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RA is an autoimmune disease with chronic inflammation in the 
synovium of the joint tissue1–3. This inflammation leads to joint 
destruction, disability, and shortened life span4. Defining key 

cellular subsets and their activation states in the inflamed tissue 

is a critical step in defining new therapeutic targets for RA. CD4+ 
T cells5,6, B cells7, monocytes8,9, and fibroblasts10,11 have established 
relevance to RA pathogenesis. Here, we use single-cell technologies 
to view all of these cell types simultaneously across a large collection 
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To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing 
(scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts 
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of samples from inflamed joints. We believe a global single-cell por-
trait of how different cell types work together would help identify 
new pathways in RA and eventually new therapeutics.

Application of transcriptomic and cellular profiling technologies 
to whole synovial tissue has already identified specific cell popula-
tions associated with RA3,12–14. However, most studies have focused 
on a preselected cell type, surveyed whole tissues rather than disag-
gregated cells, or used only a single technology platform. The latest 
advances in single-cell technologies offer an opportunity to iden-
tify disease-associated cell subsets in human tissues at high reso-
lution in an unbiased fashion15–17. These technologies have already 
been used to discover roles for T peripheral helper (TPH) cells18 and 
HLA-DR+CD27– cytotoxic T  cells19 in RA pathogenesis. Studies 
using scRNA-seq have defined myeloid cell heterogeneity in human 
blood20 and identified overabundance of PDPN+CD34−THY1+ 
(THY1, also known as CD90) fibroblasts in RA synovial tissue15,21.

To generate high-dimensional multimodal single-cell data from 
synovial tissue samples collected across a collaborative network of 
research sites, we developed a robust pipeline22 in the Accelerating 
Medicines Partnership Rheumatoid Arthritis and Systemic Lupus 
Erythematosus (AMP RA/SLE) consortium. We collected and dis-
aggregated tissue samples from patients with RA and OA and then 
subjected constituent cells to scRNA-seq, sorted-population bulk 
RNA-seq, mass cytometry, and flow cytometry. We developed a 
unique computational strategy based on canonical correlation anal-
ysis (CCA) to integrate multimodal transcriptomic and proteomic 
profiles at the single-cell level. A unified analysis of single cells 
across data modalities can precisely define contributions of specific 
cell subsets to pathways relevant to RA and chronic inflammation.

Results
Generation of parallel mass cytometric and transcriptomic data 
from synovial tissue. In phase 1 of AMP RA/SLE, we recruited 
36 patients with RA who met the 1987 American College of 
Rheumatology (ACR) classification criteria and 15 patients with 
OA from ten clinical sites over 16 months (Supplementary Table 1) 
and obtained synovial tissues from ultrasound-guided biopsies or 
joint replacements (Methods and Fig. 1a). We required that all tis-
sue samples included had synovial lining documented by means 
of histology. Synovial tissue disaggregation yielded an abun-
dance of viable cells for downstream analyses (362,190 ± 7,687 
(mean ± s.e.m.) cells per tissue). We used our validated strategy for 
cell sorting22 (Fig. 1a) to isolate B cells (CD45+CD3−CD19+), T cells 
(CD45+CD3+), monocytes (CD45+CD14+), and stromal fibroblasts 
(CD45−CD31−PDPN+) (Supplementary Fig.  1a). We applied bulk 
RNA-seq to all four sorted subsets for all 51 samples. For samples 
with sufficient cell yield (Methods), we also measured single-cell 
protein expression using a 34-marker mass cytometry panel (n = 26; 
Supplementary Table 2) and single-cell RNA expression in sorted 
cell populations (n = 21; Fig. 1b).

Summary of computational data integration strategy to define 
cell populations. To confidently define RA-associated cell popu-
lations, we integrated multiple data modalities (Fig.  1b,c). We  
used bulk RNA-seq data as the reference point, because these  
data were available for almost all the donors for all the cell types, 
had the highest dimensionality, and were least sensitive to technical 
artifacts (Fig. 1b).

Integrating scRNA-seq with bulk RNA-seq data ensures robust 
discovery of cell populations. Here, we used CCA to find linear com-
binations of bulk RNA-seq samples and scRNA-seq cells (Fig. 1c,d) 
to create gene expression profiles that were maximally correlated. 
These linear combinations captured sources of shared variation 
between the two datasets and allowed us to identify individual cell 
populations that drive variation in the bulk RNA-seq data. We ana-
lyzed the scRNA-seq data by using the canonical variate coefficients 

for each cell to compute a nearest neighbor network, identifying 
clusters with a community detection algorithm, and evaluating the 
separation between clusters with Silhouette analysis (Methods and 
Supplementary Fig. 2b).

We identified cell clusters in mass cytometry data using density-
based clustering23. Next, we used CCA to identify linear combina-
tions of bulk RNA-seq genes and mass cytometry cluster abundances 
that maximized correlation across patients. These canonical vari-
ates offered a way to visualize genes and mass cytometry clusters 
together. We then queried this CCA result with the best marker 
genes from scRNA-seq to establish a relationship between each 
scRNA-seq cluster and each mass cytometry cluster (Methods). We 
also used CCA to associate bulk gene expression in each sample 
with proportions of cells in different flow cytometry gates.

Flow cytometry features define a set of RA synovia that are leu-
kocyte rich. Histology of RA synovial tissues revealed heteroge-
neous tissue composition with variable lymphocyte and monocyte 
infiltration (Fig. 2a,b and Supplementary Fig. 2c,d). This heteroge-
neity was expected, because variation in tissue immune cell infiltra-
tion reflects local disease activity in the source joint. Consequently, 
we employed a data-driven approach to separate samples on the 
basis of flow cytometry of lymphocyte and monocyte infiltration 
in each tissue sample (Supplementary Fig.  1b,c). We calculated a 
multivariate normal distribution of these parameters based on OA 
samples as a reference, and for each RA sample, we calculated the 
Mahalanobis distance from OA24. We defined the maximum OA 
distance (4.5) as the threshold for defining leukocyte-rich RA (>4.5, 
n = 19) or leukocyte-poor RA (<4.5, n = 17) samples (Methods and 
Supplementary Fig.  1d). Whereas leukocyte-rich RA tissues had 
substantial infiltration of synovial T  cells and B cells, leukocyte-
poor RA tissues had cellular compositions more similar to those of 
OA samples (Fig. 2c). Synovial monocyte abundances were similar 
between RA and OA samples (Fig. 2c).

To test whether our classification indicated inflammation, we 
assessed tissue histology and assigned each sample a Krenn inflam-
mation score25. Samples that we classified as leukocyte-rich RA had 
significantly higher Krenn inflammation scores than those of leu-
kocyte-poor RA or OA samples (Fig. 2d). In contrast, synovial lin-
ing membrane hyperplasia was not significantly different between 
leukocyte-rich RA, leukocyte-poor RA, and OA samples (Fig. 2d). 
We observed significant correlation between synovial leukocyte 
infiltration, as measured via flow cytometry and the histological 
Krenn inflammation score (Fig.  2e). Mass cytometry in 26 syno-
vial tissues was consistent with flow cytometry and histology. OA 
and leukocyte-poor RA samples were characterized by a high abun-
dance of fibroblasts and endothelial cells; whereas, leukocyte-rich 
RA tissues were characterized by a high abundance of CD4+ T cells, 
CD8+ T cells, and B cells (Fig. 2f and Supplementary Fig. 3a).

Single-cell RNA-seq analysis reveals distinct cell subpopulations. 
Next, we analyzed 5,265 scRNA-seq profiles passing quality control 
(Methods), including 1,142 B cells, 1,844 fibroblasts, 750 mono-
cytes, and 1,529 T cells. We used canonical variates (from CCA with 
bulk RNA-seq) to define 18 cell clusters that were independent of 
donor (n = 21) and technical plate effects (n = 24) (Fig.  3a,b and 
Supplementary Figs. 2c and Fig. 4a). In contrast, conventional prin-
cipal component analysis (PCA)-based clustering led to clusters that 
were confounded by batch effects (Supplementary Fig. 4b). All of the 
clusters in the PCA-based clustering, excluding clusters confounded 
by batch, were identified in CCA-based clustering. Next, we com-
pared expression values between cells in the cluster and all other 
cells to select cluster marker genes (Methods and Supplementary 
Table  4). For selected genes, expression values in each cell posi-
tioned in a t-Distributed Stochastic Neighbor Embedding (tSNE26) 
are shown in Fig.  3c–f. Among fibroblasts, we identified four  
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putative subpopulations (Fig.  3c): CD34+ sublining fibroblasts  
(SC-F1), HLA-DRAhi sublining fibroblasts (SC-F2), DKK3+ sub
lining fibroblasts (SC-F3), and CD55+ lining fibroblasts (SC-F4). In 
monocytes (Fig. 3d), we identified IL1B+ pro-inflammatory mono-
cytes (SC-M1), NUPR1+ monocytes (SC-M2), C1QA+ monocytes 
(SC-M3), and interferon (IFN) activated monocytes (SC-M4). In 
T cells (Fig. 3e), we identified three CD4+ clusters: CCR7+ T cells 
(SC-T1), FOXP3+ regulatory T cells (Treg cells) (SC-T2), and PDCD1+ 
TPH and TFH (SC-T3) cells; and three CD8+ clusters: GZMK+ T cells 
(SC-T4), GNLY+GZMB+ cytotoxic lymphocytes (CTLs) (SC-T5), 
and GZMK+GZMB+ T  cells (SC-T6). Within B cells (Fig.  3f), we 
identified four cell clusters, including naïve IGHD+CD27– (SC-B1) 
and IGHG3+CD27+ memory B cells (SC-B2). We identified an auto-
immune-associated B cell (ABC) cluster (SC-B3) with high expres-
sion of ITGAX (also known as CD11c) and a plasmablast cluster 
(SC-B4) with high expression of immunoglobulin genes and XBP1, 
a transcription factor for plasma cell differentiation27.

We assessed protein fluorescence measurements of typical cell 
type markers, which were consistent with our identified scRNA-seq 
clusters (Supplementary Fig. 2e). Cell density quantified from ten 
histology samples correlated with the lymphocyte flow cytometric 
cell yields, suggesting that samples with the most single-cell mea-
surements were those with the best yields and the most inflamma-
tion (Supplementary Fig. 5).

Distinct synovial fibroblasts defined by cytokine activation and 
MHC II expression. To identify the fibroblast subpopulations 
that are overabundant in leukocyte-rich RA synovia, we selected 
marker genes for each cluster and assessed their expression levels in 
bulk RNA-seq from sorted fibroblasts (CD45−PDPN+) of samples  
from patients with RA and OA. For example, genes associated with 
HLA-DRAhi (SC-F2) fibroblasts were more highly expressed in bulk 
RNA-seq samples from leukocyte-rich RA than in OA samples  
(t test P < 1 × 10−3 for HLA-DRA, IFI30, and IL6) (Fig. 4a). Because 
the expression profile of a bulk tissue sample is an aggregate of the 
expression profiles of its constituent cell populations, this result 
suggests expansion of HLA-DRAhi (SC-F2) fibroblasts in RA tissues. 
Genes associated with CD55+ fibroblasts (SC-F4) were significantly 
more highly expressed in bulk RNA-seq samples from OA than in 
those from leukocyte-rich RA (t test P < 1 × 10−3 for HBEGF, CLIC5, 
HTRA4, and DNASE1L3) (Fig. 4a). CD55+ fibroblasts (SC-F4) were 
the most transcriptionally distinct subset from the three THY1+ 
clusters (SC-F1-3), including the highest expression of lubricin 
(PRG4), suggesting that these cells represent synovial lining fibro-
blasts and THY1+ fibroblasts (SC-F1-3) represent sublining (Fig. 4a). 
Next, we use the averaged expression level of the best marker genes 
for each scRNA-seq cluster (AUC > 0.7) and tested for differential 
expression in bulk RNA-seq fibroblast samples from leukocyte-rich  
RA and OA synovia. The gene averages for HLA-DRAhi sublining 
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fibroblasts (SC-F2) and CD34+ sublining fibroblasts (SC-F1) were 
higher in leukocyte-rich RA compared with those in OA (t test 
P = 2 × 10−6 and P = 2 × 10−3, respectively), whereas the gene aver-
ages for CD55+ lining fibroblasts (SC-F4) were higher in OA than in 
leukocyte-rich RA (t test P = 5 × 10−7) (Fig. 4b).

Consistent with the role of synovial fibroblasts in matrix remod-
eling, the sublining fibroblast subsets (SC-F1-3) expressed genes 
encoding extracellular matrix constituents (Fig.  4c). HLA-DRAhi 
sublining fibroblasts (SC-F2) expressed genes related to MHC 
class II presentation and the interferon γ–mediated signaling path-
way (IFI30) (Fig.  4a,c), suggesting upregulation of MHC class II 
in response to interferon-γ signaling in these cells. We identified 
a novel sublining fibroblast subtype (SC-F3) that is characterized  
by high expression of DKK3, CADM1, and COL8A2 (Fig. 4a).

To independently confirm the presence of the four fibroblast 
subpopulations discovered by means of scRNA-seq, we analyzed 

CD45−PDPN+ cells in mass cytometry data and found eight puta-
tive cell clusters with differential protein levels of THY1, HLA-DR, 
CD34, and cadherin-11 with no obvious batch effects (Fig.  4d–g 
and Supplementary Fig. 3b). CCA revealed that greater abundance 
of THY1+CD34−HLA-DRhi fibroblasts measured via mass cytom-
etry is associated with higher expression of IL6, CXCL12, and 
HLA-DRA in bulk RNA-seq of the same samples, suggesting that 
these cells are in an active cytokine-producing state (Fig. 4h). CCA 
allowed us to place mass cytometry clusters in the same space as 
bulk RNA-seq genes, so we could query the positions of scRNA-seq 
genes within this space to find the correspondence between scRNA-
seq clusters and mass cytometry clusters (Fig. 4i and Methods). We 
found that HLA-DRAhi sublining fibroblasts (SC-F2) correspond to 
THY1+CD34−HLA-DRhi fibroblasts (z score = 2.8), and CD34+ sub-
lining fibroblasts (SC-F1) correspond to THY1+CD34+HLA-DRlo 
fibroblasts (z score = 2.7) (Table  1). Consistent with differential  
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expression analysis of bulk RNA-seq, THY1+CD34−HLA-DRhi 
cells in the mass cytometry data were found to be overabundant in 
leukocyte-rich RA relative to leukocyte-poor RA and OA controls 
(36% versus 2% of fibroblasts, MASC (mixed-effects modeling of 
associations of single cells) OR = 33.8 (95% CI: 11.7–113.1), one-
sided MASC P = 1.9 × 10−5) (Table 1).

To validate that the protein surface markers from mass cytometry 
were capturing the same transcriptional populations from scRNA-
seq, we isolated fibroblasts from ten synovial tissue samples on the 
basis of surface protein levels of THY1 and HLA-DR and applied bulk 
RNA-seq (Supplementary Fig. 6a). We trained a linear discriminant 
analysis (LDA) classifier on fibroblast scRNA-seq data and used it to 
determine the most similar scRNA-seq cluster for each bulk RNA-
seq sample. The sorted THY1+HLA-DR+ fibroblast population was  
similar to THY1+HLA-DRAhi (SC-F2), and the THY1−HLA-DR− popu
lation was similar to THY1− (SC-F4) (Supplementary Fig.  7a–d).  
Genes upregulated in the sorted THY1+HLA-DR+ fibroblasts 
included IL6 and CXCL12, consistent with the scRNA-seq data.

Activation states define heterogeneity among synovial mono-
cytes. We identified four transcriptionally distinct monocyte 
subsets in the scRNA-seq data: IL1B+ pro-inflammatory mono-
cytes (SC-M1), NUPR1+ monocytes (SC-M2), C1QA+ monocytes 
(SC-M3), and IFN-activated SPP1+ monocytes (SC-M4) (Fig. 5a). 
In bulk RNA-seq monocyte samples from individuals with leuko-
cyte-rich RA and OA, we found that genes associated with IL1B+ 
monocytes (SC-M1), including NR4A2, HBEGF, PLAUR, and the 
IFN-activated gene IFITM3 were significantly upregulated in leuko-
cyte-rich RA samples (t test P < 1 × 10−4). In contrast, marker genes 
associated with NUPR1+ monocytes (SC-M2) were downregulated 
in leukocyte-rich RA relative to OA (Fig.  5a). Next, we took the 
average of the top marker genes (AUC > 0.7) for each monocyte 
scRNA-seq subset and tested for differential expression of these 
averages in the bulk RA versus OA RNA-seq data. This analysis 
showed that leukocyte-rich RA synovia have a greater abundance 
of IL1B+ monocytes (t test P = 6 × 10−5) and IFN-activated mono-
cytes (t test P = 6 × 10−3) than OA, but lower abundance of NUPR1+ 
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monocytes (t test P = 2 × 10−5) (Fig.  5b). These data suggest that 
cytokine activation drives expansion of unique monocyte popula-
tions in active RA synovia.

Using Gene Set Enrichment Analysis (GSEA), we tested MSigDB 
(the Molecular Signatures Database) immunologic gene sets and 
found IL1B+ monocytes (SC-M1) have relatively high expression 
levels of genes defining the lipopolysaccharide response in mono-
cytes and macrophages (Fig. 5b). This finding suggests that IL1B+ 
monocytes (SC-M1) are similar to TLR-activated IL-1-producing 
pro-inflammatory monocytes. Among Gene Ontology gene sets,  
we found that SPP1+ monocytes (SC-M4) express genes induced by 

type I and type II IFN (Supplementary Fig. 8a), including IFITM3  
and IFI6 (Fig.  5a). The transcriptional profiles of monocytes in 
SC-M2 and SC-M3 do not align with known activation states, 
possibly indicating that these clusters represent cell pheno-
types tailored to the unique homeostatic needs of the synovium. 
Immunofluorescence staining confirmed the presence of CD14- 
and IL-1β-positive cells in six tissue samples, consistent with an 
enrichment of the IL1B+ pro-inflammatory monocyte (SC-M1) 
phenotype in RA synovium (Fig. 5d and Supplementary Fig. 9a,b).

In the mass cytometry data, we identified five CD14+ mono
cyte clusters (Fig. 5e–h and Supplementary Fig. 3c). Using CCA to 
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integrate mass cytometry and bulk RNA-seq data, we found that  
samples with a greater abundance of CD11c+CCR2+ and CD11c+ 
CD38+ using mass cytometry also showed higher expression of  
IFITM3, PLAUR, CD38, and HLA genes (Fig. 5i). This finding was 
consistent with a correspondence between the CD11c+CD38+ mass 
cytometry cluster and the activated monocyte scRNA-seq cluster  
IL1B+ (SC-M1) and SPP1+ (SC-M4) (z score = 2.3 and 2.3, respec-
tively) (Fig. 5j and Table 1). We also confirmed that CD11c+CD38+ 
monocytes are significantly expanded in leukocyte-rich RA (OR = 7.8 
(95% CI: 3.6–17.2), one-sided MASC P = 6.7 × 10−5) (Table  1).  
Conversely, NUPR1+ monocytes (SC-M2) corresponded to  
CD11c− monocytes in mass cytometry and were inversely correlated  
with inflammatory monocyte populations (z score = 2.7) (Fig.  5j 
and Table 1).

To confirm that putative populations from mass cytometry 
correspond to those identified by scRNA-seq clusters, we sorted 
CD14+ monocytes from four synovial tissue samples using CD11c 
and CD38 protein markers and assayed the cells via RNA-seq 
(Supplementary Fig.  6c). Importantly, we found that CD14+ 
synovial cells showed high expression of both CD11c and CD38,  
particularly in the RA samples. The CD14+CD11c+++CD38+++  
and CD14+CD11c+CD38− sorted cells were consistent with IL1B+ 
pro-inflammatory (SC-M1) and NUPR1+ (SC-M2) cells, respec-
tively (Supplementary Fig.  7e-h). These data, alongside the  
mass cytometry data, support the findings of greater abundance 
of IL1B+ pro-inflammatory (SC-M1) monocytes and lower  
abundance of NUPR1+ (SC-M2) monocytes in leukocyte-rich RA 
samples.

Table 1 | Connection between cell populations determined by mass cytometry and scRNA-seq clusters and disease associations

scRNA-seq cluster Mass cytometry cluster Leukocyte-poor 
RA and OA

Leukocyte-rich 
RA

One-sided 
MASC P value

Leukocyte-rich 
OR (CI)

THY1− Cadherin-11− 21% 4% 1.00 0.04 (0–0.2)

Lining fibroblasts (SC-F4) THY1− Cadherin-11+ 18% 2% 1.00 0.1 (0–0.3)

THY1− CD34+ HLA-DRhi 7% 3% 0.87 0.5 (0.3–1.2)

THY1− CD34− HLA-DRhi 17% 15% 0.48 1.2 (0.3–4.4)

HLA-DRAhi sublining fibroblasts (SC-F2) THY1+ CD34− HLA-DRhi 2% 36% 1.9 × 10–5 33.8 (11.7–113.1)
DKK3+ sublining fibroblasts (SC-F3) THY1+ CD34− HLA-DRlo 16% 15% 0.66 0.8 (0.3–1.8)

CD34+ sublining fibroblasts (SC-F1) THY1+ CD34+ HLA-DRlo 18% 4% 1.00 0.2 (0.1–0.4)

THY1+ CD34+ HLA-DRhi 2% 21% 1.6 × 10−4 25.5 (7.5–101.8)
NUPR1+ (SC-M2) CD11c− 30% 4% 1.00 0.1 (0–0.4)

IL1B+ (SC-M1), IFN-activated (SC-M4) CD11c+ CCR2+ 34% 40% 0.23 1.6 (0.7–3.6)

CD11c+ CD38− 13% 2% 1.00 0.1 (0–0.3)

CD11c+ CD38− CD64+ 13% 3% 0.93 0.3 (0.1–1)

IL1B+ (SC-M1), IFN-activated (SC-M4), 
C1QA+ (SC-M3)

CD11c+ CD38+ 15% 51% 6.7 × 10−5 7.8 (3.6–17.2)

CD4− CD8− 15% 9% 0.95 0.6 (0.3–1)

CCR7+ (SC-T1) CD4+ CCR2+ 26% 13% 1.00 0.4 (0.2–0.7)

CD4+ HLA-DR+ 6% 2% 0.83 0.7 (0.2–4.1)

CD4+ PD-1+ ICOS− 13% 12% 0.81 0.9 (0.5–1.6)

TPH and TFH (SC-T3) CD4+ PD-1+ ICOS+ 11% 25% 2.7 × 10−4 3.0 (1.7–5.2)
CD8+ PD-1− HLA-DR− 14% 9% 0.76 0.7 (0.3–1.5)

GZMK+GZMB+(SC-T6), CTLs (SC-T5) CD8+ PD-1−HLA-DR+ 2% 1% 0.64 0.9 (0.4–2.2)

CD8+ PD-1+ HLA-DR− 13% 14% 0.40 1.1 (0.6–1.9)

TPH and TFH (SC-T3) CD8+ PD-1+ HLA-DR+ 1% 15% 9.2 × 10−5 11.8 (4.9–34.2)
Plasmablasts (SC-B4) CD38++ CD20− IgM− IgD− 6% 12% 0.01 3.3 (1.2–10.5)

CD38++ CD20− IgM+ HLA-DR+ 1% 3% 0.01 6.9 (1.3–83.1)
Memory B cells (SC-B2) IgM− IgD− HLA-DR− 27% 2% 1.00 0.1 (0–0.3)

CD38+ HLA-DR++ CD20- CD11c+ 19% 6% 0.56 0.9 (0.1–6.7)

ABCs (SC-B3) IgM− IgD− HLA-DR++ CD20+ CD11c+ 4% 12% 2.7 × 10−3 5.7 (1.8–22.3)
IgM− IgD− HLA-DR+ 32% 20% 0.98 0.4 (0.2–1)

IgA+ IgM− IgD− 5% 4% 0.68 0.9 (0.5–1.6)

Naive B cells (SC-B1) IgM+ IgD− 22% 11% 0.97 0.5 (0.2–1)

IgM+ IgD+ CD11c− 12% 26% 0.02 4.0 (1.3–12.0)

IgM+ IgD+ CD11c+ 4% 7% 0.14 2.2 (0.74–7.7)

Bold mass cytometry clusters are significantly enriched in leukocyte-rich RA (one-sided Benjamini–Hochberg FDR q value < 0.05). Two significant digits are given to the one-sided F tests conducted on 
nested models with MASC. 95% confidence interval (CI) for the odds ratio (OR) is given for each mass cytometry cluster. Where possible, we have identified the most similar scRNA-seq clusters for each 
cluster found by mass cytometry. The mass cytometry analysis is performed on downsampled datasets of 25,161 fibroblasts from 23 patients, 15,298 monocytes from 26 patients, 19,985 T cells from 26 
patients and 8,179 B cells from 23 patients.
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Heterogeneity in synovial CD4 and CD8 T cells defined by effec-
tor functions. We found three CD4+ and three CD8+ T cell subsets 
in the scRNA-seq data (Fig. 6a). CCR7+ T cells (SC-T1) expressed 
genes in the MSigDB immunologic gene set for central memory 
T  cells (Fig.  6a,c). The two other CD4+ populations, FOXP3+ Treg 
cells and PDCD1+ TPH and TFH cells, were marked by high expression  
of FOXP3 (SC-T2) and CXCL13 (SC-T3) in examination of  
differentially expressed genes between these two clusters18 (Supple
mentary Fig.  8c). CXCL13, a chemokine expressed by TPH cells, 
was upregulated in bulk-sorted T cells (CD45+CD14−CD3+) from 

leukocyte-rich RA compared samples with OA (t test P = 1.2 × 10−4) 
(Fig. 6a). We found that the average of marker genes for TPH and 
TFH cells (SC-T3) (AUC > 0.7) was higher in leukocyte-rich RA than 
that in OA samples (t test P = 0.01) (Fig. 6b), thus suggesting greater 
abundance of TPH and activated T cells in RA than in OA. We iden-
tified three CD8+ T  cell subsets characterized by distinct expres-
sion patterns of effector molecule genes GZMK, GZMB, GZMA, 
and GNLY (Fig.  6a). We defined these populations as GZMK+  
(SC-T4), GNLY+GZMB+ cytotoxic T lymphocytes (CTLs) (SC-T5),  
and GZMK+GZMB+ T  cells (SC-T6). GZMK+GZMB+ T  cells  
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monocytes (two-sided Student’s t test P = 6 × 10−5, t value = 4.56, df = 26.33) and IFN-activated monocytes (two-sided Student’s t test P = 6 × 10−3,  
t value = 3.28, df = 23.68) are upregulated in leukocyte-rich RA (n = 17) compared to OA (n = 13), while SC-M2 is depleted (two-sided Student’s t test 
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dendritic cells (pDC) (GSE29618). d, Detection of pro-inflammatory IL-1β in inflamed synovium by multicolor immunofluorescent staining with antibodies 
to CD14 (red), IL-1β (green), and counterstained with DAPI (blue) identified CD14+IL-1β+ cells (white arrow). The experiment was repeated >5 times with 
staining of six independent leukocyte-rich RA samples with similar results. Image was acquired at ×200 magnification. Scale bar, 50 μm. e,f, Identified 
subpopulations from monocytes (n = 15,298) and disease status from six leukocyte-rich RA sample, nine leukocyte-poor RA samples, and 11 OA samples 
by mass cytometry on the same gating with scRNA-seq. g,h, Normalized intensity of distinct protein markers by tSNE visualization, averaged for each 
cluster in the heatmap. i, Integration of identified mass cytometry clusters with bulk RNA-seq reveals genes that are associated with CD11c+CD38+ 
and CD11c+CCR2+, like IFITM3, CD38, HBEGF, ATF3, and HLA+ genes. j, Integration of mass cytometry clusters and scRNA-seq clusters revealed that 
CD11c+CD38+ cells by mass cytometry are significantly associated with IL1B+ pro-inflammatory (SC-M1) monocytes.
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(SC-T6) also expressed HLA-DPA1 and HLA-DRB1 and other genes 
suggestive of an effector phenotype (Fig. 6a,c).

To confirm these findings, we applied intracellular staining 
to tissues from RA samples and RNA-seq to sorted CD8+ T cells. 

Intracellular staining of GZMK and GZMB proteins in disag-
gregated tissue samples from patients with RA revealed that most 
CD8+ T  cells in synovial tissue express GZMK (Supplementary 
Fig. 10a). Furthermore, we found that most HLA-DR+ CD8+ T cells 
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express both GZMB and GZMK by intracellular protein stain-
ing (Supplementary Fig.  10b). In a comparison of seven synovial  
tissue samples, CD8+ T  cells had a higher proportion of IFN𝛾+  
cells than CD4+ T  cells from the same sample (Supplementary 
Fig.  10c,d). We also applied immunofluorescence to six synovial  
tissue samples and found that IFN𝛾+CD3+CD8+ T cells were higher 
in frequency in RA than OA (Fig. 6d and Supplementary Fig. 9c,d). 
Overall, these results closely mirror the findings from the scRNA-
seq clusters.

Using mass cytometry, we identified nine putative T  cell clus-
ters among the synovial T cells (CD45+CD14−CD3+) (Fig. 6e–h and 
Supplementary Fig.  3d). By integrating bulk RNA-seq with mass 
cytometry cluster abundances, we found that higher gene expres-
sion of CXCL13 and inhibitory receptors TIGIT and CTLA4 was 
associated with a greater abundance of the CD4+PD-1+ICOS+ mass 
cytometry cluster. Greater abundance of CD8+PD-1–HLA-DR+ 
cells was associated with greater expression of IFNG (Fig. 6i). We 
found correspondence between TPH and TFH cells (SC-T3) and 
CD4+PD-1+ICOS+ T  cells (z score = 3.4). CD8+ subsets includ-
ing GZMK+GZMB+ cells (SC-T6) and CTLs (SC-T5) tracked with 
CD8+PD-1–HLA-DR+ T cells by means of mass cytometry (Fig. 6j 
and Table  1). Additionally, CD4+PD-1+ICOS+ cells were signifi-
cantly overabundant in leukocyte-rich RA (MASC OR = 3 (95% CI: 
1.7–5.2), one-sided MASC P = 2.7 × 10−4) (Table 1).

Autoimmune-associated B cells expanded in RA synovium by 
single-cell RNA-seq. We identified four synovial B cell clusters 
with scRNA-seq: naïve B cells (SC-B1), memory B cells (SC-B2), 
ITGAX+ ABC cells (SC-B3), and plasmablasts (SC-B4) (Fig.  7a). 
Findings from GSEA with Gene Ontology pathways suggested 
that SC-B1, SC-B2, and SC-B3 clusters represent activated B cells 
(Supplementary Fig. 8b). GSEA with MSigDB immunological gene 
sets revealed that SC-B1 cells expressed naïve B cell genes, whereas 
SC-B2 and SC-B3 cells expressed IgM and IgG memory B cell genes 
(Fig. 7b). SC-B3 cells expressed high levels of ITGAX and TBX21 
(T-bet), which are markers of autoimmunity-associated B cells28,29 
(Figs.  3f and 7a), as well as markers of recently activated B cells, 
including ACTB30. High expression of AICDA is consistent with the 
recently reported transcriptomic analysis of CD11c+ B cells from 
peripheral blood of systemic lupus erythematosus (SLE) samples31. 
Interferon-stimulated genes (GBP1 and ISG15) were also expressed 
in ABCs (SC-B3) and upregulated in leukocyte-rich RA (Fig. 7a). 
Although ABCs (SC-B3) constitute a relatively small proportion of 
all B cells, they were almost exclusively derived from two patients 
with leukocyte-rich RA (Fig.  3b). To confirm the presence of 
ABCs in human tissues, we applied immunofluorescence staining 
to six synovial tissue samples. RA synovium had increased num-
bers of CD20+T-bet+CD11c+ B cells compared with OA synovium. 
Specifically, we observed ABC cells in tissue sections from the same 
inflamed tissue samples that had a high proportion of ABCs by 
scRNA-seq analysis (Fig. 7c and Supplementary Fig. 9e,f).

We identified ten putative B cell clusters in the mass cytometry 
data (CD45+CD3−CD14−CD19+) (Fig.  7d–g and Supplementary 
Fig.  3e). CCA analysis showed that samples with higher gene 
expression of CD38, MZB1, and plasma cell differentiation factor 
XBP1 had greater abundance of CD38++CD20−IgM−IgD− plas-
mablasts (Fig.  7h). Plasmablasts (SC-B4) corresponded with 
CD38++CD20−IgM−IgD− B cells (z score = 2.7) (Fig. 7i and Table 1). 
ABCs (SC-B3) corresponded with the IgM−IgD−HLA-DR++ CD20+ 
CD11c+ mass cytometry cluster (z score = 1.6), which is signifi-
cantly overabundant in leukocyte-rich RA (OR = 5.7 (95% CI:  
1.8–22.3), one-sided MASC P = 2.7 × 10−3) (Fig.  7i and Table  1).  
Mass cytometry analysis further identified three putative subsets 
within CD11c+ cells: IgM−IgD−HLA-DR++CD20+CD11c+, CD38+ 
HLA-DR++CD20−CD11c+, and IgM+IgD+CD11c+. This finding is 
suggestive of additional heterogeneity within ABCs.

To demonstrate that CD19+CD11c+ cells by surface pro-
tein markers correspond to SC-B3 (ABCs), we flow sorted 
CD19+CD11c+ cells from an independent cohort of six RA synovial 
samples and applied RNA-seq (Supplementary Fig. 6b). We show 
that these RNA-seq profiles are most consistent with that of ABC 
cells (Supplementary Fig. 7i−k). In these sorted samples, we found 
more putative marker genes (for example, ZEB2 and CIITA) and 
interferon-induced genes (IFITM3 and IFI27) for the ABC popula-
tion (Supplementary Fig. 7l).

Inflammatory pathways and effector modules revealed by global 
single-cell profiling. We used bulk and single-cell transcriptomics 
of sorted synovial cells to examine pathologic molecular signal-
ing pathways. First, PCA on post–quality control OA and RA bulk 
RNA-seq samples (Supplementary Fig.  11a,b) showed that cell  
type accounted for most of the data variance. Each cell type 
expressed specific marker genes: PDGFRA for fibroblasts, C1QA  
for monocytes, CD3D for T  cells, and CD19 for B cells (Supple
mentary Fig. 11c). Within each cell type, PCA showed that leuko-
cyte-rich RA samples separated from OA and leukocyte-poor RA 
samples (Supplementary Fig.  11d–g). Differential gene expres-
sion analysis between leukocyte-rich RA and OA (FC > 2 and 
FDR < 0.01) revealed genes upregulated in leukocyte-rich RA  
tissues: 173 in fibroblasts, 159 in monocytes, ten in T  cells, and  
five in B cells. To define the pathways relevant to leukocyte-rich  
RA, we used GSEA weighted by gene effect sizes on Gene  
Ontology pathways and identified type I interferon response and 
inflammatory response (monocytes and fibroblasts) (Supple
mentary Fig. 11h,i), Fc receptor signaling (monocytes), NF-kappa 
B signaling (fibroblasts), and interferon gamma (T cells) (Fig. 8a). 
Leukocyte-rich RA samples had significantly higher expression 
of genes in fibroblasts and monocytes: inflammatory response 
genes (PTGS2, PTGER3, and ICAM1), interferon response genes 
(IFIT2, RSAD2, STAT1, and XAF1), and chemokine or cytokine 
genes (CCL2 and CXCL9) (Fig. 8b), consistent with a coordinated  
chemotactic response to interferon activation. T cells had upregu-
lation of interferon regulatory factors (IRFs), including IRF7 and 
IRF9, and monocytes had upregulation of IRF7, IRF8 and IRF9. 
Taken together, results from the pathway analysis suggests cross-
talk between immune and stromal cells in leukocyte-rich RA syno-
via. Inflammatory response genes upregulated in leukocyte-rich  
RA had comparable expression levels between leukocyte-poor RA 
and OA synovial cells (Fig. 8b)

Next, we asked whether inflammatory cytokines upregulated 
in leukocyte-rich RA are driven by global upregulation within a 
single synovial cell type or specific upregulation within a discrete 
cell subset defined by scRNA-seq. Whereas TNF was produced at 
a high level by multiple monocyte, B cell and T  cell populations;  
IL6 expression was restricted to HLA-DRAhi sublining fibroblasts 
(SC-F2) and a subset of B cells (SC-B1) (Fig.  8c); CD8+ T  cells, 
rather than CD4+ T cells, were the dominant source of IFNG tran-
scription in leukocyte-rich synovia.

We also observed cell subset–specific responses to inflamma-
tory pathways. Toll-like receptor signaling pathway was enriched 
in B cells and monocytes in leukocyte-rich RA tissues (Fig. 8a). At 
the single-cell level, TLR10 was only expressed by activated B cells 
(Fig.  8c), indicating that TLR10 has a functional role within the 
B cell lineage. In contrast, TLR8 was elevated in all RA monocyte 
subsets. The hematopoietic cell–specific transcription factor IRF8 
was expressed in a significant fraction of monocytes and B cells that 
cooperatively regulate differentiation of monocytes and activated B 
cells in RA synovium. SLAMF7 is highly expressed by pro-inflam-
matory monocytes (SC-M1), IFN-activated monocytes (SC-M4), 
CD8+ T cells, and plasmablasts (SC-B4).

Furthermore, mass cytometry analysis across all identified cell 
clusters revealed that patients with leukocyte-rich RA showed 

Nature Immunology | VOL 20 | JULY 2019 | 928–942 | www.nature.com/natureimmunology 937

http://www.nature.com/natureimmunology


Resource Nature Immunology

high cell abundances of HLA-DRhi fibroblast populations, TPH 
cells, CD11c+CD14+ monocytes, and CD11c+ B cell populations 
(Supplementary Fig. 3f).

Discussion
Using multi-model, high-dimensional synovial tissue data, we 
defined stromal and immune cell populations overabundant in 
RA and described their transcriptional contributions to essential 

inflammatory pathways. Recognizing the considerable variation 
in disease duration and activity, treatment types, and joint histo
logy scores32, we elected to use a molecular parameter, based on 
percent leukocytes of the total cellularity, to classify our samples at 
the local tissue level. We note that differences in leukocyte enrich-
ment of joint replacement samples and biopsy samples were best 
explained by leukocyte infiltration and not by the histological scores 
(Supplementary Figs. 1 and 11d–g).
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This study and a previous study33 have highlighted sublining 
fibroblasts as a potential therapeutic target in RA. Sublining fibro-
blasts are a major source of pro-inflammatory cytokines such as 
IL6 (Fig. 4), and a specific subset of sublining fibroblasts expressing 
MHC II (SC-F2, THY1+CD34–HLA-DRhi) was >15-fold expanded 
in RA tissues. Further studies are needed to define molecular mech-
anisms that regulate sublining fibroblast expansion in RA. T cells,  
B cells, and monocyte proportions track with expression of individ-
ual fibroblast genes (Supplementary Fig. 11j). We found DNASE1L3, 

a gene whose loss of function is associated with RA34 and systemic 
lupus erythematosus35 to be highly expressed in CD55+ lining  
fibroblasts (SC-F4) (Fig.  4a). We identified a novel fibroblast 
subset (SC-F3) with high expression of DKK3 (Fig.  4), encoding 
Dickkopf3, a protein upregulated in OA that prevents cartilage  
degradation in vitro36.

Transcriptional heterogeneity in the synovial monocytes indi-
cated that distinct RA-enriched subsets are driven by inflammatory 
cytokines and interferons (Fig. 5). This suggests monocytes may be 
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differentially polarized by unique cytokine combinations in local 
microenvironments. These newly identified inflammatory pheno-
types align with RA therapeutic targets, including anti-TNF thera-
pies and interferon pathway JAK kinase inhibitors37. The NUPR1+ 
(SC-M2) monocytes were inversely correlated with tissue inflam-
mation, and expressed high levels of monocyte tissue remodeling 
factors such as MERTK38 (Fig.  5). Alternatively, NUPR1+ markers 
such as osteoactivin (GPNMB) and cathepsin K (CTSK) may indi-
cate a subset of osteoclast progenitors that control bone remodel-
ing37,39 (Fig. 5). Furthermore, spatial studies—particularly focused 
on lining versus sublining, perivascular and lymphocyte aggregate-
associated monocytes—will help understand the functional roles of 
these subsets.

Single-cell classification of T cell subsets in RA synovium dem-
onstrated CD4+ T cell heterogeneity that is consistent with distinc-
tion between the homing capacity and effector functions of these 
subsets. Consistent with previous studies, we observed expansion 
of PDCD1+CD4+ TPH cells (SC-T3) within leukocyte-rich RA. We 
also found CD8+ T cell subsets (SC-T4-6) characterized by a dis-
tinct granzyme expression pattern (Fig. 6a). A larger study may be 
better powered to differentiate the relative expansion of individual 
subpopulations.

This study is the first to report the presence of autoimmune-
associated B cells (SC-B3) by transcriptomic sequencing in human 
leukocyte-rich synovial RA and, in fact, in any human autoimmune 
target tissue. This B cell population was first reported in aging mice 
and subsequently seen in autoimmune mice and peripheral blood 
of patients with SLE31,40. We observed a heterogeneity of CD11c+ 
B cells detectable in both IgD+ and switched B cell populations by 
mass cytometry. The gene expression of other ABCs markers sug-
gests a balance between germinal center (IRF8 and AID) and plasma 
cell (SLAMF7) differentiation within the RA synovium. We have 
few B cells from OA synovia (Fig. 2b), which limited our ability to 
identify RA-associated B cell subsets through case–control com-
parisons (Fig. 7g).

A critical unmet need in RA is identifying therapeutic targets 
for patients failing to respond to disease-modifying antirheumatic 
drugs41. We observed upregulation of chemokines (CXCL8, CXCL9, 
and CXCL13), cytokines (IFNG and IL15, refs. 42,43), and surface 
receptors (PDGFRB and SLAMF7) in distinct immune and stromal 
cell populations, suggesting potential novel targets. This study was 
enabled by advances in the statistical integration of single-cell data 
and our recent work optimizing robust methodologies for disaggre-
gation of synovial tissue22.

We developed advanced strategies to integrate multiple molec-
ular datasets by modulating technical artifact from single-cell 
technologies44 while emphasizing biological signals. CCA has 
been successfully employed in other contexts to integrate high-
dimensional biological data45,46. Our CCA-based strategy analyzed 
scRNA-seq data using canonical variates that capture variance that 
are present in both single-cell and bulk RNA-seq data. The shared 
variances likely represent biological trends and not technical factors 
that would probably be uncorrelated in these two independent data-
sets. We further confirmed that the identified scRNA-seq clusters 
are well correlated with the bulk RNA-seq data and also the mass 
cytometry data (Supplementary Figs. 12 and 13).

The two single-cell modalities used in this study, mass cyto
metry and scRNA-seq, complement each other. Single-cell RNA-seq  
captures expression of thousands of genes, but at the cost of  
sparse data47. Mass cytometry captures hundreds of thousands of 
individual cells, but measures a limited number (~40)48 of pre-
selected markers. However, each of these markers is supported by 
decades of experimental evidence that they are useful for defining 
cellular heterogeneity49. To make the analysis consistent, we gated 
mass cytometry cells on the same markers upon which the scRNA-
seq was gated. Combining mass cytometry with the extended 

dimensionality of scRNA-seq enables quantification of well-estab-
lished cell populations and discovery of novel cell states, such  
as the CD8+ T  cell states noted here. As an ongoing AMP phase 
2 study, we are examining larger numbers of ungated cell popula-
tions from ~100 synovial tissue patients with RA by capturing  
mRNA and protein expression simultaneously50 with detailed  
clinical data and ultrasound score evaluation of synovitis. We 
anticipate that this larger study will enable us to not only discover 
additional subpopulations, but to better define their link to clinical 
subphenotypes.

It is essential to interrogate the tissue infiltration of diseases other 
than RA, including SLE, type I diabetes, psoriasis, multiple sclero-
sis, and other organ-targeting conditions. Application of multiple 
single-cell technologies together can help define key novel popula-
tions, thereby providing new insights about etiology and potential 
therapies.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41590-019-0378-1.
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Methods
Study design and patient recruitment. The study was performed in accordance 
with protocols approved by the institutional review board: a multicenter, cross-
sectional study of individuals undergoing elective surgical procedures and a 
prospective observational study of synovial biopsy specimens from patients with 
RA aged ≥18 years, with at least one inflamed joint, recruited from ten contributing 
sites in the network. Synovial tissues were obtained from joint replacement 
procedures or ultrasound-guided biopsies; samples were then cryopreserved in 
cryopreservation media Cryostor CS10 (Sigma-Aldrich) and transited to a central 
technology site.

Histological assessment of synovial tissue and quality control. Synovial tissue 
quality and grading of synovitis were evaluated in formalin-fixed, paraffin-
embedded sections by histologic analysis (H&E staining). Specimens were 
identified as synovium via the presence of a lining layer or by characteristic 
histologic features of synovium, including the presence of loose fibrovascular 
or fatty tissue lacking a lining layer. Samples consisting of dense fibrous tissue, 
joint capsule or other tissues were determined to not be synovium. For each 
histological and molecular analysis, we generated pooled data from six to eight 
separate fragments from different sites in the same joint. Thus, these data should 
be representative of the whole tissue and mitigate much of the biopsy site-to-site 
variability. Krenn lining scores (0–3) and inflammation scores (0–3) for each tissue 
sample were determined independently by three pathologists25.

Tissue disaggregation for mass cytometry and RNA-sequencing. For pipeline 
analysis, synovial tissue samples stored in cryovials were disaggregated into single-
cell suspension as described. Briefly, synovial tissue fragments were separated 
mechanically and enzymatically in digestion buffer (Liberase TL (Sigma-Aldrich) 
100 μg/ml and DNase I (New England Biolabs) 100 μg/ml in RPMI) in a 37 oC 
water bath for 30 min. Single-cell suspensions from disaggregated synovial tissues 
were assessed for cell quantity and cell viability using Trypan Blue. For samples 
with more than 200,000 viable synovial cells, 50% of all synovial cells were 
allocated for analysis by mass cytometry, and the remaining cells were allocated for 
RNA-seq. For samples with fewer than 200,000 viable synovial cells, all synovial 
cells were utilized for RNA-seq analysis.

Synovial cell sorting strategy for RNA sequencing. Synovial T cells, B cells, 
monocytes, and fibroblasts were isolated from disaggregated synovial tissue,  
as described previously22. Briefly, disaggregated synovial cells were stained  
with antibodies to CD45 (HI30), CD90 (5E10), podoplanin (NZ1.3), CD3 
(UCHT1), CD19 (HIB19), CD14 (M5E2), CD34 (4H11), CD4 (RPA-T4),  
CD8 (SK1), CD31 (WM59), CD27 (M-T271), CD235a (KC16), using human 
TruStain FcX in 1% BSA in HBS (20 mM HEPES, 137 mM NaCl, 3 mM KCl,  
1 mM CaCl2) for 30 min. One-thousand viable (PI-) T cells (CD45+, CD3+, CD14–), 
monocytes (CD45+, CD3–, CD14+), B cells (CD45+, CD3–, CD14–, CD19+), and 
synovial fibroblasts (CD45–, CD31–, PDPN+) were collected by fluorescence-
activated cell sorting (BD FACSAria Fusion) directly in buffer RLT (Qiagen)  
for bulk RNA-seq. For single-cell RNA-seq, live cells of each population were 
re-sorted into 384-well plates with a maximum of 144 cells for each cell type, per 
patient sample.

Flow sorting strategy for bulk RNA-seq experimental validation. For bulk 
RNA-seq validation experiments, RA and OA synovial tissue were disaggregated, 
and synovial cells were stained with cell-type-specific antibody panels. For each 
cell subset, up to 1,000 cells were collected directly into buffer TCL (Qiagen). 
Antibody panels used to define cell subsets are: fibroblasts: CD90 (5E10), 
podoplanin (NZ1.3), HLA-DR (G46-6); B cell subsets: HLA-DR (G46-6), CD11c 
(3.9), CD19 (SJ25C1), CD27 (M-T271), IgD (IA6-2), CD3 (UCHT1), CD14 
(M5E2), CD38 (HIT2);monocyte subsets: CD14-BV421 (M5E2), CD38-APC 
(HB-7), and CD11c-PECy7 (B-ly6). Immediately prior to sorting, DAPI or LIVE/
DEAD viability dye was added to cell suspensions, and cells were passed through 
a 100 μm filter. Synovial cell subsets were sorted by flow cytometry gating schema 
shown in Supplementary Fig. 6. In all, we sorted THY1– DR– populations from 
four OA samples, THY1+DR– population from four OA and six RA samples, 
and THY1+ DR+ population from six RA samples. For monocytes, we sorted the 
CD14+CD11c+++CD38+++ population from two RA samples and the CD14+CD11c+ 
CD38– population from two OA samples. For B cells, we sorted the CD11c–

IgD−CD27+ population from six RA samples, the CD11c−IgD+CD27− population 
from three RA samples, the CD19+CD11c+ population from three RA samples, and 
plasma cells from three RA samples.

To validate the identified single-cell populations using bulk RNA-seq, we fit 
an LDA (linear discriminant analysis) classifier on the scRNA-seq cell clusters and 
then classified each flow-sorted bulk RNA-seq sample. For each cell type, (1) we 
trained an LDA model on the scRNA-seq clusters with the top 500 marker genes 
for each cluster; (2) we applied this LDA model to classify each sample of bulk 
sorted cells and estimated the maximum posterior probability for each sample. 
In summary, we tested whether we could sort new cells from new, independent 
samples and see the same gene expression profiles in the new bulk samples as the 
original scRNA-seq samples.

Multicolor immunofluorescent staining of paraffin synovial tissue. Briefly, 
5mm-thick formalin-fixed paraffin sections were incubated in a 60 oC oven 
to melt then paraffin. Slides were quickly transferred to xylenes to completely 
dissolve the paraffin, and after 5 min, were transferred to absolute ethanol. Slides 
were left in absolute ethanol for 5 min and then transferred to 95% ethanol. At 
the end of the 5min immersion in 95% ethanol, slides were rinsed several times 
with distilled water and transfer to a plastic coplin jar filled with 1× DAKO 
retrieval solution (S1699, Dakocytomation). Antigens were unmasked by 
immersing a plastic coplin jar in boiling water for 30 min. Slides cooled for 10 min 
at room temperature and washed several times with distilled water. Nonspecific 
binding was blocked with 5% normal donkey serum (017-000-121, Jackson 
ImmunoResearch Laboratories) dissolved in PBS containing 0.1% Tween 20 
and 0.1% Triton X-100. Without washing, blocking solution was removed from 
slides, and combinations of primary antibodies were added to PBS containing 
0.1% Tween 20 and 0.1% Triton X-100. Primary antibodies to detect IFNγ+ 
T cells include goat anti-CD3 epsilon (clone M-20, Santa Cruz Biotechnology), 
mouse anti-human CD8 (clone 144B, GeneTex), and rabbit anti-human IFNγ 
(Biorbyt, orb214082). To visualize ABCs, we incubated slides with goat anti-
human CD20 (LifeSpan Biosciences, LS-B11144), rabbit anti-Tbet (H-210, 
Santa Cruz Biotechnology) and biotinylated mouse anti-human CD11c (clone 
118/A5, Thermo Fisher Scientific). To identify IL1B+ monocytes, we used a 
mixture of goat anti-human CD14 (119–13402, RayBiotech), biotinylated rabbit 
anti-human IL1b (OABF00305-Biotin, Aviva Systems Biology), and mouse anti-
human CD16 (clone DJ130c, LifeSpan Biosciences). Finally, slides were probed 
with rabbit monoclonal anti-human CD90 (2694–1, Epitomics), rat anti-human 
HLADR (cloneYE2/36 HLK, LifeSpan Biosciences), and mouse anti-human 
CD45 (clone F10-89-4, abcam) to detect fibroblasts, class II–expressing cells, and 
hematopoietic cells, respectively. Slides with primary antibodies were incubated 
in a humid chamber at room temperature overnight. The following morning, 
primary antibodies for triple T cell stain and for detecting ABCs were revealed 
with Alexa Fluor 568 donkey anti-goat IgG (A-11057, Thermo Fisher Scientific), 
Alexa Fluor 488 donkey anti-rabbit (771-546-152, Jackson ImmunoResearch 
Laboratories), and Alexa fluor 647 donkey anti-mouse (715-606-151, Jackson 
ImmunoResearch Laboratories). Primary antibodies in the stain for monocytes 
were revealed with Alexa Fluor 568 donkey anti-goat IgG, Alexa fluor 488 
streptavidin (S11223, Thermo Fisher Scientific), and Alexa Fluor 647 donkey 
anti-mouse IgG. Primary antibodies in the stain for fibroblasts and hematopoietic 
cells were detected with Cy3 donkey anti-rabbit (711-166-152, Jackson 
ImmunoResearch Laboratories), Alexa Fluor 488 donkey anti-rat IgG (A-21208, 
Thermo Fisher Scientific), and Alexa Fluor 647 donkey anti-mouse IgG. After 
2 h of incubation, slides were washed and mounted with Vectashield mounting 
media with DAPI (H-1200, Vector Laboratories). Pictures were taken with an 
Axioplan Zeiss microscope and recorded with a Hamamatsu camera. Double 
immunofluorescence images were obtained by merging individual channels in 
NIH Image J software.

Estimation of number of cells by counting nuclei. To estimate number of cells, 
we counted the number of nuclei in five random ×200 magnification fields that 
showed synovial lining with Image J NIH software. Briefly, original color TIFF  
files were first transformed into 8-bit grayscale images. We used similar settings  
to adjust threshold in 8-bit images (lower threshold level: 0, upper threshold  
level: 60). Next, we used process:binary:watershed to separate nuclei. In the analyze 
icon, we selected ‘analyze particles’, and we used equal settings to count particles 
in our images (size (pixel2): 50–infinity, circularity 0.00–1.00, show: outlines), and 
we selected to display results. We visually confirmed that individual nuclei were 
outlined in the final image, and calculate the average number of cells/×200 field in 
individual samples.

Tissue sample classification by leukocyte infiltration. We classified RA tissue 
samples into leukocyte-poor RA and leukocyte-rich RA on the basis of the 
Mahalanobis distance from OA samples computed on leukocyte abundance 
measured via flow cytometry. We first took OA samples as a reference and 
calculated a multivariate normal distribution of the percentages of live 
T cells, B cells, and monocytes. Here, we used the Mahalanobis function 
in R: data x = a matrix of all 51 samples by flow gates of T cells, B cells, and 
monocytes; center = mean of T cells, B cells, and monocytes for all OA samples; 
covariance = covariance of T cells, B cells, and monocytes for all OA samples.  
We calculated the square root to get the Mahalanobis distance for each sample:

μ Σ μ= − ′ − .−x xmah ( ) ( )1

We then defined the maximum value of all OA samples (4.5) as a threshold to 
define 19 leukocyte-rich RA (>4.5) and 17 leukocyte-poor RA (<4.5) samples in 
our cohort (Supplementary Fig. 1d).

Bulk RNA-seq gene expression quantification. We sorted cells into the major 
immune and stromal cell populations: T cells, B cells, monocytes, and synovial 
fibroblasts. We then performed RNA sequencing. Full-length cDNA and 
sequencing libraries were performed using Illumina Smart-eq2 protocol51.  
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Libraries were sequenced on MiSeq from Illumina to generate 35 base paired-end 
reads. Reads were mapped to Ensembl version 83 transcripts using kallisto 0.42.4 
and summed expression of all transcripts for each gene to get transcripts per 
million (TPM) for each gene.

Bulk RNA-seq quality control. For quality control of bulk RNA-seq data, we 
began by defining common genes as the set of genes detected with at least one 
mapped fragment in 95% of the samples. Then, for each sample, we computed the 
percent of common genes detected in that sample. Low-quality samples are those 
that have less than 99% of common genes detected, and these were discarded. 
We found that the low-quality samples also had low cell counts (Supplementary 
Fig. 11a). After discarding 25 low-quality samples, we used 167 good-quality 
samples, including 45 fibroblast samples, 46 monocyte samples, 47 T cell samples, 
and 29 B cell samples in all bulk RNA-seq analyses. Cell lineage markers, PDGFRA, 
C1QA, CD3D, and CD19 are expressed selectively by fibroblasts, monocytes, 
T cells, and B cells, respectively (Supplementary Fig. 11c).

Single-cell RNA-seq gene expression quantification. Single-cell RNA-seq was 
performed using the CEL-Seq2 method47 with the following modifications. 
Single cells were sorted into 384-well plates containing 0.6 µl 1% NP-40 buffer in 
each well. Then, 0.6 µl dNTPs (10 mM each; NEB) and 5 nl of barcoded reverse 
transcription primer (1 µg/µl) were added to each well along with 20 nl of ERCC 
spike-in (diluted 1:800,000). Reactions were incubated at 65 °C for 5 min, and then 
moved immediately to ice. Reverse transcription reactions were carried out, as 
previously described (Hashimshony et al., 2016), and cDNA was purified using 
0.8X volumes of Agencourt RNAClean XP beads (Beckman Coulter). In vitro 
transcription reactions (IVT) were performed, as described followed by EXO-
SAP treatment. Amplified RNA (aRNA) was fragmented at 80 °C for 3 min and 
purified using Agencourt RNAClean XP beads (Beckman Coulter). The purified 
aRNA was converted to cDNA using an anchored random primer and Illumina 
adaptor sequences were added by PCR. The final cDNA library was purified using 
Agencourt RNAClean XP beads (Beckman Coulter). Paired-end sequencing was 
performed on the HiSeq 2500 in High Output Run Mode with a 5% PhiX spike-in 
using 15 bases for Read 1, 6 bases for the Illumina barcode and 36 bases for  
Read 2. We mapped Read2 to human reference genome hg19 using STAR 2.5.2b, 
and removed samples with outlier performance using Picard. We quantified gene 
levels by counting UMIs (Unique Molecular Identifiers) and transforming the 
counts to log2(CPM + 1) (Counts Per Million).

Single-cell RNA-seq quality control. For quality control of single-cell RNA-seq 
data, we filtered out molecules that are likely to be contamination between cells, 
and we used several metrics to exclude poor quality cells. We identified molecules 
that are likely to represent cell-to-cell cross-contamination as follows. Many single-
cell RNA-seq library preparation protocols include pooling and amplification 
of cDNA molecules from a large number of cells. This can introduce cell-to-cell 
contamination. We found that molecules represented by a small number of 
reads are more likely to be contaminant molecules derived from other cells. We 
developed a simple algorithm to set a threshold for the minimum number of 
reads per molecule, and we ran it separately for each quadrant of 96 wells in each 
384-well plate. We used 2 marker genes expected to be exclusively expressed in 
each of the four cell types: PDGFRA and ISLR for fibroblasts, CD2 and CD3D for 
T cells, CD79A and RALGPS2 for B cells, and CD14 and C1QA for monocytes. 
We counted nonzero expression of these genes in the correct cell type as a true 
positive and nonzero expression in the incorrect cell type as a false positive. Then 
we tried each threshold for reads per molecule from 1–20 and chose the threshold 
that maximizes the ratio of true positive to false positive (Supplementary Fig. 14). 
This left us with 7,127 cells and 32,391 genes. Next, we discarded cells with fewer 
than 1,000 genes detected with at least one fragment. We also discarded cells that 
had more than 25% of molecules coming from mitochondrial genes. This left us 
with 5,265 cells. We discarded genes that had nonzero expression in fewer than 
10 cells. We show all post-QC single cells based on the number of genes detected 
and percent of molecules from mitochondrial genes for each identified cluster 
(Supplementary Fig. 15).

Mass cytometry sample processing and quality control. We collected 6 
leukocyte-rich, 9 leukocyte-poor RA, and 11 OA samples for mass cytometry 
analysis, and processed the samples, as described previously22. Briefly, we analyzed 
samples on a Helios instrument (Fluidigm) after antibody staining and fixation 
(Supplementary Table 2). Mass cytometry data were normalized using EQ Four 
Element Calibration Beads (Fluidigm), as previously described52. Cells were first 
gated to live DNA+ cells prior to gating for specific cell populations using the 
following scheme: B cells (CD45+CD3−CD14−CD19+), fibroblasts (CD45−PDPN+), 
monocytes (CD45+CD3−CD14+), and T cells (CD45+CD3+CD14−). All biaxial 
gating was performed using FlowJo 10.0.7.

Integrative computational pipeline for scRNA-seq clustering. We developed a 
graph-based unbiased clustering pipeline based on canonical correlation analysis 
to take advantage of the shared variation between single-cell RNA-seq and bulk 
RNA-seq. We used this computational pipeline to analyze single cells from each cell 

type. The overall flowchart is shown in Supplementary Fig. 2a. Details of each step 
are as follows:

	1.	 We first selected the highly variable genes such that the mean and standard 
deviation are in the top 80% of the density distributions from the single-cell 
RNA-seq matrix C(g genes by m cells, . . .c m1, , ) and bulk RNA-seq matrix S(g 
genes by n samples, . . .s n1, , ), respectively. We focused on the highly variable 
genes detected in both scRNA-seq and bulk RNA-seq datasets.

	2.	 On the basis of the shared highly variable genes, we integrated single-cell 
RNA-seq with bulk RNA-seq by finding a linear projection of bulk samples 
and single cells such that the correlation between the genes were maximized 
using the CCA method53. CCA finds two vectors a and b that maximize the 
linear correlations cor(CV , CV )s1 c1 , where CVs1= a1s1 +  + . . . +a s a sn n2 2  and 
CVc1= b1c1+b2c2+…+bmcm. Each bulk sample si gets a coefficient ai, and each 
cell ci gets a coefficient bi. The linear combination of all samples . . .s n1, ,  ar-
ranges bulk genes along the canonical variate CVs1, and the linear combina-
tion of all cells . . .c m1, ,  arranges single-cell genes along CVc1. CCA defines the 
coefficients . . .a n1, ,  and . . .b n1, ,  that arrange the genes from the two datasets in 
such a way that the correlation between CVs1 and CVc1 is maximized. After 
CCA finds the first pair of canonical variates, the next pair is computed on 
the residuals, and so on.

	3.	 We calculated the cell-to-cell similarity matrix using the Euclidean distance 
on the top ten CCA canonical variates.

	4.	 We built up a k-nearest neighbors (KNN) graph based on the cell-to-cell 
similarity matrix (Euclidean distance) based on local ordinal embedding 
(LOE), a graph embedding method. We then converted the KNN neighbor 
relation matrix into an adjacency matrix using the graph.adjacency function 
from the igraph R package.

	5.	 We clustered the cells using the Infomap algorithm for community detection 
by applying a cluster_infomap function from the igraph R package to decom-
pose the cell-to-cell adjacency matrix into major modules by minimizing a 
description of the information flow.

	6.	 We then constructed a low dimensional embedding using tSNE based on the 
cell-to-cell distance matrix using the following parameters: perplexity = 50 
and theta = 0.5.

	7.	 We identified and prioritized significantly differentially expressed genes for 
each distinct cluster on the basis of percent of non-zero-expressing cells, AUC 
score54, and fold change.

	8.	 For pathway analysis, we downloaded gene sets from Gene Ontology (GO) 
terms in April 2017 (refs. 55,56). These gene sets included 9,797 GO terms 
and 15,693 genes. We also used the immunological signatures from 4,872 
hallmark gene sets from MSigDB57 to test enrichment of all the tested  
genes sorted by decreased AUC scores for each cluster by 105 permutation 
tests55. We used the liger R package (https://github.com/JEFworks/liger) to 
conduct GSEA.

To identify the most reasonable and stable clusters, we ran this pipeline 
repeatedly while tuning the number of top canonical variates (4, 8, 12, 16, and 20) 
that were incorporated for the cell-to-cell similarity matrix and the number of k 
(50, 100, 150, 200, 250, and 300) to build up the k-nearest neighbor graph. We 
chose the clusters that yielded the greatest number of differentially expressed genes. 
We used Silhouette analysis58,59 on the cell-to-cell Euclidean distance matrix to 
evaluate our clustering results (Supplementary Fig. 2b). For each cell, the silhouette 
width s(i) is defined as follows:

= −s b i a i
a i b i

(i) ( ) ( )
max( ( ), ( ))

,

where a(i) is the average dissimilarity between a cell and all the other cells in the 
same cluster and b(i) is the average distance between a cell and all cells in the 
nearest cluster to which the cell does not belong. The measure range is [−1, 1], 
where a value near 1 indicates a cell is far from neighboring clusters, a value near 0 
indicates a cell is near a decision boundary, and a value near −1 indicates the cell is 
closer to a neighboring cluster than its own cluster.

Thus, for each pair of single-cell RNA-seq and bulk RNA-seq, we ran our 
pipeline on the shared samples that have both datasets for each cell type (Fig. 1b). 
For integrating fibroblast data, we used 45 bulk RNA-seq samples, 1,844 single cells 
and 7,016 shared highly variable genes; for integrating monocyte data, we used 
47 bulk RNA-seq samples, 750 single cells and 7,016 shared highly variable genes; 
for integrating T cell data, we used 47 bulk RNA-seq samples, 1,716 single cells 
and 7,003 shared highly variable genes; for integrating B cell data, we used 29 bulk 
RNA-seq samples, 1,142 single cells and 7,023 shared highly variable genes.

Mass cytometry clustering. We created mass cytometry datasets for analysis by 
concatenating cells from all individuals for each cell type. For donors with more 
than 1,000 cells, we randomly selected 1,000 cells to ensure that samples were 
equally represented. In this way, we created downsampled datasets of 25,161 
fibroblasts from 23 patients, 15,298 monocytes from 26 patients, 19,985 T cells 
from 26 patients, and 8,179 B cells from 23 patients for analysis. We then applied 
the tSNE algorithm (Barnes-Hut implementation) to each dataset using the 
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following parameters: perplexity = 30 and theta = 0.5. We used all markers except 
those used to gate each population in the SNE clustering. To identify high-
dimensional populations, we used a modified version of DensVM23. DensVM 
performs kernel density estimation across the dimensionally reduced SNE map  
to build a training set, then assigns cells to clusters by their expression of all 
markers using an SVM classifier. We modified the DensVM code to increase the 
range of potential bandwidths searched during the density estimation step and 
to return the SVM model generated from the tSNE projection. We summarized 
the details of the clusters with proportion of cells from each disease cohort in 
Supplementary Table 3.

Disease association test of cell populations. We tested whether abundances of 
individual populations were altered in RA case samples compared to OA controls 
using two ways. First, we assessed whether marker genes (AUC > 0.7, 20 < n < 100) 
characteristic of each scRNA-seq cluster were differentially expressed in the same 
direction in scRNA-seq and bulk RNA-seq datasets. Second, we applied MASC19, 
a single cell association method for testing whether case-control status influences 
the membership of single cells in any of multiple cellular subsets while accounting 
for technical confounds and biological variation. We specified donor identity and 
batch as random-effect covariates.

Integration of bulk RNA-seq with mass cytometry. We used CCA to associate the 
abundances of mass cytometry clusters with gene expression in bulk RNA-seq. We 
started by selecting the samples that had both data types. The mass cytometry data 
matrix has samples and clusters, where the values represent proportions of cells 
from each sample in each cluster. The bulk RNA-seq data matrix has samples and 
genes, where the values represent proportions of gene abundance from each sample 
in each gene. CCA identifies canonical variates (a linear combination of bulk RNA-
seq genes and a linear combination of mass cytometry cluster proportions) that 
maximize correlation of samples along each canonical variate. In other words, it 
tries to arrange samples from each dataset in a similar order along each canonical 
variate. We ran CCA separately for fibroblasts, monocytes, T cells, and B cells. 
For fibroblasts, we associated 2,299 genes with 8 mass cytometry clusters on 22 
samples. For monocytes, we associated 2,161 genes with 5 mass cytometry clusters 
on 25 samples. For T cells, we associated 2,255 genes with 9 mass cytometry 
clusters on 26 samples. For B cells, we associated 22,95 genes with 10 mass 
cytometry clusters on 17 samples.

Finding correspondence between scRNA-seq clusters and mass cytometry 
clusters. 

	1.	 For each cell type, we ran CCA with mass cytometry clusters with bulk RNA-
seq. Each gene is correlated with each canonical variate (CV). Also, each mass 
cytometry cluster is correlated with each CV. By visualizing these correla-
tions, we can see the positions of bulk RNA-seq genes and mass cytometry 
clusters in the same space (Fig. 4h).

	2.	 We then associated single-cell RNA-seq clusters with mass cytometry clusters 
by projecting cluster markers (AUC > 0.7) for each single-cell RNA-seq clus-
ter in the CCA space acquired from step 1).

	3.	 We took the average across the cluster marker genes for each single-cell RNA-
seq cluster for each CV and obtained an “average CV” matrix.

	4.	 Based on the “average CV” matrix, we computed Spearman correlation 
between the scRNA-seq average CV and the CV for mass cytometry clusters.

	5.	 Next, we generated a null distribution for the Spearman correlations by shuf-
fling the scRNA-seq gene names and then repeating steps 2–4 10,000 times.

	6.	 For the 10,000 replicates of CCA matrix, we repeated step 2 to step 5. Then, 
we counted how many times the correlation of each pair was greater than the 
observed value from step 4). =

+ >

+
Permutation p

sum cor cor1 ( )

1 10
per obs

4 .
	7.	 Finally, we converted the permutation p to a z score.

Differential expression analysis with bulk RNA-seq. We classified all the samples 
into OA, leukocyte-poor RA, and leukocyte-rich RA synovial tissues on the  
basis of the quantitative analysis of T cells, B cells, and monocytes by flow 
cytometry. PCA on bulk RNA-seq samples showed separation of leukocyte-
rich and leukocyte-poor RA on the first or second principal components. For 
differential analysis, we used the limma R package to identify significantly 
differentially expressed genes. We used the Benjamini–Hochberg method to 
estimate false discovery rate (FDR).

Identification of markers for distinct scRNA-seq clusters. On the basis of single-
cell RNA-seq clusters, we identified cluster marker genes by comparing the cells in 
one cluster with all other clusters from the same cell type, based on log2(CPM + 1). 
We prioritized cluster marker genes using three criteria: (1) percent of non-zero 
expressing cells >60%; (2) are under the receiver–operator curve (AUC)54 >0.7; and 
(3) fold change (FC) >2.

Intracellular flow cytometry of synovial tissue T cell stimulation. Disaggregated 
synovial tissue cells were incubated with Fixable Viability Dye (eBioscience) and 
Fc-blocking antibodies (eBioscience), then stained for surface markers in Brilliant 
Stain Buffer (BD Bioscience). Cells were then fixed and permeabilized using an 
intracellular staining kit (eBioscience), then subjected to intracellular staining for 
granzymes or cytokines. Antibodies used in this study include anti-CD45 (clone 
HI30) from BD Biosciences; anti-CD3 (clone UCHT1), anti-CD8 (clone SK1), anti-
CD14 (clone M5E2), anti-CD4 (clone RPA-T4), anti-HLA-DR (clone L243), anti-
granzyme B (clone GB11), and anti-granzyme K (clone GM26E7) from Biolegend; 
and anti-IFNG (clone 4 S.B3) and anti-TNF (clone MAb11) from eBioscience. Data 
were collected on a BD Fortessa flow cytometer and analyzed using FlowJo 10.5 
software. Disaggregated synovial tissue cells were incubated with a cell stimulation 
cocktail containing PMA and ionomycin (eBioscience) in RPMI with 10% fetal calf 
serum (Gemini). After 15 min, brefeldin A (eBioscience) was added. The cells were 
incubated at 37 °C 5% CO2 for an additional 2 h. The cells were then collected and 
stained for intracellular cytokines following the protocol described above. Data are 
shown in Supplementary Fig. 10.

Statistics. Results are shown as mean with 95% confidence intervals. The statistics 
tests used were t test and Kolmogorov–Smirnov test, unless otherwise stated, as 
described with one-sided or two-sided in the figure legends. Benjamini–Hochberg 
FDR < 0.01 and fold change >2 were considered to be statistically significant  
when appropriate.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The single-cell RNA-seq data, bulk RNA-seq data, mass cytometry data, flow 
cytometry data, and the clinical and histological data for this study are available  
at ImmPort (https://www.immport.org/shared/study/SDY998, study accession 
code SDY998). The raw single-cell RNA-seq data are deposited in dbGaP  
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs001457.v1.p1). The source code repository of the computational and 
statistical analysis is located at https://github.com/immunogenomics/amp_phase1_
ra. Data can also be viewed on three different websites at https://immunogenomics.
io/ampra, https://immunogenomics.io/cellbrowser/, and https://portals.
broadinstitute.org/single_cell/study/amp-phase-1.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Antibodies
Antibodies used Antibodies used for flow cytometry and cell sorting: 

antibody  clone vendor catalog number Dilution 
anti-CD45-FITC (Biolegend, HI30) H130 Biolegend 304006 1:400 
anti-CD90-PE  "5E10" Biolegend 328110 1:500 
anti-Pdpn-PerCP eF710  NZ-1.3 eBioscience 46-9381-42 1:50 
anti-CD3-PE-Cy7 UCHT1 Biolegend 300420 1:100 
anti-CD19-BV421  HIB19 Biolegend 302233 1:20 
anti-CD14-BV510 M5E2 Biolegend 301842 1:100 
anti-CD34-BV605-A (eBioscence, 4H11) 581 Biolegend 343529 1:400 
anti-CD4-BV650 (Biolegend, RPA-T4) RPA-T4 Biolegend 300536 1:50 
anti-CD8a-BV711A RPA-T8 Biolegend 301044 1:100 
anti-CD31-AF700 WM59 Biolegend 303134 1:100 
CD27-APC M-T271 Biolegend 356410 1:100 
anti-CD235a-APC-AF750 11E4B-7-6 Beckman Coulter A89314 1:10 
 
Antibodies used for immunofluorescent microscopy studies: 
antibody clone vendor catalog number Dilution 
mouse anti-human CD8 C8/144B Genetex GTX72053 1:50 (3ug/ml) 
rabbit anti-human IFNg polyclonal biorbyt orb214082 1:100 (10ug/ml) 
Alexa Fluor 568 donkey anti-goat Ig G N/A Thermo Fisher Scientific Cat#A-11057 1:200 (10ug/ml) 
Alexa Fluor 488 donkey anti-rabbit N/A Jackson ImmunoResearch Laboratories Cat#711-546-152 1:200 (6ug/ml) 
 
 
Antibodies used for mass cytometry:  
antibody clone metal dilution 
CD45 HI30 141Pr 1:100 
CD19 HIB19 142Nd 1:100 
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RANKL MIH24 143Nd 1:50 
CD64 10.1 144Nd 1:100 
CD16 3G8 145Nd 1:100 
CD8a RPA T8 146Nd 1:100 
FAP Poly 147Sm 1:50 
CD20 2H7 148Nd 1:100 
CD45RO  UCHL1 149Sm 1:100 
CD38 HIT2 150Nd 1:100 
CD279/PD-1 EH12.2H7 151Eu 1:100 
CD14 M5E2 152Sm 1:100 
CD69 FN50 153Eu 1:100 
CD185/CXCR5 J252D4 154Sm 1:100 
CD4 RPA T4 155Gd 1:100 
Podoplanin NC-08 156Gd 1:100 
CD3  UCHT1 158Gd 1:100 
CD11c Bu15 159Tb 1:100 
CD307d/FcRL4 413D12 160Gd 1:100 
CD138 MI15 161Dy 1:100 
CD90 5E10 162Dy 1:50 
CCR2 K036C2 163Dy 1:100 
Cadherin 11 3C10 164Dy 2:25 
FoxP3 PCH101 165Ho 1:50 
CD34 581 166Er 1:100 
CD146/MCAM SHM-57 167Er 1:50 
IgA 9H9H11 168Er 1:100 
ICOS C398.4A 170Er 1:100 
CD66b G10F5 171Yb 1:100 
IgM MHM-88 172Yb 1:200 
CD144/VE-Cadherin BV9 173Yb 1:100 
HLA-DR L243 174Yb 1:100 
IgD IA6-2 175Lu 1:100 
CD106/VCAM-1 STA 176Yb 1:100 
CD45 HI30 141Pr 1:100 
CD19 HIB19 142Nd 1:100 
RANKL MIH24 143Nd 1:50 
CD64 10.1 144Nd 1:100 
CD16 3G8 145Nd 1:100 
CD8a RPA T8 146Nd 1:100 
FAP Poly 147Sm 1:50 
CD20 2H7 148Nd 1:100 
CD45RO  UCHL1 149Sm 1:100 
CD38 HIT2 150Nd 1:100 
CD279/PD-1 EH12.2H7 151Eu 1:100 
CD14 M5E2 152Sm 1:100 
CD69 FN50 153Eu 1:100 
CD185/CXCR5 J252D4 154Sm 1:100 
CD4 RPA T4 155Gd 1:100 
Podoplanin NC-08 156Gd 1:100 
CD3  UCHT1 158Gd 1:100 
CD11c Bu15 159Tb 1:100 
CD307d/FcRL4 413D12 160Gd 1:100 
CD138 MI15 161Dy 1:100 
CD90 5E10 162Dy 1:50 
CCR2 K036C2 163Dy 1:100 
Cadherin 11 3C10 164Dy 2:25 
FoxP3 PCH101 165Ho 1:50 
CD34 581 166Er 1:100 
CD146/MCAM SHM-57 167Er 1:50 
IgA 9H9H11 168Er 1:100 
ICOS C398.4A 170Er 1:100 
CD66b G10F5 171Yb 1:100 
IgM MHM-88 172Yb 1:200 
CD144/VE-Cadherin BV9 173Yb 1:100 
HLA-DR L243 174Yb 1:100 
IgD IA6-2 175Lu 1:100 
CD106/VCAM-1 STA 176Yb 1:100 

Validation All commercial antibodies used for flow cytometry and cell sorting experiments were validated for flow cytometric analysis of 
human cells according to manufacturer’s production information.  Additional validation on synovial cells for cell type specificity 
were performed as described in Donlin and Rao et al., Methods for high-dimensonal analysis of cells dissociated from 
cyropreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018).  For antibodies used in mass cytometry experiments, cell type 
specificity in synovial cells were tested and described in Donlin and Rao et al.    For antibodies used in immunofluorescence 
microscopy experiments, all antibodies were tested for IF studies on human tissues and cells based on manufacturer’s product 



4

nature research  |  reporting sum
m

ary
O

ctober 2018
description.

Human research participants
Policy information about studies involving human research participants

Population characteristics Clinical characteristics of 51 recruited patients. 
OA leukocyte-poor RA leukocyte-rich RA 
(n=15) (n=17) (n=19) 
Demographic variables Age, mean 71 64.2 57.3 
(Range) (64-81) (42-79) (36-71) 
Females, n (%) 10 (66.7) 15 (82.4) 14 (73.7) 
RA-related variables Mean years of disease duration 15.7 5.5* 
(range) (<1-51) (<1-29) 
RF positive, n (%) 8 (47.1) 16* (84.2) 
CCP positive, n (%) 10 (58.8) 14 (73.7) 
DMARDs Prednisone, n (%) 10 (55.6) 4* (22.2) 
Methotrexate, n (%) 7 (41.2) 3 (15.8) 
TNFi, n (%) 4 (23.5) 2 (10.5) 
Rituximab, n (%) 0 (0) 1 (5.3) 
Abatacept, n (%) 1 (5.9) 1 (5.3) 
Tofacitinib, n (%) 2 (11.8) 1 (5.3) 
DMARDs = Disease-Modifying Antirheumatic Drugs. 
TNFi = TNF inhibitors (infliximab, etanercept, adalimumab, Golimumab). 
RhF = Rheumatoid Factor. CCP = Cyclic Citrullinated Peptide. 
*Significant p-value between leukocyte-poor RA and leukocyte-rich RA.

Recruitment The study was performed in accordance with protocols approved by the institutional review board. A multicenter, cross-sectional 
study of individuals undergoing elective surgical procedures and a prospective observational study of synovial biopsy specimens 
from RA patients ≥ age 18, with at least one inflamed joint, recruited from 10 contributing sites in the network. Subjects in the 
biopsy portion were being asked to undergo a research procedure to obtain synovial tissue.

Ethics oversight We have been approved by all relevant ethical regulations and the study protocol. Protocols were approved by University of 
Rochester Medical Center, Hospital for Special Surgery, University of Pittsburgh Medical Center, University of California San 
Diego, University of Colorado: Denver, Northwestern University, University of Birmingham UK, Queen Mary University of London, 
University of Alabama Birmingham, University of Massachusetts Medical Center

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Synovial T cells, B cells, monocytes, and fibroblasts were isolated from disaggregated synovial tissue. Briefly, disaggregated 
synovial cells were stained with antibodies against CD45 (HI30), CD90 (5E10), podoplanin (NZ1.3), CD3 (UCHT1), CD19 (HIB19), 
CD14 (M5E2), CD34 (4H11), CD4 (RPA-T4), CD8 (SK1), CD31 (WM59), CD27 (M-T271), CD235a (KC16), using human TruStain FcX 
in 1% BSA in Hepes-Buffered Saline (HBS,20 mM HEPES, 137 mM NaCl, 3mM Kcl, 1mM CaCl2) for 30 minutes. 
For validation experiments, RA and OA synovial tissue were disaggregated and synovial cells were stained with cell-type specific 
antibody panels. For each cell subset, up to 1000 cells were collected directly into buffer TCL (Qiagen). Antibody panels used to 
define cell subsets are fibroblasts: CD90 (5E10), podoplanin (NZ1.3), HLA-DR (G46-6); B cell subsets: HLA-DR (G46-6), CD11c 
(3.9), CD19 (SJ25C1), CD27 (M-T271), IgD (IA6-2), CD3 (UCHT1), CD14 (M5E2), CD38 (HIT2); Monocyte subsets: CD14-BV421 
(M5E2), CD38-APC (HB-7), and CD11c-PECy7 (B-ly6). Immediately prior to sorting, DAPI or LIVE/DEAD viability dye was added to 
cell suspensions and cells were passed through a 100μm filter.

Instrument T cells (CD45+, CD3+, CD14-), monocytes (CD45+, CD3–, CD14+), B cells (CD45+, CD3–, CD14–, CD19+), and synovial fibroblasts 
(CD45–, CD31–, PDPN+) were collected by fluorescence-activated cell sorting (BD FACSAria Fusion)

Software Flowjo (version 10) was used for analysis

Cell population abundance 95% purity were achieved during sorting of synovial cells based on flow cytometry analysis during single cell sorting (second sort)
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Gating strategy Synovial cells were gated based on the following schemes: T cells (CD45+, CD3+, CD14-), monocytes (CD45+, CD3–, CD14+), B 

cells (CD45+, CD3–, CD14–, CD19+), and synovial fibroblasts (CD45–, CD31–, PDPN+)

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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