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Abstract—The question of whether ultrasound point shear wave elastography can differentiate renal cell carci-
noma (RCC) from angiomyolipoma (AML) is controversial. This study prospectively enrolled 51 patients with 52
renal tumors (42 RCCs, 10 AMLs). We obtained 10 measurements of shear wave velocity (SWV) in the renal
tumor, cortex and medulla. Median SWV was first used to classify RCC versus AML. Next, the prediction accu-
racy of 4 machine learning algorithms—logistic regression, naı̈ve Bayes, quadratic discriminant analysis and
support vector machines (SVMs)—was evaluated, using statistical inputs from the tumor, cortex and com-
bined statistical inputs from tumor, cortex and medulla. After leave-one-out cross validation, models were
evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). Tumor median
SWV performed poorly (AUC = 0.62; p = 0.23). Except logistic regression, all machine learning algorithms
reached statistical significance using combined statistical inputs (AUC = 0.78�0.98; p < 7.1£ 10�3). SVMs
demonstrated 94% accuracy (AUC = 0.98; p = 3.13£ 10�6) and clearly outperformed median SWV in differ-
entiating RCC from AML (p = 2.8£ 10�4). (E-mail: dlrubin@stanford.edu) © 2019 World Federation for
Ultrasound in Medicine & Biology. All rights reserved.
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INTRODUCTION

Frequent imaging has increased the detection and need

for characterizing solid renal lesions. Angiomyolipoma

(AML) is the most common benign solid renal neoplasm

(Jinzaki et al. 2014), and renal cell carcinoma (RCC)

accounts for nearly 90% of all renal malignancies

(Qayyum et al. 2013). Although RCC is usually man-

aged with partial or radical nephrectomy, AML is typi-

cally observed or embolized. Hence, differentiating

between AML and RCC is crucial (Siegel et al. 1996).

Otherwise, unnecessary surgery may be performed in

patients later found to have benign AML. On B-mode

ultrasound, AML is classically hyperechoic with a
ddress correspondence to: Daniel L. Rubin, MD, Department of
ogy, School of Medicine, Stanford University, 1265 Welch
oom X-335, MC 5464, Stanford, CA 94305-562, USA. E-mail:
@stanford.edu

1

well-circumscribed margin and acoustic shadowing.

However, minimal-fat AML may appear isoechoic (Park

2017). Although RCC is most commonly hypoechoic,

32% of RCCs under 3 cm have been found to be hypere-

choic, mimicking AML (Forman et al. 1993). One study

showed that the diagnostic accuracy of grayscale ultra-

sound for small solid lesion characterization was 42%,

increasing to 78% with power Doppler (Jinzaki et al.

1998). Hence, RCC and AML can be difficult to distin-

guish on B-mode ultrasound. These lesions are typically

either followed clinically or further evaluated via com-

puted tomography (CT) or magnetic resonance imaging

(MRI). As part of the standard ultrasound examination,

elastography could help characterize these common

incidental hyperechoic lesions, minimizing unnecessary

follow-up exams and reducing costs.

Ultrasound elastography non-invasively assesses

tissues’ mechanical properties (Sigrist et al. 2017).
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Strain elastography, an earlier technology, uses tissue

displacement in response to compression from the ultra-

sound transducer to generate a strain elastogram, demon-

strating relative tissue stiffness (Garra 2015). Point shear

wave elastography (pSWE), a more recent technology,

uses an acoustic radiation force impulse to transmit con-

trollable longitudinal forces, deforming the tissue and

generating transverse shear waves (Nowicki and

Dobruch-Sobczak 2016). The transducer detects shear

wave velocity (SWV) to measure tissue stiffness.

Advantages of pSWE over strain elastography include

less operator dependence and quantitative SWV meas-

urements.

The results are conflicting and the experience lim-

ited using strain (Keskin et al. 2015; Onur et al. 2015;

Tan et al. 2013) and pSWE (Goya et al. 2015; Lu et al.

2015) to classify between AML and RCC. Using pSWE,

one study showed decent performance with 88% sensi-

tivity and 54% specificity (Goya et al. 2015), another

demonstrated only 48% sensitivity and 33% specificity

(Lu et al. 2015). Recently, there has been increasing

interest in using machine learning in radiology (Erickson

et al. 2017). Machine learning algorithms can make

autonomous predictions (Kohli et al. 2017) and detect

complex patterns imperceptible to humans (Lakhani

et al. 2018).

In the field of ultrasound elastography, machine

learning has been used for chronic liver disease diagno-

sis (Gatos et al. 2017), fibrosis assessment in hepatitis B

patients (Chen et al. 2017), fibrosis assessment in hepati-

tis C patients (Fujimoto et al. 2013; Stoean et al. 2011),

breast cancer diagnosis (Zhang et al. 2016) and thyroid

nodule diagnosis (Ma et al. 2010). For renal lesions,

machine learning using texture analysis on CT images

has been used to differentiate fat-poor AML from RCC

(Feng et al. 2018; Hodgdon et al. 2015), as well as differ-

ent RCC subtypes (Kocak et al. 2018). Deep learning on

CT images was used to differentiate RCC from oncocy-

toma (Coy et al. 2019), as well as RCC from other

benign entities such as AML and cysts (Zhou et al.

2019).

Earlier work has been done on the application of

machine learning to B-mode renal ultrasound. For

instance, a prior study used a support vector machine to

distinguish the following classes on B-mode renal ultra-

sound with 86% accuracy: normal, medical renal disease

and cyst (Subramanya et al. 2015). In fact, multiple stud-

ies have sought to differentiate these 3 classes using var-

ious techniques, such as the dominant Gabor wavelet

features (Raja et al. 2010) and a hybrid fuzzy-neural sys-

tem (Raja et al. 2008). However, machine learning has

not been applied for solid renal lesion characterization

with ultrasound elastography. This is of key clinical util-

ity, as these lesions are often incidentally found on initial
ultrasound, and their characterization could potentially

minimize the time, expense and patient anxiety associ-

ated with follow-up examinations.

The purpose of this study is to demonstrate that

pSWE is accurate in differentiating between RCC and

AML and that machine learning algorithms can better

make this distinction than median shear wave velocity.
MATERIALS ANDMETHODS

Patient population

This prospective, single-center study was approved

by the Stanford University Institutional Review Board

(Stanford, CA) and compliant with the Health Insurance

Portability and Accountability Act. All patients provided

signed informed consent. From February 2014 to May

2016, patients scheduled for renal surgery—who were

diagnosed with a solid renal mass—were enrolled, as

well as additional patients with confirmed AML based

on CT and MRI. A total of 58 patients consented. The

following patients were excluded (Fig. 1): renal tumor

other than RCC and AML (oncocytoma); RCC not con-

firmed by surgical pathology; AML not confirmed by

pathology, CT or MRI; failure to undergo elastography

(one for tumor depth, one for tumor excision before elas-

tography could be performed); incomplete pathology

(RCC and AML in the same kidney so pathology could

not be matched one to one); or incomplete measurements

(medulla not measured). After applying the exclusion

criteria, 51 patients with 52 renal tumors remained. All

RCCs were confirmed by surgical pathology. A total of

3 AMLs were confirmed by CT, 5 were confirmed by

MRI and 2 were confirmed by surgery. The study

included 42 RCCs and 10 AMLs (Table 1). There were

33 males (28 RCC, 5 AML) and 18 females (13 RCC,

5 AML). The average age was 57.0 § 13.0 y (range:

16�79) for AML and 56.3 § 7.6 y (range: 26�84) for

RCC. Table 2 summarizes RCC subtypes.
Image acquisition

A certified sonographer or a radiologist (all with at

least 18 mo of experience in clinical ultrasound elastog-

raphy) performed each exam, using an Acuson S2000

(Siemens Medical Solutions, Mountain View, CA, USA)

ultrasound system equipped with the Virtual Touch Tis-

sue Quantification mode and a 6C1 convex array trans-

ducer (Sigrist et al. 2017). Patients were placed in the

neutral or decubitus position, performing breath hold to

reduce motion. Tumors were placed in the center of B-

mode images, minimizing the distance between the

transducer and tumor. The region of interest (ROI) was

placed in solid portions of lesions, avoiding cystic areas

or calcifications. The average depth of renal lesions was

5.7 cm (range: 2.7�8), of cortical measurements was



Fig. 1. Tumors excluded from analysis. Out of the original 59 solid renal tumors, 52 were included and 7 were excluded.
pSWE = point shear wave elastography; RCC = renal cell carcinoma; AML = angiomyolipoma.
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5.2 cm (range: 2.9�8) and of medullary measurements

was 5.7 cm (range: 2.9�8). The average difference in

depth between renal lesions and both cortical and medul-

lary measurements was 1.0 cm. Image quality was opti-

mized by individually adjusting imaging parameters

(depth, focus, gain). The pSWE technique was subse-

quently performed as described in Goya et al. (2015) and

in Lu et al. (2015). Keeping the transducer still, a fixed

box-shaped ROI (10 mm axial by 6 mm lateral) was

placed in the tumor, cortex and medulla, and 10 consecu-
Table 1. Summary of the patient population: Comparing the
AML and RCC groups

Characteristics Angiomyolipoma Renal Cell Carcinoma

Patients (n = 51) 10 41
Age (y) 57.0 § 13.0 [16�79] 56.3 § 7.6 [26�84]
Gender: Male (n = 33) 5 28
Gender: Female (n = 18) 5 13
Diameter (mm) 22.3 § 22.5 [10�85] 34.8 § 14.4 [14�87]
Location: Right (n = 32) 7 25
Location: Left (n = 20) 3 17

Note: Values in brackets represent ranges.
AML = angiomyolipoma; RCC = renal cell carcinoma.

Table 2. Types of tumors included in the study population

Group n Percent (%)

Total 52 100
Renal cell carcinoma 42 80.8

Clear cell type 32 61.5
Papillary type 6 11.5
Chromophobe type 3 5.8
Unclassified 1 1.9

Angiomyolipoma 10 19.2
tive valid measurements of SWV were obtained at each

location (Fig. 2). Examples of AML and RCC are pre-

sented in Fig. 3.
Fig. 2. Parameters under study. For each patient, 10 measure-
ments of shear wave velocity were performed in the tumor, renal
cortex and renal medulla. For each region (tumor, cortex and
medulla), the mean, median, interquartile range and standard devi-
ation of the 10 measurements of shear wave velocity was obtained.



Fig. 3. (a) B-mode and corresponding ultrasound elastography image of an angiomyolipoma. (b) B-mode and elastography
image of a hypoechoic renal cell carcinoma. (c) B-mode and elastography image of a hyperechoic renal cell carcinoma.
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Tumor diameters and SWV measurements were

retrieved from the picture archiving and communication

system (Centricity, GE Healthcare, Chicago, IL, USA).

All 10 measurements of SWV were not always available

from each location. A total of 91.2% of cases involved

exactly 10 measurements, 5.4% of cases involved fewer
and 3.4% of cases involved more. The statistical features

that ultimately served as inputs in machine learning

models were the mean, median, interquartile range and

standard deviation of either the 10 measurements of

SWV or the number of measurements available when

fewer. Additional information (age, gender, pathology



Table 3. Performance of traditional measures and machine
learning in classifying between RCC and AML: Traditional

measures (individual values and ratios)

Region Value ROC AUC

Tumor SWV Median values 0.62
Cortex SWV 0.40
Medulla SWV 0.28
Tumor to cortex Ratio 0.64
Tumor to medulla 0.72

Note: Performance of median SWV and shear wave ratios in predict-
ing RCC versus AML. ROC AUC was relatively low.
RCC= renal cell carcinoma; AML= angiomyolipoma; ROC= receiver

operating characteristic; AUC= area under the curve; SWV= shear wave
velocity.
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diagnosis) was obtained from patient records (Epic Sys-

tems Corporation, Verona, WI, USA).

Statistical analysis

All data analysis was performed in Matlab R2015b

(MathWorks, Natick, MA, USA). We first used median

tumor SWV to classify between RCC and AML. Median

tumor SWV and the true class labels were input into the

Matlab perfcurve function, which recursively examined

performance at various thresholds to generate a receiver

operating characteristic (ROC) curve, used to calculate

the area under the curve (AUC). Next, tumor-to-cortex

shear wave ratio (SWR) and tumor-to-medulla SWR

were evaluated in their ability to differentiate RCC and

AML, again using perfcurve to generate ROC curves

and AUC.

Machine learning

The classification accuracy of 4 supervised machine

learning algorithms for distinguishing between RCC ver-

sus AML was compared, using four statistical measures

of SWV (mean, median, interquartile range and standard

deviation) as inputs: quadratic discriminant analysis (Guo

et al. 2007), logistic regression (Dobson 1990), naı̈ve

Bayes (Hastie et al. 2009) and a non-linear support vector

machine (Sch€olkopf and Smola 2002). We selected these

algorithms because they are commonly used in the litera-

ture. Quadratic discriminant analysis used a pseudo-qua-

dratic transformation. Support vector machines used the

Gaussian radial basis function kernel. The Appendix

presents additional detail about each algorithm.

The machine learning models were separately run,

using 4 sets of inputs. The first set included the 4 statistical

measurements (mean, median, interquartile range and stan-

dard deviation) in the tumor alone; the second set included

the 4 statistical measures in the cortex alone; the third set

included the 4 statistical measures in the medulla alone;

and the fourth set included all 4 statistical measures within

the tumor, cortex and medulla, for a total of 12 features.

Validation was performed using leave-one-out

cross validation (Hastie et al. 2009). During each run,

the training data were used to train the model, and the

Matlab predict function applied this model to the valida-

tion data point to output a score representing the likeli-

hood (posterior probability) that the label came from

each class, RCC or AML. Next, the Matlab perfcurve

function used the scores and true class labels to generate

ROC curves, subsequently used to calculate AUC, sensi-

tivity, specificity, positive and negative predictive value

and accuracy. Hence, the reported ROC AUC values are

from cross validation. Next, the distribution of scores

was compared between RCC and AML via a Wilcoxon

rank-sum test, with p values demonstrating the strength

of class separation. Finally, the statistical significance of
the difference in AUC between ROC curves generated

by different models was calculated using the DeLong

method (DeLong et al. 1988). Supplementary Figure 1

details the machine learning workflow.
RESULTS

Using the median value of 10 SWV measurements

did not show significant differentiation of RCC from

AML with a ROC AUC of 0.62 (p = 0.23; Table 3). The

tumor-to-cortex SWR also did not perform well, with

ROC AUC of 0.64. The tumor-to-medulla ratio had

moderate performance with ROC AUC of 0.72. Supple-

mental Figure 2 shows that the distribution of SWV

measurements for AML and RCC was different, as

SWV measurements are more clustered toward the

median for AML than for RCC. This information would

not be incorporated by using median SWV alone.

Support vector machines demonstrated the highest

level of performance and represented the only machine

learning algorithm that showed statistically significant

separation of scores via the Wilcoxon rank-sum test, using

measurements in the lesion alone (AUC= 0.94;

p = 4.6£ 10�3), the cortex alone (AUC= 0.79;

p = 2.3£ 10�5), or the medulla alone (AUC= 0.84;

p = 1.1£ 10�3; Table 4). Moreover, using the combination

of features within the tumor, cortex and medulla resulted in

the highest level of performance for each machine-learning

algorithm. In fact, using all 12 statistical features, all

machine learning algorithms demonstrated statistically sig-

nificant performance (AUC= 0.78�0.98; p < 7.1£ 10�3)

in separating RCC from AML, except logistic regression

(AUC= 0.71; p = 0.099; Table 4).

Analyzing score separation between RCC and AML

in particular, the median value of SWV within the tumor,

cortex and lesion, respectively, did not demonstrate ade-

quate score separation between the 2 classes (Fig. 4a).

With support vector machines, there was improved score

separation between RCC and AML either using the 4



Table 4. Performance of traditional measures and machine learning in classifying between RCC and AML: Machine learning

Machine learning algorithm ROC AUC with associated p value from rank-sum test

Region Value Logistic p Bayesian p QDA p SVM p

Tumor only Using all four
statistical
measures.

0.57 0.26 0.67 0.097 0.49 0.29 0.94 4.6 E-03
Cortex only 0.65 0.62 0.67 0.11 0.61 0.95 0.79 2.3 E-05
Medulla only 0.66 0.13 0.72 0.032 0.51 0.90 0.84 1.1 E-03
Cortex, tumor and medulla 0.71 0.099 0.78 7.1 E-03 0.9 1.2 E-05 0.98 3.1 E-06

Note: Performance of various machine learning techniques, including logistic regression, Bayesian classification, QDA and SVM, in predicting
RCC versus AML. When all 4 statistical measures (mean, median, IQR, standard deviation) from all 3 regions (lesion, cortex and medulla) were used
to predict RCC versus AML (12 features total), performance was substantially improved, with SVMs performing best. The p values were calculated
using the Wilcoxon rank-sum test comparing the distribution of scores between RCC and AML. Values of p < 0.01 are in bold.

RCC = renal cell carcinoma; AML = angiomyolipoma; ROC = receiver operating characteristic; AUC = area under the curve; QDA = quadratic dis-
criminant analysis; SVM= support vector machines.
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statistical measures in the tumor alone, the cortex alone

or the medulla alone (Fig. 4b, first three columns). How-

ever, the best score separation for support vector

machines occurred when statistical measures were used

from the tumor, cortex and medulla (AUC = 0.98;

p = 3.1£ 10�6; Fig. 4b, fourth column).

Associated ROC curves are presented in Figure 5.

Detailed values of model sensitivity, specificity, positive

and negative predictive value, accuracy and AUC are

presented in Supplementary Table 1. The significance of

the difference in ROC AUC between machine learning

models is presented in Tables 5�8. Support vector

machines demonstrated a significantly different ROC

AUC compared with median SWV when statistical fea-

tures were analyzed in the tumor alone, cortex alone,

medulla alone or all regions.
DISCUSSION

Support vector machines significantly outperformed

median tumor SWV in distinguishing between RCC and

AML. After combining features from the tumor, cortex

and medulla, both support vector machines and quadratic

discriminant analysis demonstrated significantly

improved performance over median SWV, suggesting

that SWV values outside the tumor may contain mean-

ingful diagnostic information. Support vector machines

(SVMs) performed best, and the literature confirms that

non-linear SVMs perform well with high dimensional

data (Ben-Hur and Weston 2010). Our methodology dif-

fers from other studies using machine learning in elas-

tography by analyzing composite statistical features

from various regions, but other studies either directly

analyze color maps quantifying stiffness or combine

clinical data with single elastography measurements.

Our study is the first to assess machine learning for char-

acterizing solid renal lesions using pSWE. In addition,

other studies investigating renal tumors using ultrasound

did not leverage the heterogeneity of various tissue
regions as we did by using measurements from these

regions as inputs to machine learning.

The literature shows conflicting results using strain

elastography and pSWE. Strain elastography has demon-

strated high sensitivity (89%�94%) and high specificity

(83%�100%) for differentiating RCC from AML (Keskin

et al. 2015; Onur et al. 2015; Tan et al. 2013). However,

pSWE actually performed worse for this distinction than

strain elastography. One study demonstrated 88% sensitiv-

ity and 54% specificity (Goya et al. 2015), but another

demonstrated 48% sensitivity and 33% specificity (Lu et

al. 2015). Median tumor SVW also performed poorly in

our study, with ROC AUC of 0.62. The SWR of the tumor

to the peripheral parenchyma was previously proposed.

Although SWR was useful in the diagnosis of liver fibrosis

and breast cancer (Grgurevic et al. 2015; Jia 2014), it per-

formed poorly for solid renal lesions (Lu et al. 2015). It

similarly did not perform well in our study. Other research

has shown that tissue stiffness is different in the renal cor-

tex and medulla, both with pSWE and MR elastography

(Bensamoun et al. 2011; Zheng et al. 2015). By incorpo-

rating statistical features from the renal lesion, cortex and

medulla with machine learning, we improved perfor-

mance.

Machine learning has been used in ultrasound elas-

tography. One study investigated chronic liver disease

diagnosis by inputting information from color maps

quantifying stiffness values into an SVM (Gatos et al.

2017), with ROC AUC of 0.87. Another study analyzed

fibrosis in hepatitis B patients, using color maps obtained

during real time elastography, and a random forest clas-

sifier performed best (Chen et al. 2017). Another study

analyzing the use of SWE in breast cancer diagnosis

employed deep learning on color maps quantifying stiff-

ness, with ROC AUC of 0.95 (Zhang et al. 2016). Addi-

tional studies include diagnosing thyroid nodules via

strain elastography using SVMs (Ma et al. 2010), using

Fibroscan data and clinical/laboratory values to evaluate

fibrosis in hepatitis C using SVMs (Stoean et al. 2011),
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and using color maps from real-time elastography to

evaluate fibrosis in hepatitis C via multivariate linear

regression (Fujimoto et al. 2013).

Of note, SWV outside the tumor demonstrated pre-

dictive ability in this study. A malignant tumor may alter

its surrounding microarchitecture, changing SWV. For

instance, areas of high stiffness can be observed outside

the visualized tumor margin in breast elastography

(Zhang et al. 2015, 2016). Moreover, tumors may alter

perfusion in surrounding tissues, changing their elastic-

ity. A study analyzing animals both in vivo and ex vivo

showed that experimental changes in renal perfusion
Fig. 4. Scores for AML and RCC separation using median S
(posterior probability) that the label came from each class. Th
edges indicate the 25th and 75th percentile, the whiskers exten
liers are marked with a “+” sign. (a) Boxplots show poor separa
lyzed in the tumor (left plot), cortex (middle plot) or medulla (
statistical features in the lesion (first plot), cortex (second plo
machine. The best separation occurs when all four statistical fea

plot). AML = angiomyolipoma; RCC = renal cel
induced by clamping the renal artery or vein altered

SWV (Liu et al. 2017). Another study showed that the

reduction of elasticity after diminished blood flow was

the major factor influencing SWV in patients with

chronic kidney disease (Asano et al. 2014). Thus, it is

reasonable that incorporating SWV measurements out-

side the lesion can improve performance.

We acknowledge several study limitations, includ-

ing the sample size of 51 patients. A future study could

enroll more patients. However, we did incorporate 30

measurements of SWV for each patient from various

tissue regions, which is substantially higher than earlier
WV and machine learning. Scores reflect the likelihood
e red line in the boxplot indicates the median. The box
d to the farthest points not representing outliers, and out-
tion between RCC and AML when median SWV is ana-
right plot). (b) Improved score separation when the four
t) or medulla (third plot) are used with a support vector
tures are used from the tumor, cortex and medulla (fourth
l carcinoma; SWV = shear wave velocity.



Fig. 4. Continued

Fig. 5. ROC curves compare the performance of each machine learning algorithm and median tumor SWV to predict
renal cell carcinoma versus angiomyolipoma. Support vector machines had the highest performance of all machine-

learning algorithms. ROC = receiver operating characteristic; SWV = shear wave velocity.
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Table 5. Comparison of performance between different mod-
els: All features in the lesion, cortex and medulla

Combination p value

Median SWV versus logistic 0.490
Median SWV versus Bayesian 0.0870
Median SWV versus QDA 8.70 e-3
Median SWV versus SVM 2.80 e-4
Logistic versus Bayesian 0.279
Logistic versus QDA 0.0142
Logistic versus SVM 1.68 e-4
Bayesian versus QDA 0.105
Bayesian versus SVM 8.74 e-3
QDA versus SVM 0.0335

Note: The difference in ROC AUC between each pair of models was
compared using the DeLong method. This comparison was performed
using features from the lesion, cortex and medulla. Values of p < 0.01
are in bold.

SWV= shear wave velocity; QDA = quadratic discriminant analysis;
SVM= support vector machines.

Table 6. Comparison of performance between different mod-
els: Features in the lesion only

Combination p value

Median SWV versus logistic 0.537
Median SWV versus Bayesian 0.570
Median SWV versus QDA 0.275
Median SWV versus SVM 2.50 e-4
Logistic versus Bayesian 0.120
Logistic versus QDA 0.444
Logistic versus SVM 4.71 e-7
Bayesian versus QDA 0.0165
Bayesian versus SVM 1.17 e-5
QDA versus SVM 8.82 e-6

Note: The difference in ROC AUC between each pair of models was
compared using the DeLong method. This comparison was performed
using features from the lesion only. Values of p< 0.01 are in bold.

SWV= shear wave velocity; QDA = quadratic discriminant analysis;
SVM= support vector machines.

Table 7. Comparison of performance between different mod-
els: Features in the cortex only

Combination p value

Median SWV versus logistic 0.147
Median SWV versus Bayesian 0.0919
Median SWV versus QDA 0.125
Median SWV versus SVM 6.37 e-3
Logistic versus Bayesian 0.495
Logistic versus QDA 0.592
Logistic versus SVM 0.0511
Bayesian versus QDA 0.276
Bayesian versus SVM 0.133
QDA versus SVM 0.0138

Note: The difference in ROC AUC between each pair of models was
compared using the DeLong method. This comparison was performed
using features from the cortex only. Values of p < 0.01 are in bold.

SWV= shear wave velocity; QDA = quadratic discriminant analysis;
SVM= support vector machines.

Table 8. Comparison of performance between different mod-
els: Features in the medulla only

Combination p value

Median SWV versus logistic 0.0123
Median SWV versus Bayesian 0.00168
Median SWV versus QDA 0.108
Median SWV versus SVM 2.66 e-5
Logistic versus Bayesian 0.179
Logistic versus QDA 0.0508
Logistic versus SVM 0.0421
Bayesian versus QDA 0.00233
Bayesian versus SVM 0.177
QDA versus SVM 0.00124

Note: The difference in ROC AUC between each pair of models was
compared using the DeLong method. This comparison was performed
using features from the medulla only. Values of p < 0.01 are in bold.
SWV = shear wave velocity; QDA = quadratic discriminant analysis;

SVM= support vector machines; ROC = receiver operating characteris-
tic; AUC = area under the curve.
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studies. Moreover, although this study analyzed RCC

and AML, the most common benign renal neoplasm and

the most common renal malignancy, respectively, a
future study could analyze other benign tumors (oncocy-

toma), different RCC subtypes (clear cell, papillary,

chromophobe), different tumors (transitional cell carci-

noma) and pediatric renal tumors (Wilm’s tumor). Most

patients in this study had clear cell RCC, and all were

16 years of age or older. Another limitation is that

examinations were performed by 1 operator, which did

not allow evaluation of interobserver variability. How-

ever, an earlier report did suggest that SWE measure-

ments demonstrate decent reproducibility within the

kidney (Bob et al. 2014). Moreover, the limitations of

this study are not markedly different from those of other

published results. Another study using SWE to study

renal allograft dysfunction used 6 measurements per kid-

ney (vs. 30 in our study), was retrospective (vs. prospec-

tive in our study), demonstrated weaker results

(AUC = 0.70 vs. AUC = 0.98) and similarly did not

assess interobserver variability (Ghonge et al. 2018).

Additional limitations include the small sample size of

AMLs (n = 10) and a lack of a pathology gold standard

for some AML cases. In the future, we could evaluate

this technique in a multi-institutional study. We could

also apply our technique to other organs, to further vali-

date its generalizability. Finally, we could perform tex-

ture analysis on the original B-mode image to ascertain

whether it provides additional diagnostic utility.

CONCLUSION

Analyzing all the statistical features from the lesion,

cortex and medulla with machine learning, particularly

with SVMs, is significantly better able to distinguish

between RCC and AML than median SWV using

pSWE. Statistical measurements outside the lesion may

reflect changes in the surrounding renal parenchyma.

The superior performance of SVMs likely reflects the
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non-linear nature of the Gaussian radial basis function

kernel. Overall, pSWE can differentiate RCC from AML

with high classification accuracy when the most robust

machine learning algorithm takes the maximum avail-

able information from various regions into account.
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APPENDIX

Summary of Machine Learning Techniques

In quadratic discriminant analysis, a transformation

function is optimized to maximize the ratio of between-

class variance to within-class variance and to minimize

the overlap of the transformed distributions. A pseudo-

quadratic transformation was used in which an inverse

covariance matrix was used as a cost function (how well

the machine learning algorithm maps training data to

outcomes) to measure the variability of covariance

matrices among the classes.

Generalized linear models consist of linear models

based on the following three components: a random

component, a systematic component and a link function.

The random component identifies the dependent variable

(Y) and its probability distribution. The systematic com-

ponent identifies the set of explanatory variables (X1,...,

Xk). The link function identifies the function of the mean

that is a linear function of the explanatory variables. If

the outcome is binary (i.e., benign versus malignant) and

assuming that the random component has a binomial dis-

tribution, then the model is simply multivariate logistic

regression, which is what was used here. Merging these

three components leads to the following relationship

between the prediction and input data (statistical features

derived from 10 measurements of shear wave velocity):

gðmÞ ¼ aþ b1X1 þ . . .þ bkXk, where g(m) is the pre-

diction. The function could be linear or non-linear.

The naı̈ve Bayes classifier is based on Bayes theo-

rem, and it tends to perform well when the inputs have

high dimensionality. It is based on the assumption that

input data (statistical features from SWV in our case)

have some multivariate distribution, but the outcomes

are independent. Despite its simplicity, it is capable of

performance comparable with more sophisticated
classification methods. It is based on prior probabilities,

derived from previous experience, which can be used to

predict outcomes.

With the support vector machine, the original input

(feature) space is mapped into a higher dimensional fea-

ture space in which an optimal separating hyperplane is

constructed such that the distance from the hyperplane

to the nearest data point is maximized. In this case, fea-

tures represent the statistical quantification of intermea-

surement variability and differences in SWV across 10

measurements. This aids in the generalizability of the

SVM classifier. We used the Gaussian radial basis func-

tion kernel in Matlab (MathWorks, Natick, MA, USA), a

non-linear support vector machine.
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