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Abstract 1 

Clinical diagnoses rely on a wide variety of laboratory tests and imaging studies, interpreted alongside physical 2 

examination findings and the patient’s history and symptoms. Currently, the tools of diagnosis make limited use 3 

of the immune system’s internal record of specific disease exposures encoded by the antigen-specific 4 

receptors of memory B cells and T cells, and there has been little integration of the combined information from 5 

B cell and T cell receptor sequences. Here, we analyze extensive receptor sequence datasets with three 6 

different machine learning representations of immune receptor repertoires to develop an interpretive 7 

framework, MAchine Learning for Immunological Diagnosis (Mal-ID), that screens for multiple illnesses 8 

simultaneously. This approach is effective in identifying a variety of disease states, including acute and chronic 9 

infections and autoimmune disorders. It is able to do so even when there are other differences present in the 10 

immune repertoires, such as between pediatric or adult patient groups. Importantly, many features of the 11 

model of immune receptor sequences are human-interpretable. They independently recapitulate known biology 12 

of the responses to infection by SARS-CoV-2 and HIV, provide evidence of receptor antigen specificity, and 13 

reveal common features of autoreactive immune receptor repertoires, indicating that machine learning on 14 

immune repertoires can yield new immunological knowledge. This framework could be useful in identifying 15 

immune responses to new infectious diseases as they emerge.   16 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 31, 2023. ; https://doi.org/10.1101/2022.04.26.489314doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.26.489314


2 

Main text 17 

Modern medical diagnosis relies heavily on laboratory testing for cellular or molecular abnormalities in 18 

specimens from a patient, such as the presence of pathogenic microorganisms1,2. For autoimmune disorders 19 

like lupus or multiple sclerosis, diagnosis via a combination of patient history, physical examination, imaging 20 

observations, detection of autoantibodies and exclusion of other conditions can be a lengthy process3,4. 21 

Evolution has provided vertebrate animals with immune systems that carry out molecular surveillance for 22 

abnormal exposures, using B cells and T cells expressing diverse, randomly generated antigen receptors. In 23 

response to viruses, vaccines, and other stimuli the repertoire of B and T cell receptors changes in composition 24 

by clonal expansion of antigen-specific cells, introduction of additional somatic mutations into B cell receptor 25 

genes, and selection processes that further reshape lymphocyte populations. In dysregulated immunity, self-26 

reactive lymphocytes can also clonally proliferate and cause immunological pathologies.  27 

Being able to interpret the specificities encoded in a patient’s adaptive immune system could allow 28 

simultaneous assessment for many infectious and autoimmune diseases5–7. Tracking immune receptor 29 

repertoires has already proved useful in diagnosing lymphocyte malignancies and monitoring cancer treatment 30 

responses8,9, and shows promise in the context of antibody-mediated pathologies10. Challenges in this field are 31 

the low frequency of antigen-specific BCRs and TCRs in many patients with acute infectious or autoimmune 32 

diseases, and the high complexity and diversity of immune receptor genes due to somatic gene rearrangement 33 

during lymphocyte development and somatic hypermutation after antigen stimulation of B cells6,11. Differences 34 

in sample types, timing, experimental protocols for sequence library preparation and the necessity of 35 

controlling for demographic and epidemiological factors may also influence the data12. Further limitations have 36 

been the relatively small sizes of human cohorts from which BCR and TCR sequence data have been 37 

collected, and incomplete knowledge about the relative importance of B cell compared to T cell responses in 38 

various immunological conditions. Some prior investigations of disease or vaccination-related immune 39 

repertoires have attempted to identify highly similar receptor sequences or subsequences in people with the 40 

same exposures13–21, or represented receptor sequences with alternative encodings of amino acid biochemical 41 

properties such as charge and polarity to find receptor groups22–25. Learned representations of either TCR or 42 
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BCR sequences with language models and variational autoencoders are also candidates for immune state 43 

classification or for functional purposes such as therapeutic antibody optimization26–34. Additionally, 44 

probabilistic models of V(D)J recombination and selection processes have been proposed to improve 45 

interpretation of the stochastic nature of immune receptor generation and expansion in response to antigenic 46 

stimuli35,36. Despite these advances, it is still unclear to what extent immune repertoire sequence data are 47 

sufficient for generalized and accurate infectious or immunological disease classification in humans. 48 

To overcome these challenges, we have developed MAchine Learning for Immunological Diagnosis (Mal-49 

ID), which combines three machine learning representations applied to both B cell receptor (BCR) and T cell 50 

receptor (TCR) repertoires (Figure 1) to identify the presence of infectious or immunological diseases in 51 

patients. Mal-ID relies on several biologically informed representations of BCR and TCR data, from overview 52 

summary metrics of receptor populations to focused analysis of the key antigen-binding loops CDR1, CDR2, 53 

and CDR3 (complementarity regions 1, 2 and 3) with sequence distance measures and protein language 54 

modeling. We apply Mal-ID to systematically collected datasets of 14.3 million BCR heavy chain (IgH) clones 55 

and 19.2 million TCR beta chain (TRB) clones from peripheral blood samples of 461 individuals, as well as 56 

external datasets collected with different library preparation and sequencing protocols. Mal-ID distinguishes 57 

healthy from diseased individuals, viral infections from autoimmune conditions, and different infections from 58 

each other, without prior knowledge of pathogenesis or of which sequences are antigen specific. Importantly, 59 

this approach also generates interpretable rankings for disease-associated sequences, recapitulating 60 

independently discovered biological facts, including identifying SARS-CoV-2-specific antibodies and T cells. 61 

Integrated repertoire models of disease states 62 

Mal-ID uses a combination of three models per gene locus (BCR heavy chain, IgH; and TCR beta chain, 63 

TRB) to improve recognition of distinct kinds of disease states, and to identify candidate receptor sequences of 64 

lymphocytes stimulated by disease-related antigens. Each classifier model extracts different aspects of 65 

immune repertoires (Figure 1b). The first model uses variable gene IGHV or TRBV gene segment frequencies 66 

and IGHV mutation rates across a person’s IgH repertoire. The second predictor identifies groups of highly 67 

similar sequences across individuals. The third classifier evaluates a broader proxy for functional similarity 68 
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based on protein language modeling, rather than direct sequence identity, to find more loosely related immune 69 

receptors with potential common antigen targets. We train disease predictors with each representation. The 70 

three BCR and three TCR models are then blended into a final prediction of immune status. The final trained 71 

program accepts an individual’s collection of sequences from peripheral blood B and T cells as input, and 72 

returns a prediction of the probability the person has each disease on record (Figure 1c). 73 

 

Figure 1: MAchine Learning for 
Immunological Diagnosis (Mal-ID) 
framework. 
 
a, B and T cell receptor gene 
repertoires are amplified and 
sequenced from blood samples of 
individuals with different disease 
states. Question marks indicate that 
most sequences from patients are not 
disease specific. 

b, Machine learning models are 
trained to predict disease using 
several immune repertoire feature 
representations. These include 
sequence feature extraction using 
language models fine-tuned to BCR 
heavy chain or TCR beta chain 
patterns. The language model feature 
extraction converts each amino acid 
sequence into a numerical vector. 

c, An ensemble disease predictor is 
trained using the three BCR and three 
TCR base models. The combined 
model predicts disease status of held-
out test individuals. 

d, Suspected antigen-specific immune 
receptors are identified by ranking 
sequences according to their 
predicted disease association. 

e, A reference map of immune 
receptor sequences is constructed 
Each point is one sequence. 

f, Visualizing a held-out test patient’s 
immune status by overlaying their 
sequences on the reference map. The 
immune response to disease A is 
visible in blue. 
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We applied this approach to cohorts of patients with diagnoses of Covid-19 (n=63), HIV (n=95)14, and 74 

Systemic Lupus Erythematosus (SLE, n=86), and healthy controls (n=217), with 461 individuals in total 75 

(Supplementary Table 1). We combined new datasets with ones previously reported, all generated with a 76 

standardized sequencing protocol to minimize batch effects (Methods). The non-Covid-19 cohort samples 77 

were collected before the emergence of SARS-CoV-2. To evaluate whether our proposed strategy can 78 

generalize to new immune repertoires, patients were strictly separated into three training, validation, and 79 

testing sets, with each person falling into one test set (Supplementary Figure 1). Some patients had multiple 80 

samples; all were grouped together for the cross-validation divisions. We trained separate models for each 81 

cross-validation fold and report averaged classification performance. As described below, we also tested and 82 

excluded the possibility that demographic differences between cohorts could explain diagnosis accuracy.  83 

Model 1: Overall repertoire composition. The first machine learning model uses an individual’s IgH or TRB 84 

repertoire composition to predict disease status. Prior studies have reported immune status classification using 85 

deviations in B cell or T cell V(D)J recombination gene segment usage from healthy individuals19,37,38. Certain V 86 

gene segments may be more prevalent among antigen-responding V(D)J rearrangements than in the 87 

population of immune receptors in naive lymphocytes, and increase in frequency as antigen-specific cells 88 

become clonally expanded39,40. We previously identified class-switched IgH sequences with low somatic 89 

mutation (SHM) frequencies as prominent features of acute infection with Ebola virus or SARS-CoV-2, 90 

consistent with naive B cells recently having class-switched during the primary response to infection39–41. V 91 

gene usage changes and other repertoire changes have also been described in chronic infectious or 92 

immunological conditions10,14. We trained a lasso linear model with V/J gene counts in TRB and IgH data, and 93 

somatic hypermutation rate in IGHV, as features.   94 

Model 2: Convergent clustering of antigen-specific sequences by edit distance. The second classifier 95 

detects highly similar CDR3 amino acid sequences shared between individuals with the same diagnosis, an 96 

approach we and others have previously reported14,17,18. The CDR3s are the highly variable regions of IgH and 97 

TRB that often determine antigen binding specificity. For each locus, we clustered CDR3 sequences with the 98 

same V gene, J gene, and CDR3 length that had high sequence identity, allowing for some variability created 99 
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by somatic hypermutation in B cell receptors. A new sample’s sequences can then be assigned to nearby 100 

clusters with the same constraints. We selected clusters enriched for sequences from subjects with a particular 101 

disease, using Fisher’s exact test and setting a significance threshold based on cross-validation with data 102 

derived from different individuals. These clusters represent candidate sequences predictive of a specific 103 

disease across individuals.  We assigned each sample’s sequences to these predictive clusters. For each 104 

sample, we counted how many clusters associated with each disease were matched, and used these counts 105 

as features in a lasso linear model to predict immune status.  106 

Model 3: Language model feature extraction from B and T cell receptor sequences. Immune receptor 107 

sequences encode complex three-dimensional structures, and small sequence changes can cause important 108 

structural changes, while different structures with divergent primary amino acid sequences can bind the same 109 

target antigen42,43. Disease-associated receptors may have apparently dissimilar sequences by edit distance 110 

but share the function of binding to the same target. Using language models fine-tuned on BCR and TCR 111 

sequences, the third classifier in our framework aims to map primary amino acid sequences into a lower-112 

dimensional space with the potential to capture functional similarities, beyond sequence similarity represented 113 

by edit distance. We extracted a putative functional representation of BCRs and TCRs with UniRep, one of 114 

many self-supervised protein language models shown to learn functional properties for prediction tasks with an 115 

approach borrowed from natural language processing44,45. Much as words are the building blocks arranged by 116 

grammatical rules to convey meaning, protein sequences are built from amino acids joined in an order 117 

compatible with polypeptide chain folding and assuming a structure that can carry out functions such as 118 

binding to another molecule or catalyzing a chemical reaction. UniRep was trained to predict randomly masked 119 

amino acids using the unmasked amino acids in the remaining sequence context of each protein. This requires 120 

learning short and long-range relationships between different sequence regions, analogous to learning natural 121 

language phrases and grammar rules to anticipate the next word in a sentence. The UniRep recurrent neural 122 

network compresses each sequence into an internal, low-dimensional embedding, capturing traits that allow 123 

accurate reconstruction. If the final model can successfully predict masked portions of protein sequences, the 124 

compression and uncompression has extracted fundamental features that summarize the input sequences. 125 
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UniRep’s internal representation, trained on over 20 million proteins from many organisms44, was shown to 126 

encode fundamental properties like structural classes44. 127 

To create a language model specialized for immune receptor proteins, we continued UniRep’s training 128 

procedure separately for masked IgH or TRB sequences for each cross-validation fold (Methods). Prior 129 

autoencoder models have enabled classification of clusters of similar sequences32,34; notably, an advantage of 130 

our fine-tuning using BCR and TCR sequences of a language model based initially on global patterns in 131 

proteins from many domains of life is that the final model retains high performance on UniRep’s original 132 

training data while showing improved prediction of BCR and TCR amino acid sequences, suggesting it 133 

combines global and domain-specific protein rules (Supplementary Figure 2). For disease classification, the 134 

low-dimensional embedding learned by the BCR or TCR fine-tuned language model transformed each 135 

sequence into a 1900-dimensional numerical feature vector, regardless of sequence length. We then trained a 136 

lasso linear model to map receptor sequence vectors to disease labels. Aggregating each sequence’s 137 

predicted class probabilities using a trimmed mean, we obtained patient-level predictions of specific disease 138 

states. The trimmed mean was robust to noise in the model in the form of rare sequences with extremely high 139 

or low disease association probabilities, but other central estimates perform similarly for classification accuracy 140 

(Supplementary Table 2). Because this classifier starts with a predictor for individual receptors, then 141 

aggregates sequence calls into a patient-level prediction22,33, it allows interpretation of which sequences matter 142 

most for prediction of each disease. Below, we confirmed that sequences prioritized by our predictor are 143 

enriched for disease-specific B and T cells, demonstrating that the language model learns the syntax of 144 

immune receptor sequences, in spite of their enormous diversity. 145 

Ensemble: Finally, we combined all three classifiers (global repertoire composition, CDR3 sequence 146 

clustering, and language model embedding) for IgH and three for TRB into the final Mal-ID ensemble predictor 147 

of disease (Supplementary Figure 3). Blending the probabilistic outputs from multiple classifiers trained with 148 

different strategies, the metamodel exploits each predictor’s strengths and can resolve mistakes46. As with the 149 

individual component models in Mal-ID, we trained a separate metamodel for each cross-validation group, 150 

maintaining strict separation of each individual’s data into training, validation or test datasets. 151 
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Figure 2: Mal-ID classifies disease using IgH and TRB sequences. a, Disease classification performance on held-out 

test data by the ensemble (random forest) of three B cell repertoire and three T cell repertoire machine learning models, 

combined over all cross-validation folds. b, Ensemble model (elastic net logistic regression fit on global fold) feature 

contributions for predicting each class, summarized by featurization method and whether the features were extracted 

from BCR or TCR information. To determine “percent contribution”, feature coefficients were converted to absolute 

values, summed by featurization method (such as BCR repertoire composition classifier predicted probability-derived 

features), and divided by the sum of all coefficients. c, Difference of probabilities of the top two predicted classes for 

correct versus incorrect ensemble model (random forest) predictions. A higher difference implies that the model is more 

certain in its decision to predict the winning disease label, whereas a low difference suggests that the top two possible 

predictions were a toss-up. Results were combined across all cross-validation folds. 

This ensemble approach distinguished four specific disease states in 414 paired BCR and TCR samples 152 

from 410 individuals with an area under the Receiver Operating Characteristic curve (AUC) score of 0.98 153 

(Figure 2a). In comparison, the previously reported CDR3 clustering model, with parallels to many convergent 154 

sequence discovery approaches in the literature, achieves only 0.93 AUC for BCR and 0.89 AUC for TCR. 155 

AUC is the likelihood the model ranks a randomly-chosen positive example over a negative example — 156 

representing whether the classifier tends to assign high probability to the correct class and low probability to 157 

incorrect classes47. Other performance metrics are provided in Supplementary Table 3. Performance was 158 

also consistent across different types of ensemble models: a random forest metamodel achieves the highest 159 

accuracy, but an alternative metamodel using elastic net logistic regression performs similarly 160 

(Supplementary Figure 4). To achieve the significantly higher 0.98 AUC in the ensemble approach, all 161 
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modeling strategies contributed to varying degrees depending on gene locus and disease, highlighting different 162 

strengths of BCR and TCR repertoire feature associations with each disease (Figure 2b, Supplementary 163 

Figure 4). The combined BCR+TCR metamodel outperforms BCR-only or TCR-only versions, highlighting the 164 

benefit of integrating signals from both B cell and T cell populations when such data is available 165 

(Supplementary Table 3). The Mal-ID ensemble model achieves 88.6% accuracy across all held-out test sets 166 

(Figure 2a). Of the 11.4% of misclassified repertoires, 1.7% were samples that did not have any sequences 167 

belonging to Model 2 CDR3 clusters. The CDR3 clustering component of the metamodel abstained from 168 

making any prediction for these challenging samples. In the remaining ~10% of classification mistakes, the 169 

ensemble model predictions failed to identify a clear winning label (Figure 2c). Allowing the strategy to abstain 170 

from inconclusive predictions is important for diagnostic robustness with challenging real-world cases. In 171 

practice, diagnostic sensitivity, the precise threshold on the predicted probability of each disease state, can be 172 

tuned to disease prevalence and the desired tradeoff between precision and recall. 173 

While cross-validation mitigates the risk of overfitting, we wanted to assess whether Mal-ID would 174 

generalize to new data from other sources. We fit a final model on all the data, which we call the “global fold”, 175 

to distinguish from the three cross-validation folds (Supplementary Figure 1). Then we downloaded Covid-19 176 

patient and healthy donor repertoires from other BCR or TCR studies with similar cDNA sequencing protocols. 177 

In four external cohorts, two with only BCR sequences and the other two with only TCR sequences, Mal-ID 178 

predicted disease type with 100% and 86% accuracy, respectively (Supplementary Table 4). In both cases, 179 

the AUC is over 0.99, suggesting that the TCR accuracy of 86% may be improved by tuning the decision 180 

thresholds for choosing predicted labels based on the different base rates of disease in these outside data with 181 

only Covid-19 patients and healthy donors present, given that the AUC summarizes over all choices of 182 

probability thresholds for class label selection48. This ability to generalize to new datasets provides additional 183 

evidence that Mal-ID learns true biological disease-related signals, and that Mal-ID performs well when only 184 

BCR or only TCR data are available, rather than the preferred data including both receptor types. Mal-ID could 185 

also be fine-tuned to generalize to datasets from the many other sequencing protocols used by different 186 

laboratories, such as the genomic DNA-templated and normalized clone count data from Adaptive 187 

Biotechnologies12, to address the differences in V gene usage (Supplementary Figure 5a).  188 
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Limited impact of age, sex, and race on classification 189 

Besides diseases, patient demographics also shape the immune repertoire49–52. To study the degree to 190 

which extraneous covariates were confounding our disease classification results, we investigated whether we 191 

could distinguish age, sex, or ancestry of healthy individuals based on their immune receptor repertoire data. 192 

By training new classifiers to predict these variables, we found that the sex of a healthy individual could not 193 

accurately be determined from IgH or TRB sequences (Supplementary Table 5). However, sequences did 194 

carry a weak signal potentially related to ancestry, with 0.75 AUC predictive power. Ancestry separation is 195 

visible in IGHV and TRBV gene usage (Supplementary Figure 5b). Contributions to this signal may include 196 

germline TRB and IGHV locus differences, shaping of TCR repertoires by HLA alleles that differ between 197 

ancestry groups, and different environmental exposures in the African ancestry individuals living in Africa in the 198 

data53,54. In the full Mal-ID disease classification setting, the T cell model components had less accuracy in 199 

distinguishing HIV patients and healthy controls from this African cohort, though the corresponding IgH 200 

repertoires were distinct (Supplementary Figure 6), highlighting the advantage of incorporating both BCR and 201 

TCR information with an ensemble metamodel.  202 

Previous studies have tracked age-related changes in gene expression, cytokine levels, and immune cell 203 

type frequencies55,56. We observe a modest signal of age in healthy IgH and TRB sequence repertoires. When 204 

we dichotomized age as under or over 50 years old to cast this continuous variable as a classification problem, 205 

the prediction model achieved 0.75 AUC (Supplementary Table 5). The signatures of age detected by the 206 

classifier may correspond to different historical infectious disease or environmental exposures for people over 207 

50 versus younger individuals, such as imprinting effects on memory B cell and T cell pools related to different 208 

childhood virus exposures, as in the case of influenza viruses57. However, the Model 2 component in this age 209 

prediction model abstains on a high number of samples: 13% of repertoires had no sequences fall into age-210 

associated CDR3 clusters. The AUC measure does not reflect this classification deficiency, because abstained 211 

samples have no predicted class probabilities and cannot be included in the computation of metrics that use 212 

predicted probabilities. On the other hand, every abstention hurts the accuracy metric: each one counts as a 213 

prediction error, so that the accuracy of predicting “under 50” versus “over 50” was 58.8%. 214 
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We also observed that V gene usage shows more defined age separation in TRB data than in IgH, 215 

particularly for pediatric compared to adult samples (Supplementary Figure 5c). The Mal-ID architecture can 216 

distinguish individuals under eighteen from those eighteen or older (78% accuracy including 17% abstentions, 217 

or 0.99 AUC not counting abstentions; Supplementary Table 5). Despite the substantial differences between 218 

the repertoires of adults and children that can be detected with this approach, age effects did not seem to 219 

interfere with disease classification, because Mal-ID distinguished pediatric lupus patients from healthy 220 

children (Supplementary Figure 7). Adult lupus patients were the most challenging to classify, with many 221 

predicted to be healthy individuals instead (Supplementary Figure 7), potentially reflecting the subset of 222 

patients with well-controlled disease in response to treatment10. More granular aging differences proved 223 

challenging to disentangle at the sequence level with the number of participants, age ranges, and cell sampling 224 

and sequencing depth in this study. When we divided age into groups by decade, the age prediction model 225 

achieved 37% accuracy and abstained from prediction on 18% of samples (0.70 AUC if not counting the 226 

abstentions). We restricted Mal-ID’s scope to somatically hypermutated IgD/IgM and class switched IgG/IgA 227 

isotypes, reflecting the populations of B cells that are most likely to be shaped by antigenic stimulation and 228 

selection. Studying naive B cells may reveal additional age, sex, or ancestry effects. The high abstention rates 229 

observed for Model 2 also suggest that finding convergent clusters of age-associated CDR3 sequences may 230 

be unrealistic, whereas a scan for global repertoire changes, like Model 1, may be better suited to 231 

demographic prediction tasks. 232 

We further tested whether demographic differences between disease cohorts drove our classification 233 

results. For example, the age medians and ranges of the cohorts were: SLE (median 18 years, range 7-71); 234 

HIV (median 31 years, range 19-64); healthy controls (median 34.5 years, range 8-81); Covid-19 (median 48 235 

years, range 21-88) (Supplementary Table 1). The percentage of females in each cohort was 50% (healthy 236 

controls), 52% (Covid-19), 64% (HIV), and 85% (SLE). The prevalence of females in our SLE cohort is 237 

consistent with general epidemiology for this disease58. The ancestries and geographical locations of 238 

participants also differed between cohorts. Notably, 89% of individuals with HIV were from Africa14. To address 239 

the extent to which demographic metadata could contribute to disease prediction in our current datasets, we 240 

attempted to predict disease state from age, sex, and ancestry alone, without using sequence data at all. The 241 
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best disease classification AUC values were 0.70, 0.58, and 0.79 with only age, sex, or ancestry features, 242 

respectively. Combining all demographic features for a demographics-only classifier achieved an AUC of 0.86, 243 

substantially lower than the AUC of 0.98 when we retrained the Mal-ID sequence prediction ensemble with 244 

demographic covariates included as features, underscoring the disease signal we extract from BCR and TCR 245 

sequences (Supplementary Table 6, Supplementary Figure 8a-b). This demographics-only classifier also 246 

only achieved 0.77 and 0.68 AUC on the BCR and TCR external validation cohorts, respectively, compared to 247 

the >0.99 AUC performance of the standard Mal-ID model. As an additional version of this test, we also 248 

retrained the disease classification metamodel with age, sex, and ancestry effects regressed out from the 249 

ensemble feature matrix. After this correction, classification performance on the individuals with full 250 

demographic information available dropped slightly from 0.98 AUC to 0.97 AUC (Supplementary Table 6, 251 

Supplementary Figure 8c). The small decrement in performance after decorrelating sequence features from 252 

demographic covariates suggests that age, sex, and ancestry effects have, at most, a modest impact on 253 

disease classification. 254 

Language model recapitulates immunological knowledge 255 

We designed our machine learning framework to identify biologically interpretable features of the 256 

immunological conditions we studied. To assess the ties between the accurate machine learning classification 257 

and known biology, we examined which sequences contributed most to predictions of each disease. For 258 

example, we ranked all sequences from Covid-19 patients by the predicted probability of their relationship to 259 

SARS-CoV-2 immune response using the BCR and TCR classifiers based on language model embeddings. In 260 

discriminating between different diseases, sequences highly prioritized for Covid-19 prediction used IGHV 261 

gene segments seen in independently isolated antibodies that bind SARS-CoV-2 spike antigen: IGHV3-30-3, 262 

IGHV3-9, and IGHV2-7059–61 (Figure 3b). Similarly, IGHV1-24, found in a prominent class of N-terminal 263 

domain-directed antibodies, was highly ranked62. 264 
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Figure 3: Disease patient-originating IgH sequences, ranked by predicted disease class probability, show high ranks for 

IGHV genes known to be disease-associated and for CDR-H3 length patterns reflecting selection. a, Covid-19 class 

prediction rankings; b, HIV class prediction rankings; c, SLE class prediction rankings. Ranks range from 0 (lowest 

disease association) to 1 (highest disease association). For each distribution, the box ranges from the 25th to 75th 

percentile, with the median marked. Whiskers extend to 1.5 times the interquartile range, and outlier points on the 

extremes are plotted individually. 

The model’s prioritization of IGHV4-34, IGHV4-39, and IGHV4-59 for SLE prediction (Figure 3c) also 265 

matches prior reports of higher frequency expression of these gene segments in SLE patients10,63. IGHV4-34, 266 

an IGHV gene previously described in HIV-specific B cell responses with unusually high somatic hypermutation 267 
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frequencies in individuals producing broadly-neutralizing antibodies14, was ranked highly for HIV classification 268 

by the model (Figure 3b). The IGHV4-38-2 V gene was also highly ranked for HIV prediction, consistent with 269 

its reported use in HIV-specific B cells in another analysis64; however, this is a case where this gene segment 270 

is more common in the IgH germline loci of African populations65, underscoring the detectable but not decisive 271 

impact of demographic factors on immune repertoire data (Supplementary Figure 9). Other IGHV genes 272 

flagged by the model are not stratified by ancestry (Supplementary Figure 9). As expected from genetic 273 

variation in the alleles of HLA proteins that restrict TCR binding, some TRBV genes were also stratified by 274 

ancestry (Supplementary Figure 9). TRBV10-2, TRBV24-1, and TRBV25-1, all gene segments enriched in 275 

African healthy controls, were the top three highly ranked TRBV gene groups for classifying our predominantly 276 

African HIV cohort (Supplementary Figure 10b).  277 

The sequence model’s rankings also favored certain CDR3 lengths, one of the major features in 278 

immunoglobulin and TCR gene rearrangements affected by selection, despite no direct input of sequence 279 

length into the model. Shorter IgH CDR3 segments were favored for the chronic diseases SLE and HIV 280 

(Figure 3b-c), consistent with reported selection patterns in HIV14, but longer CDR3s were favored for Covid-281 

19 prediction (Figure 3a). These prioritized sequences could reflect clones recently derived from naive B cells 282 

that have not yet undergone extensive selection that would favor shorter CDR3 lengths in antigen-experienced 283 

B cells. TCR rankings follow the same pattern, except for SLE, where longer CDR3 sequences are favored 284 

(Supplementary Figure 10c).  285 

B cell isotype usage varied by person and across disease cohorts (Supplementary Figure 11). To prevent 286 

isotype sampling artifacts from driving disease predictions, we designed the sequence model to apply 287 

balanced weights to all major isotypes (without separate weighting of subisotypes of IgG and IgA). As a result, 288 

all isotypes were included among model-prioritized sequences for prediction of each disease (Supplementary 289 

Figure 12). For Covid-19 prediction, IgG sequences played a slightly bigger role than other isotypes, as 290 

expected by the prominence of IgG-expression in antigen-specific B cells in this infectious disease40,66–68. The 291 

other models used in the Mal-ID ensemble were also designed not to be influenced by isotype sampling 292 

variation. The repertoire composition model quantifies each isotype group separately, and the convergent 293 
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clustering approach is blind to isotype information. To be sure that differences in isotype proportions between 294 

patient cohorts were not sufficient to predict disease, we also trained a separate model to predict disease from 295 

a sample’s isotype balance alone — with no sequence information provided. The isotype-proportions model 296 

achieved only 0.70 AUC, compared to Mal-ID’s 0.98 AUC disease classification performance. 297 

Language model identifies SARS-CoV-2 binders 298 

Only a small minority of peripheral blood B and T cell receptor sequences from Covid-19 patients are 299 

directly related to the antigen-specific immune response to SARS-CoV-2. Other naive and memory T and B 300 

cells continue to circulate even during acute illness69,70. The 0.98 AUC performance suggests that the 301 

ensemble model addresses this “needle in the haystack” issue. We inspected the sequences selected by our 302 

language model classifier to assess how important sequences are prioritized. 303 

We applied the language model component of Mal-ID to IgH and TRB sequences downloaded from public 304 

databases of SARS-CoV-2 specific receptors71,72 collected by orthogonal experimental methods, such as direct 305 

isolation of B cells that bind the SARS-CoV-2 receptor binding domain (RBD), followed by BCR sequencing73. 306 

We calculated a Covid-19 class probability for each known binder sequence and for sequences from held-out 307 

healthy donors in our dataset.  308 

The prediction model assigned significantly higher ranks to known-binder sequences compared to healthy 309 

donor sequences (Figure 4). When viewed as how well we discover known binders with Mal-ID rankings, we 310 

achieve AUCs of 0.74 (IgH) and 0.59 (TRB). 80% and 63% of known binders scored in the top half of ranked 311 

IgH and TRB sequences, respectively, while 53% and 29% of known IgH and TRB binders were in the top 20% 312 

of ranks. These binding relationships were not known to the classifier at training time, and the binding 313 

sequence databases were not used to train the model. The high ranking of experimentally validated, disease-314 

specific sequences from separate cohorts suggests the language model classifier learned meaningful rules 315 

that recapitulate biological knowledge gained during the extraordinary international research effort in response 316 

to the Covid-19 pandemic.  317 
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Figure 4: Sequences validated to be specific for SARS-CoV-2 (orange) were ranked significantly higher than healthy 

donor sequences by Mal-ID’s language embedding classifier model (one-sided Wilcoxon rank-sum test). One cross-

validation fold shown. a, IgH sequences: U-statistic = 2.7e9, p ~ 0; b, TRB sequences: U-statistic = 7.8e10, p ~ 0. 

We compared these known-binder discovery results to an alternative strategy of calculating the distance 318 

from each known binding sequence to the nearest Covid-19 associated cluster identified by the CDR3 319 

clustering model. Ranking sequences by distance to Covid-19 predictive CDR3 clusters does not enable 320 

discovery of known binders: the resulting AUCs were 0.54 (IgH) and 0.49 (TRB) (Supplementary Figure 13). 321 

Only 16.5% of IgH and 3.9% of TRB sequences scored 0.5 or higher on the rank scale ranging from 0 (worst) 322 

to 1 (best). The vast majority of sequences had infinite distance (i.e. a rank of 0) from any Covid-19 associated 323 

cluster: there were no selected clusters with the same clonal lineage parameters (V gene, J gene, and CDR3 324 

length). This result suggests that the Mal-ID language model approach is better suited for discovery of known 325 

binders than the CDR3 clustering strategy. 326 

To further study the sequences most highly ranked by Mal-ID, we developed a novel immune repertoire 327 

visualization to convey disease status at a glance. From the training set, we created a reference two-328 

dimensional Uniform Manifold Approximation and Projection (UMAP) layout using IgH or TRB receptors that 329 

the Mal-ID language model classifier learned to confidently separate into distinct groups by immune state 330 

(Figure 5a). Since these supervised UMAPs are conditioned on the disease labels assigned to sequences, 331 

any visual distortions created by the reduction into two dimensions are less likely to bias against the disease 332 
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classes. Then we overlaid patient repertoires that were held out from the training set onto the reference UMAP 333 

visualization. Covid-19, HIV, and SLE patient repertoires all contained sequences that were predicted to be 334 

highly associated with the disease in question and that were projected onto the disease-specific regions of the 335 

IgH or TRB reference map (Figure 5b-d).   336 

 

Figure 5: Individual IgH (top row) and TRB (bottom row) receptor sequences can be visualized by predicted disease 

association to interpret the disease status of a person’s collective immune repertoire. a, Reference UMAPs were 

created from the most disease-associated B and T cell receptors from many patients. Each point is a sequence, colored 

by the predicted identity of that sequence. Receptors are arranged in disease-specific clusters. b-d, IgH and TRB 

repertoires from a Covid-19 patient (b), an HIV patient (c), and an SLE patient (d) were projected onto the reference 

maps. The foreground points are again colored by predicted disease specificity of each overlaid sequence, with the 

reference maps shown in the background in gray. 

Discussion 337 

Pathogenic exposures shape the immune system’s collection of antigen-specific adaptive immune 338 

receptors, forming a record of past and present illnesses. The pathogenic immune responses of autoimmune 339 

diseases are also associated with distinctive alterations in the receptors expressed by B cells and T cells. We 340 

applied a three-part machine learning analysis framework to well-characterized disease datasets derived from 341 
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over 461 individuals with four distinct immunological states, classifying immune responses of study participants 342 

with performance of 0.98 AUC by leveraging both B and T cell signals in the 410 individuals from whom both 343 

data types were available. The evaluation strategy ensured that there was never a situation where a model 344 

was trained on data from a patient and then evaluated on other data from the same person. Faced with highly 345 

diverse repertoires containing hundreds of thousands of unique sequences, the Mal-ID ensemble of classifiers 346 

learned disease-specific patterns and chose meaningful sequences for prediction of viral infections and an 347 

autoimmune disorder. These signatures of disease and specific pathogens overrode more modest differences 348 

detectable between individuals differing by sex, age, or ancestry. Mal-ID additionally generalizes to data from 349 

other laboratories and experimental protocols. 350 

More importantly, the model’s interpretability enables testing hypotheses about antigen-specific human 351 

immune cell receptors in different illnesses. One key innovation in this study is the trio of methods to extract 352 

signal from B and T cell repertoires, fusing aggregate repertoire composition properties with detection of 353 

important sequence groups and with a language model interpretation of individual sequences. Integrating 354 

these models outperforms them individually and suggests that they capture different patterns. We also 355 

observed that combining data from BCR and TCR repertoires provides more accurate classification than either 356 

receptor type alone, potentially reflecting variation in the roles of B cell and T cell responses in different 357 

diseases. The disease predictor is not a black box; we can trace the decisions in the language model 358 

component back to the original sequences by ranking sequences according to predicted disease association. 359 

This language model classifier ranking allows discovery of more sequences independently known to be 360 

disease-associated than can be discovered with other approaches like CDR3 clustering. We also visualized 361 

immune repertoires in disease, highlighting the potential of monitoring for disease-associated receptor 362 

sequences. Notably, labels on individual sequences are not required to train these models. 363 

The model assemblage we developed in Mal-ID for B and T cell receptor sequences could be applied to 364 

tasks beyond identifying disease exposures. Our initial goal has been to classify current acute or chronic 365 

diseases, to ensure relevance for the care of individual patients, but this approach should also be amenable for 366 

other purposes, such as detecting evidence of more distant prior exposures to pathogens or other immune 367 
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stimuli in memory cell immune cell receptor repertoires. Conventional serology tests may only be positive for 368 

recent infections or vaccinations, as a result of antibody levels waning after exposure. Memory B and T cells 369 

can be long-lived, so an immune repertoire deconvolution strategy may detect distant exposures in individuals 370 

who have become seronegative. Further analysis of past exposures could shed light on why some patients are 371 

more susceptible to conditions such as the lingering post-infection symptoms of “long Covid”, or could help test 372 

hypotheses implicating prior viral infections in the initiation of autoimmune diseases74,75. It is possible that the 373 

model will fail to detect disease exposures in the distant past if very low frequencies of specific B or T cell 374 

receptors are present at the time of testing, but such negative findings could have clinical relevance: memory B 375 

cell frequencies that are too low to detect may correlate with susceptibility to re-infection. 376 

While the proof of concept in this study provides promising results, it is limited to four immune states and 377 

cohorts of only several hundred individuals. The Mal-ID framework appears to capture fundamental principles 378 

of immune responses, and it appears to generalize to separate clinical cohorts, but additional testing will be 379 

needed to further assess its generalizability to many other immunological states. Model predictions are 380 

affected by different experimental protocols and sequencing platforms, which is to be expected given the prior 381 

literature on systematic variation across platforms in V gene use measurements, which are a part of the Mal-ID 382 

classification scheme. We believe the Mal-ID repertoire composition classifier can be extended to additional 383 

repertoire sequencing technologies by training on more disparate datasets, or by down-weighting the 384 

importance of the repertoire composition features in the disease prediction metamodel, to rely less on precise 385 

V gene usage patterns. The biological validation against known SARS-CoV-2 binders also revealed some 386 

limits to the model’s grasp of the ultra-high-dimensional receptor repertoire space. For example, 20% of IgH 387 

and 37% of TRB sequences from the external databases had language-model-assigned ranks under 50% 388 

(Figure 4). Since our specificity group detection approach is anchored in the concept of common response 389 

patterns shared across individuals, it is less likely to be able to interpret truly idiosyncratic immune receptors 390 

unique to a single individual. The enrichment for higher ranks among TRB known binders may be lower than 391 

for IgH because the interactions between TCR and genetically diverse HLA molecules during T cell stimulation 392 

introduce additional potential differences between cohorts, and activation of T cells upon peptide stimulation in 393 

culture may result in some non-specific bystander clone activation. Further, unlike the IgH classification, the 394 
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TCR analyses do not exclude naive T cells that could contain low frequencies of SARS-CoV-2 specific clones 395 

in unexposed individuals.   396 

Extended to further datasets and clinical cohorts at population scale, this immune repertoire analysis 397 

strategy offers a strategy for disease definition refinement and diagnosis, as well as improving understanding 398 

of immune response features such as autoreactivity that are shared across different pathologies. We anticipate 399 

extending this approach to other autoimmune conditions, immunological treatment complications like 400 

transplantation rejection, and less well understood conditions suspected to have an immunological basis, like 401 

chronic fatigue syndrome. This analysis technique may be able to predict which patients respond to immuno-402 

oncology checkpoint blockade therapy and illuminate the basis for low response rates. In elderly individuals, 403 

this technique could identify those with more severe immunological aging and greater risk of severe infectious 404 

illnesses. Finally, in future pandemics, this approach could provide useful knowledge about novel pathogen 405 

exposures by highlighting patient repertoires that do not match any known disease, and potentially narrowing 406 

down the family of viruses to which a new pathogen belongs, such as an influenza virus rather than a 407 

coronavirus. Since antigen-specific antibodies are highly ranked by the Mal-ID model, it may contribute to 408 

developing novel monoclonal antibodies with therapeutic utility in future infectious disease outbreaks.  409 
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Methods 410 

B and T cell repertoire sequencing 411 

We assembled immune receptor repertoires from 63 Covid-19, 95 chronic HIV-1, and 86 Systemic Lupus 412 

Erythematosus (SLE) patients, along with 217 healthy controls. Among Covid-19 patients, we excluded mild 413 

cases, samples prior to seroconversion, and patients known to be immunosuppressed. These filters limited 414 

model training data to peak-disease samples to improve our chances of learning patterns for the disease-415 

specific minority of receptor sequences. However, we wanted to avoid creating an artificially simple 416 

classification problem from filtering to trivially separable immune states. To this end, our HIV cohort included 417 

patients regardless of whether they generated broadly neutralizing antibodies to HIV. Had we instead restricted 418 

our analysis to HIV-infected individuals who produce broadly neutralizing antibodies, we may have created a 419 

more-easily separable HIV class, due to the unusual characteristics of those antibodies14. 420 

Across these diverse immune states, over 14.3 million B and 19.2 million T cell receptor clones were 421 

sampled, PCR amplified with immunoglobulin and T cell receptor gene primers, and sequenced as previously 422 

described14,49. Briefly, we amplified T cell receptor beta chains and each immunoglobulin heavy chain isotype 423 

in separate PCR reactions using random hexamer-primed cDNA templates, and performed paired-end Illumina 424 

MiSeq sequencing. To reduce the potential for batch effects, data collection followed a consistent protocol. We 425 

annotated V, D, and J gene segments with IgBLAST v1.3.0, keeping productive rearrangements only76. Using 426 

IgBLAST’s identification of mutated nucleotides, we calculated the fraction of the IGHV gene segment that was 427 

mutated in any particular sequence; this is the somatic hypermutation rate (SHM) of that B cell receptor heavy 428 

chain. On the other hand, T cell receptors are known not to exhibit somatic hypermutation and to have CDR1β 429 

and CDR2β regions that match the germline sequence. Accordingly, we used TCR CDR1β and CDR2β 430 

annotations from IMGT reference TRBV gene germline sequences. We also restricted our dataset to CDR-H3 431 

and CDR3β segments with eight or more amino acids; otherwise the edit distance clustering method below 432 

might group short but unrelated sequences. 433 
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We grouped nearly identical sequences within the same person into clones. To do so, for each individual, 434 

we grouped all nucleotide sequences from all samples (including samples at different timepoints) across all 435 

isotypes, and ran single-linkage hierarchical clustering to infer clonal lineages, iteratively merging sequence 436 

clusters from the same individual with matching IGHV/TRBV genes, IGHJ/TRBJ genes, and CDR-H3/CDR3β 437 

lengths, and with any cross-cluster pairs having at least 95% CDR3β sequence identity by string substitution 438 

distance, or at least 90% CDR-H3 identity, which allows for BCR somatic hypermutation14. 439 

Among BCR sequences, we kept only class-switched IgG or IgA isotype sequences, and non-class-440 

switched but still antigen-experienced IgD or IgM sequences with at least 1% SHM. By restricting the IgD and 441 

IgM isotypes to somatically hypermutated BCRs only, we ignored any unmutated cells that had not been 442 

stimulated by an antigen and were irrelevant for disease classification. The selected non-naive IgD and IgM 443 

receptor sequences were combined into an IgM/D group. 444 

Finally, we deduplicated the dataset. For each sample from a patient, we kept one copy of each clone per 445 

isotype — choosing the sequence with the highest number of RNA reads. Similarly, we kept one copy of each 446 

TCRβ clone. Any samples with fewer than 100 IgG, 100 IgA, and 500 IgD/M clones, or with fewer than 500 447 

TRB clones, were rejected. On average, any two patients had 0.0004% IgH and 0.169% TRB sequence 448 

overlap, underscoring the enormous diversity of T cell receptor and especially B cell receptor sequences. 449 

Cross-validation 450 

We divided individuals into three stratified cross-validation folds, each split into a training set and a test set 451 

(Supplementary Figure 1). Each individual was assigned to one test set. The splits were respected across the 452 

training of the complete Mal-ID pipeline. Stratified cross-validation preserved the global imbalanced disease 453 

class distribution in each fold. We also carved out a validation set from each training set, to use for several 454 

tasks described below: language model fine-tuning, classifier hyperparameter optimization, and ensemble 455 

metamodel training. For example, while the repertoire classification, CDR3 clustering, and language model 456 

base classifiers are trained on the training set, the ensemble model is trained on the validation set, and then 457 

evaluated on the test set (Supplementary Figure 3). This happens separately for each fold; in other words, 458 
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one collection of models is trained using fold 1’s training, validation, and test sets, then a separate set of 459 

models is trained using fold 2’s training, validation, and test sets, and so on. On average in any fold, we 460 

observed 0.05% of IgH and 4.8% of TRB sequences shared between any pair of the train, validation, and test 461 

sets. 462 

Since any single repertoire contains many clonally related sequences, but is very distinct from other 463 

people’s immune receptors, we made sure to place all sequences from an individual person into only the 464 

training, validation, or the test set, rather than dividing a patient’s sequences across the three groups. 465 

Otherwise, the prediction strategies evaluated here could appear to perform better than they actually would on 466 

brand-new patients. Given the chance to see part of someone’s repertoire in the training procedure, a 467 

prediction strategy would have an easier time of scoring other sequences from the same person in a held-out 468 

set. Had we not avoided this pitfall, models may also have been overfitted to the particularities of training 469 

patients. For the minority of individuals with multiple samples, we accordingly made sure that, in each cross-470 

validation fold, all samples from the same person were grouped together into one of the training, validation, or 471 

test sets, as opposed to being spread across multiple sets. 472 

Finally, for the purpose of external cohort validation, we repeated the model training procedures with a 473 

“global” fold designed to incorporate all the data, by having only a training set and a validation set but no test 474 

set (Supplementary Figure 1). Repertoires from these independent studies are used in place of the test set at 475 

evaluation time. 476 

Evaluation metrics 477 

Models were trained with the scikit-learn implementations of logistic regression (with multinomial loss and 478 

default regularization strength hyperparameter λ = 1/n, where n is the number of training sequences), random 479 

forests (with 100 trees), and support vector machines (in “each class versus the rest” mode, with linear kernel 480 

and default regularization strength hyperparameter C=1.0), all with prevalence-balanced class weights. 481 

Predicted labels from all test sets were concatenated for global accuracy evaluation. Performance metrics that 482 

take predicted class probabilities as input, including ROC AUC and auPRC, were computed separately for 483 
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each fold, because probabilities may be on different scales in each fold and should not be combined for a 484 

global AUC or auPRC score. We report multiclass AUC and auPRC calculated in a one-versus-one fashion, 485 

taking the class size-weighted average of the binary AUCs/auPRCs calculated for each pair of classes, 486 

allowing each class a turn to be the positive class in the pair. All analyses were performed and plotted with 487 

software versions python v3.9.13, numpy v1.22.0, pandas v1.4.3, scipy v1.8.1, scikit-learn v1.1.1, python-488 

glmnet v2.2.1, jax v0.3.14, umap-learn v0.5.3, matplotlib v3.5.2, and seaborn v0.11.2. 489 

Model 1: Disease classifier using overall BCR or TCR repertoire composition features 490 

For each sample, we created IgG, IgA, IgM/D, and TRB summary feature vectors by tallying IGHV/TRBV 491 

gene and IGHJ/TRBJ gene usage, counting each clone once. We ranked IGHV or TRBV genes by training set 492 

prevalence and excluded the bottom half, to avoid overfitting to minute differences in rare V gene proportions 493 

between cohorts. To account for different total clone counts across samples, we normalized total counts to 494 

sum to one per sample. Then we log-transformed and Z-scored (i.e. subtracted the mean and divided by the 495 

standard deviation, to achieve zero mean and unit variance) the matrix representing how counts are distributed 496 

across V-J gene pairs. Finally, we performed a PCA to reduce the count matrix to fifteen dimensions. All 497 

transformations were computed on each training set and applied to the corresponding test set. In addition, for 498 

each sample’s subset of BCR sequences belonging to each isotype, we calculated the median sequence 499 

somatic hypermutation rate and the proportion of sequences that are somatically hypermutated (with at least 500 

1% SHM). Only BCRs have somatic hypermutation, so we did not include mutation rate features of TCRs. In 501 

total, we arrived at 51 features across IgG, IgA, and IgM/D (fifteen count matrix principal components and two 502 

mutation rate features per isotype) for the IgH repertoire composition model, and 15 features for the TRB 503 

repertoire composition model.  504 

We fit separate lasso logistic regression linear models with L1 regularization on the 51-dimensional (17 x 3 505 

isotypes) BCR and 15-dimensional TCR feature vectors from each sample to predict disease. Features were 506 

standardized to zero mean and unit variance. We repeated this feature engineering and model training 507 

procedure on each cross-validation fold separately.  508 
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Model 2: Disease classifier by clustering CDR-H3 sequences with edit distance 509 

We performed single-linkage clustering on CDR3β sequences from T cells with identical TRBV genes, 510 

TRBJ genes, and CDR3β lengths, and separately on CDR-H3 sequences from B cells with identical IGHV 511 

genes, IGHJ genes, and CDR-H3 lengths, as described previously14. Nearest-neighbor clusters were iteratively 512 

merged if any cross-cluster pairs had high sequence identity: at least 90% for CDR3β or 85% for CDR-H3, 513 

allowing for somatic hypermutation in B cells, as measured by string substitution distance (normalized 514 

Hamming distance). 515 

Filter to BCR and TCR disease-specific enriched clusters: For each sequence cluster found in a cross-516 

validation fold’s training set, we performed a Fisher’s exact test using a two-by-two contingency table denoting 517 

how many unique people have a particular disease and have some receptor sequences fall into the cluster. In 518 

other words, each cluster’s p-value from the Fisher’s exact test denotes the cluster’s enrichment for a particular 519 

disease. This approach is consistent with prior work that selects a set of disease-specific enriched sequences, 520 

then counts exact matches to this sequence set in new samples13. Given a p-value threshold, the full list of 521 

training set clusters was filtered to clusters specific for each disease type. We performed all the following 522 

featurization and model fitting steps for p-values ranging from 0.0005 to 0.05, then selected the p-value that led 523 

to the highest validation set performance as measured by the Matthews correlation coefficient (MCC) score, a 524 

classification performance metric that is well-suited to imbalanced datasets77. The final chosen p-values 525 

differed depending on the cross-validation fold and the receptor type (i.e. BCR or TCR).    526 

Compute BCR and TCR cluster membership feature vectors for each sample: For each selected enriched 527 

cluster, we created a cluster centroid — a single consensus sequence. Recall that each cluster member is a 528 

clone from which only the most abundant sequence was sampled. Rather than having each cluster member 529 

contribute equally to the consensus centroid sequence, contributions at each position were weighted by clone 530 

size: the number of unique BCR or TCR sequences originally part of each clone. Sequences from a sample 531 

were then matched to these predictive cluster centroids. In order to be assigned, a sequence must have the 532 

same IGHV/TRBV gene, IGHJ/TRBJ gene, and CDR-H3/CDR3β length as the candidate cluster, and must 533 

have at least 85% (BCR) or 90% (TCR) sequence identity with the consensus sequence representing the 534 
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cluster’s centroid. After assigning sequences to clusters, we counted cluster memberships across all 535 

sequences from each sample. Cluster membership counts were arranged as a feature vector for each sample: 536 

a sample’s count for a particular disease was defined as the number of disease-enriched clusters into which 537 

some sequences from the sample were matched. This featurization captures the presence or absence of 538 

convergent T cell receptor or immunoglobulin sequences (separated by locus, but without regard for IgH 539 

isotypes). 540 

Fit and evaluate model for each locus: Features were standardized, then used to fit separate BCR and 541 

TCR linear logistic regression models with L1 regularization and balanced class weights (inversely proportional 542 

to input class frequencies). The featurizations and models were fitted on each training set and applied to the 543 

corresponding test set.  544 

We abstained from prediction if a sample had no sequences fall into a predictive cluster; this indicated no 545 

evidence was found for any particular class. Abstentions hurt accuracy and MCC scores, but were not included 546 

in the AUC calculation, since no predicted class probabilities are available for abstained samples. Fewer than 547 

2.5% of samples resulted in abstention (Supplementary Table 3). 548 

Language model representations for immune receptors 549 

We combined the CDR-H1/CDR1β, CDR-H2/CDR2β, and CDR-H3/CDR3β segments of each receptor 550 

sequence, then embedded the concatenated amino acid strings with the UniRep neural network, using the jax-551 

unirep v2.1.0 implementation78. A final 1900-dimensional vector representation was calculated by averaging 552 

UniRep’s hidden state over the original protein’s length dimension44.  553 

To embed sequences, we used weights fine-tuned on a subset of each cross-validation fold’s training set, 554 

yielding a total of six fine-tuned models: one per fold and gene locus. We chose the weights that minimized 555 

cross-entropy loss on a subset of the held-out validation set. For example, we fine-tuned UniRep on fold 1’s 556 

BCR training set until reaching minimal cross-entropy loss on fold 1’s BCR validation set. (We used subsets 557 

here due to computational resource constraints.) 558 
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The fine-tuning procedure was unsupervised. Besides the raw CDR1+2+3 sequence, no disease or other 559 

class labels were provided during fine-tuning. As a result, the fine-tuned language models are specialized to B 560 

or T cell receptor patterns, but not hyper-specialized to the disease classification problem. They can be applied 561 

to other immune sequence prediction tasks.  562 

Model 3: Disease classifier using language model embeddings 563 

The analysis pipeline for classifying disease with language model embeddings of sequences is complex, 564 

but necessarily so because it aggregates individual sequence data to generate patient-level predictions. 565 

Train sequence-level disease classifier: First, we trained lasso classification models to map sequences to 566 

disease labels — one model per fold and per locus. As input data, we used fine-tuned UniRep embeddings 567 

(standardized to zero mean and unit variance), along with categorical dummy variables representing the IGHV 568 

gene and isotype of each BCR sequence or the TRBV gene of each TCR sequence. 569 

Making predictions for individual sequences before aggregating to a patient-level prediction has 570 

interpretation benefits, but the two-stage approach introduces a new challenge. The available ground truth data 571 

associates patients, not sequences, with disease states. We do not know which of their sequences are truly 572 

disease related. To train the individual-sequence-level model, we provided noisy sequence labels derived from 573 

patient global immune status. But this transfer creates very noisy labels: even at the peak-disease timepoints 574 

in our dataset, disease-specific immune receptor patterns nevertheless represent just a small subset of a 575 

patient’s vast immune receptor repertoire. Our approach must account for unreliable sequence labels and 576 

choose the right subset of sequences to make a patient-level decision.  577 

We used highly regularized statistical models equipped to withstand the noisy training labels created by 578 

transferring patient labels to the sequence-level prediction task. The lasso’s L1 penalty encouraged sparsity 579 

among the ~2000 input features79. Because isotype use varies from person to person, we trained the 580 

sequence-level BCR model with isotype weights to account for this imbalance.  581 
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Aggregate sequence predictions to sample prediction: Since we have no true sequence labels, we cannot 582 

evaluate classification performance for the sequence-level classifier. Instead, we aggregated BCR or TCR 583 

sequence predictions into a patient sample-level prediction, by the following procedure. 584 

Given a sample with n sequences, each of which has k predicted probabilities (one predicted probability for 585 

each of the k disease classes), in the form of a [n x k] matrix: 586 

For each class among the k classes: 587 

1. Sort the n sequence-level predicted probabilities in ascending order. This represents a list of 588 

each sequence’s predicted probability of belonging to the disease class in question. 589 

2. Trim the top and bottom 10% of sequence probabilities. This means that we will remove the 590 

10% of sequence-level probabilities that have the lowest predicted probability and the 10% of 591 

sequence-level probabilities that have the highest predicted probability. 592 

3. Calculate a weighted mean of the trimmed probabilities. In other words, we calculate the 593 

average probability of the remaining sequence-level probabilities, where the weight of each probability 594 

is inversely proportional to its isotype prevalence. (This way, minority isotype signal is not drowned out.) 595 

Re-normalize the trimmed weighted mean probabilities to sum to 1. This means that we will divide each 596 

probability by the sum of all probabilities, so that the probabilities add up to 1. 597 

This procedure gives the final k-dimensional predicted disease class probabilities vector for the sample. 598 

The vector contains the predicted probability of each disease class for the given sample. 599 

Evaluate classifier: Finally, we evaluated the sequence-prediction-aggregating predictor on the test set. 600 

Each test sample’s sequences were scored then combined with a trimmed mean to arrive at final predicted 601 

sample labels. Ground truth sample disease status is known, so we could evaluate classification performance 602 

here, unlike at the sequence-level prediction stage. 603 
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Ensemble metamodel 604 

After training repertoire composition, CDR3 clustering, and language model embedding and aggregation 605 

models on each fold’s training set, we combined the classifiers with an ensemble strategy. For each fold, we 606 

ran all trained base classifiers on the validation set, and concatenated the resulting predicted class probability 607 

vectors from each base model. We carried over any sample abstentions from the CDR3 clustering model (the 608 

other models do not abstain). Finally, we trained a random forest classification metamodel to map the 609 

combined predicted probability vectors to validation set sample disease labels. We evaluated this metamodel 610 

on the held-out test set. To evaluate feature contributions to predictions of each immune state class, we also fit 611 

an alternate elastic net logistic regression metamodel with the same input features. To arrive at a meaningful 612 

set of coefficients from the elastic net regularization’s coefficient shrinkage and feature selection80, we tuned 613 

the regularization strength hyperparameter with internal cross-validation using the glmnet library, again with 614 

multinomial loss and balanced class weights. This internal cross-validation also respected participant labels in 615 

the splits, as in the overall cross-validation design above. All variants of the ensemble metamodel perform 616 

similarly (Supplementary Figure 4). 617 

Batch effect evaluation 618 

Having integrated many datasets in this study, we sought to test whether our disease classification 619 

performance was driven by technical differences between batches of library preparation or sequencing 620 

instrument run. It would be expected in any study of human cohorts to identify some batch effects, given the 621 

difficulty of collecting identical samples in identical manner, at identical severity and timepoints, from patients 622 

suffering from diseases that appear in different populations at different frequencies. Notably, the IgH data 623 

collected for individual participants in this study were typically based on multiple Illumina MiSeq sequencer 624 

runs, and were combined prior to analysis. Many of our sequencing run batches included only one disease 625 

type, but batches that included both diseased and healthy controls from the same population permitted 626 

accurate classification of the disease or healthy state, for example, with classification of HIV-infected patients 627 

and healthy controls that were sequenced together in the same batch, or SLE patients and healthy controls 628 

sequenced in the same batch.  629 
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Acknowledging that there were biological differences between many sequencing batches that were 630 

enriched for a particular disease state, and that several sequencer runs were performed for some sample sets, 631 

we evaluated the potential impact of these batch differences using the language model embeddings of BCR 632 

and TCR repertoires from the disease types found in multiple batches: Covid-19 patients, SLE patients, and 633 

healthy donors. We applied the kBET batch effect metric from the single cell sequencing literature81,82. kBET 634 

measures whether cells from many batches are well-mixed by comparing the batch label distribution among 635 

each cell’s neighbors to the global distribution. In place of cells described by gene expression vectors, we have 636 

sequences described by language model embedding features. We measured kBET for every disease in every 637 

test set fold and in both BCR and TCR data. For example, we constructed a k-nearest neighbors graph (k = 638 

50) with all BCR sequences from Covid-19 patients in test fold 1. We performed chi-squared tests for the 639 

difference between the batch label distribution among each sequence’s 50 nearest neighbors and the expected 640 

distribution from the total number of sequences belonging to each batch in the entire graph. After multiple 641 

hypothesis correction with a significance threshold of p=0.05, we measured the number of sequences for 642 

which we could reject the null hypothesis that the local neighborhood batch distribution is the same as the 643 

global batch distribution. Aggregating these results by disease across gene loci and folds, we see that the null 644 

hypothesis is rejected for only 17.1% of sequences on average, suggesting that the sequence data in the 645 

graph are well mixed according to batch (Supplementary Table 7). The average rejection rate is higher for 646 

Covid-19 BCR sequences at 34.1%, which may be influenced by disease severity differences between cohorts 647 

(Supplementary Table 1). Time point differences between batches may also have an effect on kBET metrics 648 

for acute diseases like Covid-19. At earlier time points, Covid-19 patient repertoires may include more healthy 649 

background sequences, leading to a different batch overlap graph in comparison to how batches compare after 650 

clonal expansion of Covid-19 responding sequences. Overall, these results suggest that most sequences have 651 

well-mixed batch proportions amongst their nearest neighbors. 652 

Validation on external cohorts 653 

The best test of whether our model has learned true biological signal as opposed to batch effects is 654 

whether our model generalizes to unseen data from other cohorts. For the purposes of evaluating external 655 
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cohorts, rather than using models trained on our cross-validation divisions of the data, we trained a set of 656 

“global” models incorporating all Mal-ID data without holding out a test set (Supplementary Figure 1). This 657 

included training “global” fine-tuned BCR and TCR language models. To train the ensemble metamodel, we 658 

still held out a validation set, with a ratio of training set to validation set size equivalent to the ratio used in the 659 

cross-validation regime. 660 

We downloaded data from other BCR and TCR Covid-19 patient and healthy donor repertoire studies with 661 

cDNA sequencing51,52,83–86. For the acute Covid-19 cases, we selected peak timepoint samples at least two 662 

weeks after symptom onset, after which time we would expect seroconversion40. We reprocessed sequences 663 

through the same version of IgBLAST and IgBLAST reference data as used for the primary Mal-ID cohorts, to 664 

ensure consistent gene nomenclature. (This was not possible for the Britanova et al. datasets51,52 because the 665 

raw sequences were unavailable, so we used their gene calls and confirmed the naming was consistent with 666 

our training data, especially for indistinguishable TRBV genes TRBV6-2/6-3 and TRBV12-3/12-4.) As with the 667 

core Mal-ID cohort, we filled in TCR CDR1β and CDR2β sequences using TRBV reference sequences 668 

downloaded from IMGT. We embedded productive CDR1+2+3 sequences with the global fine-tuned language 669 

models, then processed the downloaded repertoires through the entire Mal-ID model architecture.  670 

For comparison, we repeated this analysis by downloading Covid-19 patient and healthy donor TCR 671 

repertoire data collected with the Adaptive Biotechnologies sequencing protocol13,72, which we reprocessed 672 

with the same IgBLAST version as above, for consistency. We filtered to acute Covid-19 cases sampled 673 

between 11 and 21 days after symptom onset with no recorded immunosuppression, cancer, autoimmune 674 

disease, or other comorbidities. The number of healthy control repertoires was very large, so we sampled the 675 

same number of healthy samples as the total number of selected Covid-19 samples.  676 

Predicting demographic information from healthy subject repertoires 677 

We repeated the above process to predict age, sex, or ancestry instead of disease. Input data was limited 678 

to healthy controls to avoid learning any disease-specific patterns. To cast this as a classification problem, age 679 

was discretized either into deciles or as a binary “under 50 years old” / “50 or older” variable. Only one healthy 680 
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control individual was over 80 years old, therefore our data do not assess repertoire changes at more extreme 681 

older ages. We excluded the healthy individual over 80 years old from the analysis. 682 

For each of the three demographic prediction tasks, we trained the full BCR+TCR Mal-ID architecture on all 683 

cross-validation folds. We note that we did not explicitly introduce data from allelic variant typing in germline 684 

IGHV, IGHD, or IGHJ gene segments or in HLA genes into our models, but such data could be expected to 685 

increase detection of ancestry in such datasets.  686 

Evaluating predictive power of potential demographic confounding variables 687 

We retrained the entire Mal-ID disease-prediction set of models on the subset of individuals with known 688 

age, sex, and ancestry. (As above, we excluded any individuals over 80 years old.) Additionally, we regressed 689 

out those demographic variables from the feature matrix used as input to the ensemble step. Specifically, we fit 690 

a linear regression for each column of the feature matrix, to predict the column’s values from age, sex, and 691 

ancestry. The feature matrix column was then replaced by the fitted model’s residuals. This procedure 692 

orthogonalizes or decorrelates the metamodel’s feature matrix from age, sex, and ancestry effects. We 693 

regressed out covariates at the metamodel stage because it is a sample-level, not sequence-level model, and 694 

age/sex/ancestry demographic information is tied to samples rather than sequences.  695 

Separately, we also trained models to predict disease from either age, sex, or ancestry information 696 

encoded as categorical dummy variables. Here, no sequence information was provided as input. The best-697 

performing model in each case ranged from a linear SVM, to a linear logistic regression model with elastic net 698 

regularization, to a random forest model. Finally, we trained metamodels with both demographic features and 699 

sequence features, along with interaction terms between the demographic and sequence features to allow for 700 

interaction effects. Comparing the performance of these models to the demographics-only models shows the 701 

added value of adding sequence information.  702 
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Model ranking of disease-specific sequences 703 

In each test set, we scored Covid-19 patient-originating sequences with the sequence-level classifier based 704 

on language model embeddings. Predicted Covid-19 class probabilities were combined for all sequences 705 

across folds. Some sequences were seen in multiple people, appearing in more than one test fold and thus 706 

receiving a different predicted probability from each fold’s model. We deduplicated these sequences by 707 

choosing the copy with highest predicted disease class probability, to capture just how disease-related the 708 

sequence could be. Then sequences were ranked by their predicted probability, and ranks were rescaled from 709 

0 to 1 (highest original probability). We repeated this process for other diseases. 710 

Using these ranked sequence lists, we examined the relationship between rank and sequence properties 711 

like CDR-H3/CDR3β length, isotype, and IGHV/TRBV gene segment. For the V gene usage comparison 712 

(Figure 3), V genes with very low prevalence were removed. To set a prevalence threshold, we found the 713 

greatest proportion each V gene ever comprises of any cohort, and took the median of these proportions 714 

(Supplementary Figure 14). The following rare IGHV and TRBV genes were filtered out (half of the totals): 715 

IGHV1-45, IGHV1-68, IGHV1-69D, IGHV1-f, IGHV1/OR15-1, IGHV1/OR15-2, IGHV1/OR15-3, IGHV1/OR15-4, 716 

IGHV2-10, IGHV2-26, IGHV2-70D, IGHV3-16, IGHV3-19, IGHV3-22, IGHV3-35, IGHV3-38, IGHV3-43D, 717 

IGHV3-47, IGHV3-52, IGHV3-64D, IGHV3-71, IGHV3-72, IGHV3-73, IGHV3-NL1, IGHV3-d, IGHV3-h, 718 

IGHV3/OR16-10, IGHV3/OR16-13, IGHV3/OR16-8, IGHV3/OR16-9, IGHV4-28, IGHV4-55, IGHV4/OR15-8, 719 

IGHV5-78, IGHV7-81, VH1-17P, VH1-67P, VH3-41P, VH3-60P, VH3-65P, VH7-27P; TRBV10-1, TRBV11-1, 720 

TRBV11-3, TRBV12-2, TRBV12-5, TRBV13, TRBV15, TRBV16, TRBV17, TRBV20/OR9-2, TRBV26, TRBV27, 721 

TRBV29/OR9-2, TRBV3-1, TRBV3-2, TRBV4-1, TRBV4-2, TRBV4-3, TRBV5-3, TRBV5-7, TRBV5-8, TRBV6-722 

4, TRBV6-7, TRBV6-8, TRBV6-9, TRBV7-1, TRBV7-4, TRBV7-7. Most V genes remaining after this filter had 723 

consistent, balanced prevalence across cohorts (Supplementary Figure 15).  724 

Model ranking of known SARS-CoV-2 binder sequences 725 

We downloaded the July 26, 2022 version of CoV-AbDab71, and reprocessed these B cell receptor heavy 726 

chain sequences through the same version of IgBLAST as used for our primary cohorts to ensure consistent V 727 
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gene nomenclature. We filtered to antibody sequences known to bind to SARS-CoV-2 (including weak 728 

binders), and selected sequences from human patients or human antibody libraries. We clustered the 729 

remaining SARS-CoV-2 binders from CoV-AbDab with identical IGHV gene, IGHJ gene, and CDR-H3 lengths 730 

and at least 95% sequence identity, using single linkage clustering as in the pipeline for our primary cohorts. 731 

As a result, several related sequences were combined and replaced by a consensus sequence. 732 

Similarly, we downloaded the ImmuneCode MIRA database72, version 002.1, and reprocessed these T cell 733 

receptor beta chain sequences with our pipeline’s standard IgBLAST version for consistent V gene 734 

nomenclature. By the same logic as above, we filtered to productive sequences from patients with acute Covid-735 

19, and also to only the TRBV genes present in our dataset, as any others would not be compatible with the 736 

sequence model, which uses V gene segment identity as a feature. Among the remaining SARS-CoV-2 737 

associated sequences, we deduplicated those with identical TRBV genes, TRBJ genes, and CDR3β 738 

sequences. 739 

We calculated the probability that each sequence was associated with the Covid-19 class, using a single 740 

cross-validation fold’s sequence model (since probabilities may not necessarily be comparable across folds). 741 

Since isotype designations were not available in the CoV-AbDab dataset, we scored each CoV-AbDab 742 

sequence with all possible isotype settings and kept the version with highest predicted Covid-19 probability, in 743 

order to assess the strength of a sequence’s relationship to the disease. Then we scored healthy donor 744 

sequences from the held-out test set of the same cross-validation fold, ensuring that they were not used to 745 

train the model. The Covid-19 class probabilities were converted to ranks, and then we calculated AUC scores 746 

using model rankings versus which BCR or TCR sequences matched the external databases.  747 

We also generated sequence rankings with the CDR3 clustering model from the same cross-validation fold 748 

for comparison. For each known binder and healthy donor CDR3 sequence, we computed the Hamming 749 

distance to its nearest Covid-19 associated cluster centroid with the same V gene, J gene, and CDR3 length 750 

(because the model only forms clusters among sequences with these matching clonal parameters). These 751 

distances were ranked, assigning highest rank (1.0) to the shortest distance, consistent with the previous 752 
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analysis. However, many query sequences were infinitely far from any Covid-19 associated cluster centroid. 753 

That is, when selecting a list of clusters predictive of the Covid-19 class, the CDR3 clustering model did not 754 

choose any clusters with the same V genes, J genes, and CDR3 lengths as these query sequences. 755 

Accordingly, they were assigned the worst rank (0.0), indicating these sequences displayed no evidence of 756 

disease association according to the clustering model. We computed AUCs of rank versus known binder 757 

identity as in the prior analysis. 758 

Repertoire visualization 759 

For each receptor, the lasso sequence model gives predicted class logits, which are proportional to the dot 760 

product of the embedded sequence vector and the model coefficients. In other words, this linear transformation 761 

applies the coefficients as weights on the input features, creating a sequences-by-classes matrix. To create a 762 

2D visualization, we then ran UMAP on the per-disease-state (i.e. per-class) logits for each sequence. We 763 

provided sequence labels as supervision to the UMAP so they are less likely to be distorted in the layout87. 764 

We created a reference UMAP for each fold and each locus using a subset of training set sequences likely 765 

to be related to each disease state (or healthy). We selected this subset of sequences with the following filters: 766 

First, to form the subset of sequences for a particular disease class, we only considered sequences that 767 

originated from a patient with that disease. Otherwise, the sequence could not plausibly be related to that 768 

disease. It would not make sense for a Covid-19 representative sequence to come from an HIV patient, for 769 

example. 770 

Second, the lasso sequence model’s prediction for this sequence must match the disease class, as well. 771 

After all, we are constructing a reference layout of disease-specific sequences, so we should only include 772 

sequences the model has classified into the disease class. Similarly, we only consider sequences from the 773 

healthy class that originated from a healthy subject and are predicted to belong to that class.  774 

Third, we excluded sequences whose predictions were close calls. We wish to avoid these borderline 775 

sequences in the construction of the reference map, especially because of the high label noise that results 776 
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from imputing sequence labels from patient disease status (as described earlier). Therefore, we filtered 777 

potential sequences to those with predicted disease class probability at least 0.05 greater than probabilities 778 

predicted for any other class. 779 

Finally, we sorted the remaining candidate sequences for each disease by their predicted probability of 780 

belonging to that disease state, and kept the top 30% to create a succinct pool of reference sequences for 781 

each class. We subselected 10,000 of these selected sequences for each class, to arrive at a uniform number 782 

of “reference” (i.e. very class associated) sequences for each class (i.e. for each disease and for the healthy 783 

class). The per-class logits for only these sequences were used to construct a UMAP. 784 

Once the UMAP was constructed, we projected held-out sequences into the layout. For a given held-out 785 

test patient, we computed supervised embeddings (per-class logits) for each sequence using the sequence-786 

level lasso model, and applied the trained UMAP transformation to produce 2D coordinates, using the model 787 

and UMAP transformations belonging to the fold where the patient was in the held-out test set. The patient’s 788 

repertoire was filtered to sequences whose predicted labels match the overall sample prediction by the 789 

ensemble metamodel, or sequences predicted to be “healthy/background”. As a result, the visualization 790 

included both the healthy and disease related components of this patient’s B cell repertoire. We sorted the 791 

remaining sequences by their predicted class probability, and kept the top 30% of the sorted list across 792 

Healthy/Background and the overall sample predicted label class. 793 

Data availability 794 

Data will be deposited online. 795 

Code availability 796 

Code will be deposited online.  797 
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Supplementary Information 848 

Immune 
state Cohort Sample 

type Patient and clone counts Demographics 

Acute 
Covid-19 

Hospital inpatients, 
ranging from 7 to 37 
days after symptom 
onset 

Whole blood 
RNA 
(Paxgene 
tubes) 

48 patients (31% in ICU) 
48 samples 
403562 IgH clones 
654000 TRB clones 

58% Hispanic/Latino, 17% Asian, 17% 
Caucasian, 2% African, 6% unknown 
 
Median age 44.5 years old; range 21 to 
86 
 
52% female 

Hospital inpatients, 
CoV2+ IgG 
seroconverted, ranging 
from 9 to 35 days after 
symptom onset40 

PBMC RNA 
10 patients (70% in ICU) 
10 samples 
256655 IgH clones 
193568 TRB clones 

Ethnicities unknown 
 
Median age 65 years old; range 36 to 
88 
 
60% female 

Hospital inpatients, 
ranging from 8 to 37 
days after symptom 
onset 
(BCR only) 

PBMC RNA 
5 patients 
5 samples 
276076 IgH clones 

40% Caucasian, 20% African, 20% 
Asian, 20% unknown 
 
Median age 57 years old; range 26 to 
73 
 
40% female 

Lupus 

Adult lupus 
(BCR only) PBMC RNA 

23 patients (69% have multiple 
autoantibodies; 22% nephritis, 
35% no nephritis, 43% unknown 
nephritis status) 
34 samples 
520355 IgH clones 

52% Caucasian, 39% African, 9% 
unknown 
 
Median age 36 years old; range 21 to 
71 (with two unknown) 
 
95% female (not counting 2 patients of 
unknown sex) 

Pediatric lupus, 
untreated 

Whole blood 
RNA 
(Tempus 
tubes) 

43 patients (53% have nephritis) 
43 samples 
2256194 IgH clones 
2362725 TRB clones 

35% Asian, 28% Caucasian, 28% 
Hispanic/Latino, 7% African, 2% 
unknown 
 
Median age 13 years old; range 7 to 18 
 
74% female 

Adult lupus PBMC RNA 

15 patients 
16 samples 
296828 IgH clones 
520543 TRB clones 

80% Caucasian, 7% African, 7% Asian, 
7% Hispanic/Latino 
 
Median age 42 years old; range 21 to 
68 
 
93% female 

Adult lupus 
Whole blood 
RNA 
(Paxgene 
tubes) 

5 patients 
5 samples 
286755 IgH clones 
740123 TRB clones 

60% African, 20% Asian, 20% 
Caucasian 
 
Median age 46 years old; range 34 to 
51 
 
100% female 
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Immune 
state Cohort Sample 

type Patient and clone counts Demographics 

HIV-1 Primary cohort14 PBMC RNA 

95 patients (47% make broadly 
neutralizing Abs) 
98 samples 
2762764 IgH clones 
3164681 TRB clones 

89% African, 11% unknown 
 
Median age 31 years old; range 19 to 
64 
 
64% female 

Healthy 
donors  

Primary adult cohort88 PBMC RNA 

102 healthy donors 
102 samples 
4740876 IgH clones 
5803482 TRB clones 

70% Caucasian, 24% Asian, 5% 
Hispanic/Latino, 1% African, 1% 
unknown 
 
Median age 51.5 years old; range 17 to 
81 
 
43% female 

HIV negative14 PBMC RNA 
43 healthy donors 
43 samples 
832374 IgH clones 
1472515 TRB clones 

65% African, 35% unknown 
 
Median age 27 years old; range 20 to 
51 
 
51% female 

Lupus negative 
(BCR only) PBMC RNA 

23 healthy donors 
27 samples 
365431 IgH clones 

52% African, 43% Caucasian, 4% 
unknown 
 
Median age 42.5 years old; range 24 to 
70 (with one unknown) 
 
86% female (not counting 1 individual 
of unknown sex) 

Lupus negative PBMC RNA 

4 healthy donors 
4 samples 
125576 IgH clones 
107635 TRB clones 

All Caucasian 
 
Median age 49 years old; range 33 to 
67 
 
75% female 

Lupus negative 

Whole blood 
RNA 
(Paxgene 
tubes) 

2 healthy donors 
2 samples 
117351 IgH clones 
377830 TRB clones 

50% Caucasian, 50% African 
 
Median age 47.5 years old; range 47 to 
48 
 
0% female 

Pediatric control cohort PBMC RNA 

43 healthy donors 
43 samples 
1134937 IgH clones 
3834725 TRB clones 

51% Caucasian, 19% Asian, 2% 
Hispanic/Latino, 28% unknown 
 
Median age 13 years old; range 8 to 18 
 
49% female 

Supplementary Table 1: Cohort and batch info for 461 individuals with a total of 480 samples. 414 of the 849 

480 samples had both BCR and TCR sequencing performed, representing 410 of the total 461 850 

individuals. The remainder only underwent BCR IgH sequencing.  851 
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 852 

Strategy applied to predicted 
class probability vectors for all 

sequences in a sample 
BCR ROC AUC TCR ROC AUC 

Trimmed mean from top and bottom 
(2.5%, 5%, 10% trimming) 0.842 +/- 0.015 0.885 +/- 0.015 

Trimmed mean from bottom only 
(2.5%, 5%, 10% trimming) 0.858 +/- 0.010 0.885 +/- 0.014 

Mean (untrimmed) 0.862 +/- 0.010 0.883 +/- 0.015 

Weighted median 0.855 +/- 0.010 0.885 +/- 0.018 

Entropy threshold 
(1.2, 1.3) 0.846 +/- 0.019 0.731 +/- 0.076 

 853 

Supplementary Table 2: Validation set performance of various aggregation strategies of Model 3 854 

predictions for individual sequences to predictions of an entire repertoire, showing that many approaches 855 

perform similarly. 856 

We report average and standard deviation across three folds for the following strategies: trimming by 857 

different amounts ranging from 2.5% to 10%, trimming only from the bottom end of the probability 858 

distribution, not trimming at all (i.e. taking a standard mean), computing a weighted median (the weights 859 

being adjustments for isotype proportions, as described in Methods), and using entropy thresholds to 860 

exclude close call sequences (those who have roughly equal predicted probabilities for all classes) from 861 

aggregation. Note that an entropy threshold of 1.4 or higher would apply no filtering to four-class 862 

predicted probability vectors.  863 
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Strategy Locus Accuracy ROC AUC auPRC Abstention 
rate 

Global repertoire statistics 
(Model 1) 

BCR 81.2% 0.939 0.938 0% 

TCR 76.1% 0.940 0.927 0% 

CDR3 sequence clustering 
(Model 2) 

BCR  74.4% 0.926 0.927 2.3% 

TCR 70.1% 0.885 0.879 0.2% 

Language model embedding and 
classification 
(Model 3) 

BCR 68.8% 

0.829 
 
(0.856 if allowed 
2.3% abstention) 

0.835 
 
(0.857 if allowed 
2.3% abstention) 

0% 

TCR 71.0% 

0.881 
 
(0.883 if allowed 
0.2% abstention) 

0.857 
 
(0.858 if allowed 
0.2% abstention) 

0% 

Ensemble of all models 
(random forest) 

BCR 83.1% 0.959 0.954 2.3% 

TCR 77.3% 0.947 0.939 0.2% 

BCR + TCR 
(Figure 2a) 88.6% 0.981 0.976 1.7% 

Supplementary Table 3: Average cross-validated test set performance on 480 BCR samples, 414 TCR 864 

samples, or 414 BCR + TCR samples. auPRC stands for area under the precision-recall curve. 865 

Abstentions hurt accuracy scores (they count as incorrect predictions), but are not included in the 866 

calculation of probability-based metrics ROC AUC and auPRC, because no predicted class probabilities 867 

are generated for abstained samples. For a fairer comparison of models 2 and 3, we also calculated how 868 

much model 3’s ROC AUC might increase if model 3 was allowed the same number of abstentions as 869 

model 2, by post-hoc excluding the 2.3% or 0.2% worst model 3 predictions in the BCR and TCR cases, 870 

respectively.  871 
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Locus Covid-19 cohort Healthy donor cohort Accuracy  ROC AUC auPRC Abstention 
rate 

BCR 7 samples from Kim et 
al, 202183 

6 healthy samples from 
Briney et al, 201984 100% 1.0 1.0 0% 

TCR 
17 samples from 
Shomuradova et al, 
202085 

39 healthy samples from 
Britanova et al, 2014 and 
201651,52 

85.7% 0.995 0.998 0% 

 872 

Supplementary Table 4: External validation cohort performance using BCR-only or TCR-only random 873 

forest metamodels.   874 
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Input Prediction target Accuracy ROC AUC 

BCR+TCR sequence 
features from 165 healthy 
samples 

Sex 47.3% 
(7.3% abstentions) 0.546 

Ancestry 51.5% 
(4.2% abstentions) 0.752 

Age (<20, 20-30, …, 70-80) 37.0% 
(17.6% abstentions) 0.696 

Age (under 50, 50 or older) 58.8% 
(13.3% abstentions) 0.748 

BCR+TCR sequence 
features from 109 healthy 
samples 

Age (under 18, 18 or older) 78.0% 
(17.4% abstentions) 0.989 

 875 

Supplementary Table 5: Model performance for predicting age, sex, and ancestry of healthy individuals 876 

with known demographics, retraining the full Mal-ID BCR+TCR ensemble architecture for each task. To 877 

cast age as a classification problem, the continuous variable was discretized either into deciles or at a 50-878 

year threshold. We report held-out test set performance, averaged over three cross-validation folds, from 879 

the model architecture (random forest, lasso logistic regression, or linear support vector machine) with 880 

highest ROC AUC. Abstentions hurt accuracy scores (they count as incorrect predictions), but are not 881 

included in the calculation of the probability-based AUC metric, because no predicted class probabilities 882 

are generated for abstained samples. 883 

 884 

The pediatric vs adult age classification is reported for two cross-validation folds, not three as for the 885 

other analyses. One cross-validation fold was removed because the BCR CDR3 clustering component 886 

(Model 2) abstained on enough of the fold's validation set that only examples from the "over 18" class 887 

remained for training a metamodel. This absence of "under 18" samples in one fold stems from two 888 

design decisions. First, the validation set includes fewer samples than the train or test sets, and it gets 889 

even smaller after filtering to healthy donors only for this analysis. Second, we use the same cross-890 

validation splits for all analyses; they were designed to split diseases evenly, not ages.  891 
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Input Prediction target Accuracy ROC 
AUC 

Age 

Disease (358 BCR+TCR 
samples from individuals with 
known age, sex, and ancestry) 

46.6% 0.704 

Sex 33.2% 0.579 

Ancestry 56.4% 0.785 

Age, sex, ancestry 66.5% 0.856 

BCR + TCR sequence features, 
age, sex, ancestry, and interaction 
terms between sequence and 
demographic features 

86.6% 
(1.7% abstentions) 0.980 

BCR + TCR sequences features 
with age, sex, and ancestry 
regressed out 

84.1% 
(1.7% abstentions) 0.969 

 892 

Supplementary Table 6: Classification results for disease prediction with demographics-aware variants 893 

of the Mal-ID random forest ensemble model. (When age is incorporated as a feature, it is treated as a 894 

continuous variable.) We report held-out test set performance averaged over three cross-validation folds. 895 

Abstentions hurt accuracy scores (they count as incorrect predictions), but are not included in the 896 

calculation of the probability-based AUC metric, because no predicted class probabilities are generated 897 

for abstained samples.  898 
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Immune state BCR TCR 

Covid-19 0.341 +/- 0.040 0.050 +/- 0.052 

SLE 0.170 +/- 0.078 0.171 +/- 0.032 

Healthy/Background 0.148 +/- 0.033 0.143 +/- 0.041 

 899 

Supplementary Table 7: kBET batch effect measurement of average rejection rate of the null hypothesis 900 

that the batch distribution in a sequence’s local neighborhood is the same as the global batch distribution 901 

(reporting average +/- standard deviation across 3 folds). Values closer to 0 indicate the null hypothesis is 902 

rarely rejected and suggest the batches are well mixed.  903 
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Supplementary Figure 1 904 

 905 

Schematic of cross-validation strategy. In each of three folds, individuals are divided into a train, validation, and 906 

test set; that all sequences from an individual are only in the train, only in the validation, or only in the test set. 907 

We also created a “global fold” to train a final model on the entire dataset, for downstream evaluation on 908 

independent cohorts.   909 
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Supplementary Figure 2 910 

 911 

Fine tuning the UniRep language model on BCR heavy chain and TCR beta chain sequences led to a 912 

reduction in cross entropy loss (i.e. improved performance) on the BCR and TCR datasets, respectively, 913 

without causing an increase (i.e. without hurting performance) on the original UniRep training dataset, called 914 

UniRef5089. Here, we show the result of BCR or TCR fine-tuning for the “global” fold in the Mal-ID cross-915 

validation strategy, with 20 bootstrap samples of 1000 UniRef50 sequences and 1000 Mal-ID global fold 916 

validation set sequences. Extraneous proteins (longer than 2000 amino acids or containing X, B, Z, or J amino 917 

acids) were removed from UniRef50, as in the original UniRep publication44. This result demonstrates that fine-918 

tuning preserves knowledge of global protein patterns learned by base UniRep, i.e. no catastrophic forgetting 919 

occurs.  920 
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Supplementary Figure 3 921 

 922 

The Mal-ID classification pipeline for disease prediction (or other prediction tasks) has two stages.  923 

a, stage one: we fit three models per locus (i.e. three IgH and three TRB models) on a cross-validation fold’s 924 

training set. 925 

b, stage two: we fit a metamodel on the validation set to ensemble the three inner models per locus.  926 
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Supplementary Figure 4 927 

  928 
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Supplementary Figure 4, continued 929 

The Mal-ID ensemble model’s feature importances for disease classification suggests that all feature extraction 930 

approaches contribute, but that immune signals are spread between B and T cell repertoires in different ways 931 

depending on the disease type. 932 

 933 

We show feature importances for the “global fold” (i.e. for the final model fit with the full dataset), in three 934 

different versions of the ensemble model: 935 

a, elastic net logistic regression (AUC 0.982 +/- 0.005 across 3 cross-validation folds); 936 

b, lasso logistic regression (AUC 0.983 +/- 0.005); 937 

c, random forest (AUC 0.981 +/- 0.013), which does not delineate feature contribution to each class. 938 

 939 

Each feature is named for the Mal-ID subcomponent it originated from. For example, “Repertoire composition 940 

(BCR): P(Covid19)” is the feature coefficient for the BCR IgH repertoire composition model’s predicted 941 

probability for the Covid-19 class (all base model predicted class probabilities were concatenated to form the 942 

input to the ensemble model). The random forest (c), unlike the other models, does not have feature 943 

contributions delineated by target class; instead the plot reflects how much each feature contributes to the 944 

overall classification task across all immune states.  945 
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Supplementary Figure 5 946 

  947 
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Supplementary Figure 5, continued 948 

a, External cohorts from sequencing strategies different from the cDNA sequencing approach, such as 949 

Adaptive sequencing13,72, have different V gene usage than the Mal-ID dataset. A UMAP of TRBV gene use 950 

proportions by sample (excluding rare V genes, to avoid disproportionate effects from minute differences in 951 

their proportions) shows that Adaptive cohort V gene use is systematically different from our cohorts. 952 

 953 

b-c, V gene usage proportions of IgH (left panels) and TRB (right panels) repertoires in the Mal-ID dataset, 954 

visualized with UMAP and colored by ancestry (b) or age (c), show that demographic traits are related to V 955 

gene usage trends. (Rare V genes are again excluded.)  956 
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Supplementary Figure 6 957 

  958 
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Supplementary Figure 6, continued 959 

BCR-only (a-b) and TCR-only (c-d) ensemble models show differences in disease classification. Delineating 960 

by the ground truth disease status and ancestry of each sample (b, d) shows that the “Healthy/Background - 961 

African” cohort, a healthy control group corresponding to the HIV cohort and whose members are 962 

predominantly African and live in Africa, is misclassified as HIV by the TCR model, but not by the BCR model. 963 

(The BCR and TCR metamodels have a different total number of samples due to BCR-only cohorts.)  964 
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Supplementary Figure 7 965 

 966 

Metamodel classification performance, delineated by the ground truth disease status and age of each sample, 967 

shows that Mal-ID successfully differentiates between pediatric samples of different immune states. 968 

a, BCR-only metamodel; b, TCR-only metamodel; c, BCR + TCR metamodel. 969 

(The BCR and TCR metamodels have a different total number of samples due to BCR-only cohorts.)  970 
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Supplementary Figure 8 971 

 972 

Demographic covariates have limited impact on disease classification. 973 

a, Metamodel classification performance using only age, sex, and ancestry features, without any sequence 974 

features. 975 

b, Metamodel classification performance using age, sex, and ancestry demographic features, along with 976 

sequence features, and interaction terms between these two sets of features. 977 

c, Metamodel classification performance using sequence features only, with age, sex, and ancestry regressed 978 

out.  979 
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Supplementary Figure 9 980 

a 981 

982 
b 983 

 984 

IGHV or TRBV gene use proportions in healthy control samples, stratified by ancestry, suggest that some V 985 

gene usage is related to ancestry. Average and 95% confidence interval plotted. a, BCR (note higher sample 986 

sizes due to presence of BCR-only cohorts). b, TCR.  987 
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Supplementary Figure 10 988 

 989 

Disease patient-originating TRB sequences, ranked by predicted disease class probability, show high ranks for 990 

certain TRBV genes and for certain CDR3 length patterns reflecting selection.  991 
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Supplementary Figure 11 992 

 993 

Average isotype proportions per sample present in the data (with 95% confidence interval shown, as well) are 994 

different between immune states. Differences in isotype proportions are technical artifacts and are corrected 995 

for in our analysis scheme to ensure that the models do not learn disease classification based on isotype 996 

proportion.  997 
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Supplementary Figure 12 998 

 999 

Disease patient-originating sequences, ranked by predicted disease class probability and grouped by isotype, 1000 

show subtle favoring of particular isotypes for predicting each disease. Significance was tested for each 1001 

isotype pair in each panel. * means p <= 0.05 and **** means p <= 1e-4 by two-sided Wilcoxon rank-sum test, 1002 

with Bonferroni multiple hypothesis testing correction across all tests in all panels.  1003 
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Supplementary Figure 13 1004 

 1005 

Validated SARS-CoV-2 associated sequences and healthy donor sequences are not well separated when 1006 

ranked by distance to nearest Covid-19 associated cluster found by the CDR3 clustering model. One cross-1007 

validation fold is shown, along with a one-sided Wilcoxon rank-sum test for increased ranks among known 1008 

binder sequences. 1009 

a, IgH sequences: U-statistic = 1.9e9, p < 1e-52. b, TRB sequences: U-statistic = 6.5e10, p = 1.0. 1010 

High rank (ranging up to 1.0) indicates high proximity to Covid-19 associated sequences. The model finds 1011 

clusters among sequences with the same V gene, J gene, and CDR3 length. Therefore, if a query sequence 1012 

has a V gene, J gene, and CDR3 length for which there are no Covid-19 associated clusters, then it is 1013 

considered to have infinite distance from a disease-predictive cluster and zero (worst) rank. The vast majority 1014 

of sequences have zero rank, as a result.  1015 
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Supplementary Figure 14 1016 

a 1017 

  1018 
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Supplementary Figure 14, continued 1019 

b 1020 

 1021 

IGHV and TRBV gene proportions in each disease cohort show that many V genes are rare. We also 1022 

calculated the highest proportion each V gene represents of any disease cohort, and plotted the median of 1023 

these proportions (overlaid dashed line). Rare V genes that did not exceed the purple dashed line in at least 1024 

one disease were then filtered out. a, IGHV; b, TRBV.  1025 
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Supplementary Figure 15 1026 

a 1027 

 1028 
b 1029 

 1030 

Stacked bar plots representing how prevalent each IGHV and TRBV gene is by disease, after filtering out rare 1031 

V genes. a, IGHV; b, TRBV.  1032 
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