdijk and

Sham, 2002). We implemented the ACE model using the R package OpenMX. We applied the ACE model to measure heritability
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across all 800 chromatin mark-cell combinations (40 chromatin marks, 20 cell types). We used ComBat for co-normalizing different

batches and different panels. We corrected p values for multiple hypotheses using FDR.

List of R packages
1. sva – ComBat normalization

2. infotheo – mutual information

3. glmnet – L1 penalty LASSO logistic regression

4. diptest – Hartigan’s unimodality test for bimodal distribution to identify NK cell subsets

5. mixtools – Identify NK cell subset

6. OpenMX – ACE model for heritability analysis of the twin cohort
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Supplemental Figures

Figure S1. Lineage-Specific Chromatin Modifications Profiles in Human Immune Cells, Related to Figure 1

(A) Chromatin modification profiles in distinct immune cell subsets. EpiTOF analysis of an independent cohort of 12 healthy subjects (bio rep 2) with the same

demographics as bio rep 1. Color of heatmap represents normalized chromatin mark level as in Figure 1C. Minimum and maximum values of normalized mark

(legend continued on next page)



levels are shown. The means of chromatin mark and immune cell subset pairs across 12 subjects are used for plotting. Chromatin marks (x axis) and immune cell

subsets (y axis) are ordered identically as Figure 1C for direct comparison. Diameter of circle, subject-to-subject variability measured by Inverse Simpson’s

Diversity Index.

(B) Validation of EpiTOF data on sorted immune cells. Western blot analysis of the whole-cell extract from sorted immune cells using the indicated antibodies.

(C) Technical reproducibility of EpiTOF platform. Correlation plot of the two technical replicates (6 subjects; 40 chromatin marks; 11 immune cell subsets). Each

dot represents the mean of the normalized chromatin mark level in an immune cell subset in a subject. y axis, level in technical replicate 1; x axis, level in technical

replicate 2; r, correlation coefficient between the two technical replicates.

(D) Biological reproducibility of EpiTOF analyses. Correlation plot comparing two biological replicates (Figures 1C and S1A). Each data point represents the mean

of the normalized chromatin mark level in an immune cell subset across 12 subjects. y axis, level in bio rep 1; x axis, level in bio rep 2; r, correlation coefficient

between the two biological replicates.

(E) Chromatin modification profiles separate lymphoid and myeloid cells. Dendrogram of unsupervised clustering of immune cell types based on chromatin

modification profiles. EpiTOF data from bio rep 2 (Figure S1A) are shown.

(F) Higher expression of lysine methyltransferases EZH1 and EZH2 in T cells than in monocytes. Differential analysis of EZH1 and EZH2 expression in T cells over

monocytes using publicly available transcription profiling datasets. x axis, effect sizes of differential expression in T cells over monocytes. Error bars, SE.

(G) T cells show higher H3K27me3 but lower H3K4me3 enrichment relative to monocytes. Peak intensity analysis of H3K27me3 (left) and H3K4me3 (right) in

T cells (blue) or monocytes (red) using ChIP-seq dataset GEO: GSE18927. p values for the statistical significance of differential enrichment of both chromatin

marks are shown.

(H) H3K27me3-enriched genes are largely repressed, whereas H3K4me3-enriched genes are transcriptionally active. Gene expression analysis of H3K27me3-

enriched (left) and H3K4me3-enriched (right) genes in T cells (blue) and in monocytes (red). y axis, relative expression in T cells over monocytes. p values for the

statistical significance of differential expression are shown.



Figure S2. Single-Cell EpiTOF Data Predict Immune Cell Identity and Reveal Covariance between Chromatin Modifications, Related to

Figure 2

(A) Separation of immune cells based on variations in chromatin marks. Left, PCA of single-cell dataset from bio rep 2, where each principal component depicts

variations in chromatin modification profiles. Analyses using single-cell data collected by EpiTOF panel 1 (top) and 2 (bottom) are shown. Immune cells are color-

coded as in Figure 2A. Right, Euclidean distances of chromatin modification profiles between the indicated immune cell subtypes.



Figure S3. Heterogeneity in Chromatin Modifications in Lymphocytes Originated from Diverse Functional Subsets, Related to Figure 3

(A) Distinct chromatin modification profiles in T cell functional subsets. EpiTOF analysis on bio rep 2 focusing on T cell subgroups. Heatmap representation of the

normalized chromatin mark levels as in Figure S1A for the indicated 40 chromatin marks (x axis) in 11 T cell subsets (y axis). The normalized mark levels are

centered around the mean of total CD3+ T cells. Minimum and maximum values of normalized mark levels are shown. The mean of the level of each chromatin

mark and T cell subset pair across 12 subjects is used for plotting. Dendrograms, unsupervised clustering; diameter of circle, subject-to-subject variability

measured by Inverse Simpson’s Diversity Index.

(B) Biological reproducibility of T cell-focused EpiTOF analysis. Correlation plot comparing EpiTOF data from the two biological replicates. Each data point

represents themean of the level of a chromatin modification in a T cell subtypes. y axis, level in bio rep 1; x axis, level in bio rep 2; r, correlation coefficient between

the two biological replicates.

(C) The expression of lysine methyltransferases and demethylases regulating H3K27 methylation is elevated in regulatory T cells. Forest plot showing the effect

sizes of the expression of the indicated genes in Treg over total CD4+ T cells. Error bars, SE.

(D and E) Variations of chromatin modification profiles segregate NK cells into two subsets. Scatterplot of NK cells from bio rep 2 plotted based on CD56

(y axis) and CD16 (x axis) levels. Color, principal component 1 summarizing the variance of 20 chromatin marks measured by EpiTOF panel 1. Density plot

(legend continued on next page)



depicts the frequencies of the indicated subpopulations segregated by MixTool (Benaglia et al., 2009) using CD56 level. Green, CD56bright; red, CD56dim (D).

Heatmap analysis of both NK cell subsets with other immune cell populations. Chromatin marks at x axis are ordered identically as Figure 1C for direct

comparison. Dendrogram at y axis, unsupervised clustering; diameter of circle, subject-to-subject variability measured by Inverse Simpson’s Diversity

Index (E).



Figure S4. Increased Variations in Chromatin Modification Profiles with Aging, Related to Figure 4

(A) Elevated proportion of memory CD8+ T cells in older subjects. Boxplots showing the percentage of memory subsets in CD8+ T cells in the subjects from the

indicated age groups in bio rep 1 (left) or 2 (right). Salmon, > 65 years; cyan, < 25 years.

(B) Integration of the two biological replicates for aging-related analyses. PCA of EpiTOF datasets before (left) and after (right) batch effect removal by empirical

Bayes framework. Each dot represents a subject from bio rep 1 (blue) or 2 (orange). Principal components are computed based on the variation of 40 chromatin

marks in 20 immune cell subsets (800 data points).

(C) Biological reproducibility of the altered chromatin modification profiles with aging. Correlation plot of the effect sizes comparing the levels of each chromatin

mark and cell type pairs between age groups (older over younger). Each dot represents the effect size calculated from the two biological replicates. x axis, effect

size from bio rep 1; y axis, effect size from bio rep 2; r, correlation coefficient between biological replicates.

(D) Histone loss in central memory CD8+ T cells with age. Forest plots depict meta-analyses of effect sizes of total histone H3 (left) and H4 (right) levels in the

indicated cell subsets from the two biological replicates. Effect sizes, histone levels in older over younger subjects. Error bars, SE.



Figure S5. Increased Single-Cell Variability in Chromatin Modification Profiles with Age, Related to Figure 5
(A) Single-cell variability of chromatin modifications is higher in older subjects. Histogram showing the number of chromatin mark and cell type pairs (y axis) with

effect sizes (x axis) comparing cell-to-cell variability (CVs) between the two age groups at the indicated levels. Effect size, CV in older subjects over CV in younger

subjects. Dashed line, effect size = 0.

(B) PRC-mediated modifications show higher single-cell variations with aging across several immune cell subsets. Forest plots depict the effect sizes of CVs of

H3K27me3 (left), H3K27me2 (middle), and H2AK119ub (right) between age groups in the indicated immune cell subsets. Effect size (x axis), CV in older subject

over CVs in young subjects. Immune cell subsets (y axis) are ranked by FDR. Dark blue, FDR < 5%; red, FDR < 10%; light blue, FDR > 10%. Error bars, SE.

(C) Single-cell variability of H3K4me3 is not altered significantly with age. Forest plot shows the effect sizes of CVs of H3K4me3 between age groups in the

indicated immune cell subsets. Effect size (x axis), CV in older subject over CVs in young subjects. Immune cell subsets (y axis) are ranked by FDR. All tests have

FDR > 10%. Error bars, SE.

(D) H3K27me3 marks transcriptionally repressed genes while H3K4me3-marked genes are actively transcribed. Expression levels of the indicated subsets of

genes in naive CD4+ T cells purified from old (salmon) or young (cyan) M. musculus domesticus. Transcription profiling data and lists of genes occupied by

H3K27me3 or H3K4me3 are derived from publicly available scRNA-seq (Martinez-Jimenez et al., 2017) and ChIP-seq (Wei et al., 2009) datasets, respectively.

Transcriptome-wide gene expression levels are shown.



Figure S6. Increased Variations of Chromatin Modifications with Aging Are Largely Driven by Non-heritable Influences, Related to Figure 6

(A) Altered chromatin modification profiles with aging. Heatmap representation of the effect sizes of the levels of the indicated chromatin mark and cell type pairs

comparing between twin subjects from the two age groups. The marks and cell subsets are ordered as the heatmap in Figure 4C for direct comparison. Effect

size, chromatin mark levels in older twin subjects over the levels in younger twin subjects.

(B) Single-cell variability of chromatin modifications is higher in older twin subjects. Histogram showing the number of chromatin mark and cell type pairs (y axis)

with the indicated level of effect sizes comparing single-cell CVs between twin subjects from the two age groups. Effect size, CV in older twin subject over CV in

young twin subject. Dashed line, effect size = 0.
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