
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Comparison of orthogonal NLP methods for clinical phenotyping and
assessment of bone scan utilization among prostate cancer patients
Jean Coqueta, Selen Bozkurta,b, Kathleen M. Kanc, Michelle K. Ferraric, Douglas W. Blayneya,d,
James D. Brooksc,d, Tina Hernandez-Boussarda,b,e,⁎

a Department of Medicine, Stanford University, Stanford, CA, USA
bDepartment of Biomedical Data Science, Stanford University, Stanford, USA
c Department of Urology, Stanford University School of Medicine, Stanford, USA
d Stanford Cancer Institute, Stanford University School of Medicine, Stanford, USA
e Department of Surgery, Stanford University School of Medicine, Stanford, USA

A R T I C L E I N F O

Keywords:
Electronic health records
Natural language processing
Machine learning
Prostate cancer

A B S T R A C T

Objective: Clinical care guidelines recommend that newly diagnosed prostate cancer patients at high risk for
metastatic spread receive a bone scan prior to treatment and that low risk patients not receive it. The objective
was to develop an automated pipeline to interrogate heterogeneous data to evaluate the use of bone scans using
a two different Natural Language Processing (NLP) approaches.
Materials and Methods: Our cohort was divided into risk groups based on Electronic Health Records (EHR).
Information on bone scan utilization was identified in both structured data and free text from clinical notes. Our
pipeline annotated sentences with a combination of a rule-based method using the ConText algorithm (a gen-
eralization of NegEx) and a Convolutional Neural Network (CNN) method using word2vec to produce word
embeddings.
Results: A total of 5500 patients and 369,764 notes were included in the study. A total of 39% of patients were
high-risk and 73% of these received a bone scan; of the 18% low risk patients, 10% received one. The accuracy of
CNN model outperformed the rule-based model one (F-measure = 0.918 and 0.897 respectively). We demon-
strate a combination of both models could maximize precision or recall, based on the study question.
Conclusion: Using structured data, we accurately classified patients’ cancer risk group, identified bone scan
documentation with two NLP methods, and evaluated guideline adherence. Our pipeline can be used to provide
concrete feedback to clinicians and guide treatment decisions.

1. Introduction

Prostate cancer is the most common cancer diagnosed in North
American and European men. [1,2] Most prostate cancers are diag-
nosed by screening practices with low-grade and low stage disease;
however, approximately 15% of newly diagnosed cancers carry a high
risk of spread and eventual mortality. [3] High risk prostate cancers are
defined by a variety of clinical parameters, including clinical stage,
prostate-specific antigen (PSA) values, and biopsy Gleason score. [4]
Because definitive treatments (surgery or radiation therapy) are ac-
companied by substantial morbidity risk (including long lasting urinary
incontinence and impotence) patients who have a low likelihood of
cure (especially those with bone metastases) should not receive po-
tentially morbid procedures. Patients at high risk for bone metastases at

their presentation should receive a radionuclide bone scan (hereafter,
bone scan) to better inform treatment decisions. [5] However, there is
concern regarding the over-use and under-use of bone scans across
different risk groups.

Clinical guidelines are used to guide patient and physician decision-
making and to ensure patients are offered appropriate, evidence-based,
care. Many guidelines include guidance for medical imaging. [6] The
National Comprehensive Cancer Network (NCCN) and American Ur-
ological Association (AUA) guidelines recommend that patients with
advanced stage and local/regional high-risk prostate cancer receive a
bone scan for staging purposes and that low-risk patients not receive a
bone scan prior to treatment. [7,8] Despite these largely agreed-upon
guidelines, bone scans are often over-used in low-risk patients; a recent
study reported that up to 35% of low-risk patients received an
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unnecessary bone scan.[9,10] On the other hand, bone scans may be
underutilized in high-risk patients, which may subject advanced disease
patients to unnecessary morbid and ineffective procedures.[5,11] De-
veloping methods to systematically evaluate guideline adherence is
essential to assess and improve health care quality.

Clinical features needed to appropriately classify patients into low
and high risk categories are embedded in multiple data sources and
scattered throughout electronic health records (EHRs) and manual re-
view of information contained within free-text formats is time-con-
suming and expensive. [12,13] Given the complexity of assigning
prostate cancer patients into ‘low risk’ and ‘high risk’ categories, au-
tomated methods are needed to extract and synthesize the clinical data.
Natural Language Processing (NLP) methods represent a solution that
can aid in extracting information from provider notes to answer perti-
nent clinical questions for health outcomes research. [14] Different
approaches exist, some based on lexical and linguistic rules [15,16] and
others based on machine learning approaches, [17,18] and recently
there is a recent strong interest in using deep learning methods for
knowledge extraction. [19] In addition, the use of hybrid methods that
combine these approaches may improve the accuracy of knowledge
extraction and model performance. [20]

Accurate classification of newly diagnosed prostate cancer patients
into low- and high-risk at a tertiary care center, where second opinion
patients diagnosed outside of the center and patients with complex
histories, multiple comorbidities and advanced disease are common is a
challenge for any automated data extraction pipeline. Accurately clas-
sifying information on bone scan receipt in EHRs is challenging and
requires the fusion of heterogeneous data and the development of dif-
ferent data methods.

In this study, we classified prostate cancer patients into risk cate-
gories and assessed adherence to guideline recommendations on the
need for a bone scan using both structured and unstructured EHR data.
We compared the results of an NLP rule-based model and a deep
learning model. We measured adherence to both the NCCN and AUA
guidelines for avoidance of bone scan for staging in low-risk patients
(overuse) and use of a bone scan for staging in high-risk patients (un-
deruse). We demonstrated the utility of gathering multiple data sources
captured in diverse formats to assess the efficient and effective use of
bone scans for cancer staging among prostate cancer patients.

2. Methods

A graphical outline of our methods to detect the bone scan use with

structured and unstructured data from EHRs, can be found in Fig. 1.

2.1. Data source

Patients were identified in a prostate cancer clinical data ware-
house, which is described in detail elsewhere. [21] In brief, data were
collected from a tertiary-care academic medical center using the Epic
EHR system (Epic Systems, Verona, WI) and managed in an EHR-based
relational database. Patients were linked to an internal cancer registry
and the California Cancer Registry (CCR) to gather additional in-
formation on treatments outside the institute, recurrence and survival.
This study received the approval from the institute’s Institutional Re-
view Board (IRB).

2.2. Study cohort

The study included patients diagnosed with prostate cancer between
January 1, 2008 and December 31, 2017. We excluded patients not
receiving primary treatment at our medical center and those missing
clinical stage, PSA, and Gleason score. PSA is a serum biomarker pro-
tein that identifies patients at risk for prostate cancer. For men who
have prostate cancer, serum PSA level is associated with prognosis and
is used in risk classification. Gleason score is a prognostic grading
system that is assigned by a pathologist on prostate cancer tissue
samples that is also used in risk classification. Patients were also ex-
cluded if they did not have a clinical note in the EHR prior to their
primary treatment. Patient and clinical demographics were captured at
the time of diagnosis. As guidelines recommend bone scan use after
diagnosis and before first treatment, we restricted the data capture
procedures to documentation between these dates.

2.3. Risk classification

The NCCN and AUA guidelines classify patients into different groups
according to their risk of developing prostate cancer: high risk, inter-
mediate/unfavorable risk, intermediate/favorable risk, and low risk.
These classifications are based on clinical tumor stage, PSA value and
pre-treatment biopsy Gleason score (Table 1). NCCN guidelines classify
patients into several categories: very low, low, favorable intermediate,
unfavorable intermediate, high, very high, regional, and metastatic.
The categories regional and metastatic are not applicable to this study.
We collapsed the NCCN categories into Low- and High-risk groups,
since these had historically been used to determine whether a bone scan

Fig. 1. Illustration of our approach to detect if patients underwent a bone scan.
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was recommended. Depending on the patient's risk group, re-
commendations for bone scan performance are provided. For risk-
classification, we assumed information extracted from structured data
were accurate and therefore did not perform a manual review, espe-
cially because patients with missing data were removed from the co-
hort. Moreover, the urologists worked very closely with the engineers
on hundreds of patient cases to ensure the final risk-classification cri-
teria was accurate.

Criteria for high risk patients are presented in Table 1, which in-
clude a combination of overall clinical stage, Gleason score or Gleason
grade group, and PSA values. Overall clinical stage was identified in 2
separate structured fields: the institutional cancer registry and the
EHRs. When discrepancies occurred, we used the values from the in-
stitutional cancer registry as the gold standard. NCCN uses Gleason
score and AUA uses Gleason grade group from biopsy. Both variables
available in the internal cancer registry and the CCR. When multiple
Gleason scores were available, we used the maximum value prior to
primary treatment. Finally, PSA values were identified from the la-
boratory values in the EHR and the CCR. If the patient had a primary
treatment, we used the PSA value closest to treatment start date or the
PSA value at time of diagnosis. The clinical phenotypes will be available
on PheKB.org (see supplementary material 1). [22]

2.4. Detection of bone scan from structured and semi-structured data

Current Procedural Terminology (CPT) codes were used to identify
bone scan orders in the EHR structured data: 78300, 78305, 78306,
78315, and 8320. Next, we extracted metadata (considered as semi-
structured data) of radiology reports. Each report includes a short de-
scription field that indicates the type of radiologic test. A clinician
manually selected radiology reports with a description including the
expressions “NUC BONE SCAN”, “NM BONE WHOLE BODY” or “NM
BONE SCAN”. If a patient had either a CPT code or a radiology report
recorded, we considered this evidence that he had received a bone scan.

2.5. Detection of bone scan from unstructured data – Natural Language
Processing (NLP) pipelines

Many patients seen at our institution come for a second opinion and
therefore receive bone scans outside of our healthcare system. These
patients may provide the results from the external bone scan as a paper
document or image file of the radiographs that may be recorded by the
clinician in the narrative text. We developed a pipeline to extract the
information from narrative text which included several types of clinical
notes: procedure reports, progress notes, consultation notes, letters, and
telephone encounters.

2.6. Data sets

We employed two NLP methods, a rule-based method and a con-
volutional neural network (CNN) method. For each method, we used
the same randomly selected dataset (408 patients) from 5500 patients
with 369,764 clinical notes (procedure reports, progress notes, con-
sultation notes, letters, telephone encounters, etc.). We selected ran-
domly one note for each 408 patients containing the word “bone scan”
and split these notes in two datasets: a training note-set of 308 notes
(76%) and a test note-set of 100 notes (24%). Other terms were con-
sidered (i.e. “nuclear study” and “nuclear scan”), however in our corpus
of notes these terms referred to other nuclear medicine tests (i.e. not a
staging bone scan for prostate cancer) and therefore were not used to
filter sentences. For the training note-set, we only included sentences
containing the word “bone scan”. For the notes that have more than one
sentence with the term “bone scan”, we only selected one of the sen-
tences at random. At the end, our training sentence-set consisted of 308
sentences that were manually annotated; 238 sentences that mention
the utilization of a bone scan (positive sentences) and 70 sentences that
mention the non-utilization of a bone scan (negative sentences). Finally,
to evaluate the accuracy of both models, one clinician manually an-
notated the test note-set of 100 notes that comprised our gold standard.
While we trained the models at the sentence-level, we tested on the note
level because to manually annotate hundreds of sentences is resource
intensive and from a clinical standpoint, we are concerned with the
annotation at the note-level.

For manual annotations, we performed an agreement analysis with
a sub part of the training sentence-set. Four clinical researchers anno-
tated a total of 100 sentences [MK, KK, JP, THB]. The Kappa score was
0.89 (see supplementary material 2). Based on the strong agreement
between annotators, the remaining 208 sentences in the training set
were annotated by a single clinician [KK]. The 100 note test-set was
annotated by the research nurse [MF]. The objective of annotation was
to identify whether a note had a positive or negative mention of a bone
scan.

2.7. Pre-processing

The NLP pipeline first pre-processed each clinical note, which en-
tailed splitting the note into individual sentences, removing capitali-
zation, numbers and punctuation, and excluding words smaller than
three letters, except the word “no” and the abbreviation “NM” (Nuclear
Medicine). Through this process, a note corresponded to a list of sen-
tences and a sentence corresponded to a list of words. “Bone scan” was
the only target key term.

Table 1
Risk classification groups and inclusion criteria by prostate cancer clinical guidelines.

Guidelines Risk group Criteria Number of patients

NCCN High risk Cancer stage T3 or T4 1047
Gleason score ≥ 8
Cancer stage T2 and PSA > 10 ng/mL
Cancer stage T1 and PSA > 20 ng/mL

Low risk T2 and PSA ≤ 10 and Gleason < 8 1168
T1 and PSA ≤ 20 and Gleason < 8

AUA High risk Cancer stage T3 or T4 989
Gleason Grade Group 4 or Grade Group 5
PSA > 20 ng/mL

Intermediate unfavorable risk Gleason Grade Group 3 510
Gleason Grade Group 2 and 10 ≤ PSA < 20
Cancer stage T2B or T2C and Grade Group 2

Intermediate favorable risk Gleason Grade Group 2 and PSA < 10 559
Gleason Grade Group 1 and 10 ≤ PSA < 20

Low risk Cancer stage T1 or T2A and Gleason Grade Group 1 and PSA < 10 469
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2.8. Rule-based method

The rule-based method applied a set of syntax rules to predict
whether a sentence contained information related to a bone scan. The
model used the ConText algorithm developed by Chapman et al [23].
ConText is an algorithm derived from the NegEx algorithm to identify
negative results in a free text. From regular expressions, it determines
whether information in clinical reports are mentioned as negated, hy-
pothetical, historical, or experienced by someone other than the pa-
tient. For this study, if bone scan information is negated, hypothetical
or historical then we concluded the patient did not receive a bone scan
for this note. In addition, if no modifier could be apply to the sentence
then, by default, we classified the sentence as negated. We used 90% of
the training dataset to build the rules manually and the remaining 10%
to validate the model. This iterated process of rule building was used to
develop the model.

2.9. Convolutional neural network method

After notes were pre-processed, we used the word2vec method im-
plemented in Gensim [24] to form word embeddings. [25] Word2Vec is
a technique to create a vector representing the semantic context of a
word for each word in our corpus. If similar words share common
contexts in the corpus, then it is assumed they have similar vectors. The
word2vec method is self-supervised machine learning method that
trains a 2-layer neural network to form word embeddings. Word2vec
has two different architectures (skip-gram and Continuous Bag of
Words (CBOW)) and two different algorithms (hierarchical softmax and
negative sampling). We chose to generate vectors with a dimension of
300. We tried multiple configurations (described in supplementary
material 3) and found that for our dataset the best configuration was a
combination of the CBOW architecture and the hierarchical softmax
algorithm. We also tried different window widths (i.e. the maximum
distance between the current and predicted word within a sentence)
and we chose a window width of 5.

From the word embeddings, we created a two-dimensional matrix
for each sentence where each row corresponded to a word in the sen-
tence and each column to a dimension of the vector. Using this matrix,
we applied the convolutional neural network (CNN) method to classify
sentences. [26] CNN methods require a uniform size matrix as input.
Therefore, we calculated that the maximum sentence size in the notes
was 361. If the size of a sentence was smaller than 361, then we
completed the sentence with a padding of “0”. Finally, each sentence
corresponded to a matrix of 300 × 361.

The model architecture was implemented with the library
TensorFlow [27] and was trained on the training data set. We tuned the
model using the strategy described by Zhang and Wallace. [28] We used
10 fold cross-validation to validate the model and examined various
CNN configuration. The parameter tuning (both word2vec and CNN)
was conducted using the training data (with validation splits) only. The
tuning strategy and the results are described in the supplementary
material 3. The most accurate CNN model consisted of the parameters
below:

• filter region size = (3, 4, 5)
• feature maps = 100
• activation function = ReLU
• pooling = 1-max pooling
• dropout rate = 0.6
• l2 norm constraint = 3

2.10. Prediction and evaluation of bone scan utilization

If the model predicted a positive sentence (i.e. the note mentioned
utilization of a bone scan) then the entire note was flagged positive. If a
patient had at least one positive note between diagnosis and first

treatment, we annotated that the patient had received a bone scan. To
evaluate the accuracy of both models, the gold standard dataset of 100
notes was used to calculate precision, recall and F-measure.

2.11. Statistical analysis

We performed a statistical analysis of clinical characteristics be-
tween the bone scan status for each risk group. The characteristics in-
cluded the variables age at diagnosis, insurance payor type, ethnicity
and race. This analysis consisted of unpaired t-tests for parametric data,
between 4 different risk groups (high, unfavorable/intermediate, fa-
vorable/intermediate, low) consisted of analysis of variance (ANOVA)
for parametric data, whereas the chi-square/Fisher's exact tests were
used for categorical variables. All statistical tests were 2-sided with a
threshold of p ≤ 0.05 for statistical significance.

3. Results

3.1. Patients meeting the guideline criteria

From a total 5500 patients; 2215 patients had complete information
that allowed risk classification according to the NCCN guidelines and
2527 patients according to the AUA guidelines (Fig. 2). Clinical data for
the patients extracted from the EHR are summarized in Table 1. Using
the NCCN guidelines, 1047 patients (47%) were high risk while 1168
patients (53%) were classified as low risk. For AUA criteria, 989 pa-
tients (39%) were considered as high risk, 510 patients (20%) as un-
favorable/intermediate risk, 559 patients (22%) as favorable/inter-
mediate risk and 469 patients (18%) as low risk.

3.2. Patient characteristics

Table 2 presents patient demographics stratified by level of risk for
the NCCN guidelines (Table 2A) and the AUA guidelines (Table 2B) and
by bone scan examination (predictions of the CNN model). Overall, the
patient demographics did not differ significantly between the patients
who underwent a bone scan compared to those that did not within each
risk group. There were statistically significant differences in age, with
older patients less likely to receive a bone scan for high risk (68.72 vs
67.05, p = 0.004) and more likely to receive a bone scan for low risk
cancer (63.38 vs 64.43, p = 0.054), although these differences were
small and not likely to be not clinically significant.

3.3. Evaluation of NLP models

Table 3 shows the accuracy of the rule-based and CNN models as a
function of precision, recall and F-measure values based on 100
manually annotated notes. The rule-based model showed high precision
(0.924) but a lower recall (0.871), indicating that the model missed
many notes mentioning bone scan utilization, but was rarely wrong
regarding positive identification of bone scan performance. The results
are different for the CNN model, where precision was not as high
(0.882), but recall was very high (0.957).

The predictions of the two models are summarized in Fig. 3, where
each node represents a note. Nodes that are black correspond to notes
where bone scan utilization was mentioned, whereas white nodes re-
present notes that state that the patient has not received a bone scan.
The orange and green zones correspond to the predictions of the bone
scan receipt according to the 2 models.

The combination of the two methods improved the accuracy of in-
formation extraction. In Table 3, four possible models are presented
that differentially harmonize precision and recall to adjust model ac-
curacy. It was possible to combine the predictions of the two models.
For example, the number of false positives could be minimized by using
the intersection of notes with positive annotations by both methods
(model 3). This approach increased the precision score (0.968) at the
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Fig. 2. Flowchart to select the final cohort, to classify the patients and to detect if patients underwent a bone scan.

Table 2A
Demographic data of patients in function of NCCN guidelines and predictions of CNN model.

Patient characteristics NCCN risk group
High risk Low risk
(n = 1047) (n = 1168)
No BS BS p No BS BS p

Total, n (%) 354 (33.8) 693 (66.2) 945 (80.9) 223 (19.1)
Age at diagnosis (years), X ± sd 68.72 ± 9.2 67.05 ± 8.69 0.004 63.38 ± 7.4 64.43 ± 7.2 0.054
Insurance Payor Type, n (%) Private 102 (29.4) 245 (70.6) 0.095 448 (84.1) 85 (15.9) 0.020

Medicare 211 (35.8) 378 (64.2) 422 (77.8) 121 (22.2)
Medicaid 14 (28.0) 36 (72.0) 33 (86.8) 5 (13.2)

Ethnicity, n (%) Non-Hispanic 323 (34.0) 628 (66.0) 0.227 869 (80.8) 206 (19.2) 0.939
Hispanic 24 (27.6) 63 (72.4) 69 (81.2) 16 (18.8)

Race, n (%) Asian 36 (23.8) 115 (76.2) 0.019 91 (83.5) 18 (16.5) 0.590
White 261 (35.5) 475 (64.5) 732 (80.2) 181 (19.8)
Others 25 (36.8) 43 (63.2) 42 (84.0) 8 (16.0)
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expense of decreasing the recall score (0.857). False negatives could be
minimized by selecting the union of patients of positive annotations by
both methods (model 4), producing high recall (0.971) but low preci-
sion (0.85).

The 5500 patients included in our study had 369,764 associated
notes. These notes were composed of a total of 17,101,187 sentences,
including 14,090 sentences with the word “bone scan”. The CNN model
predicted 6701 positive notes from the 369,764 notes and the rule-
based model predicted 5636 positives notes. The intersection of model
predictions (model 3) was 5326 positive notes, while the union of
model predictions (model 4) included 7011 positive notes.

3.4. Guideline adherence

To measure guideline adherence, we chose to use the CNN model
because it had the highest F-measure (0.918) compared to the rule-
based model, and therefore the best compromise between precision and
recall. Using structured and semi-structured data, we determined that
only 813 patients received a bone scan (15%). However, an additional
1270 patients (23%) were annotated when we used the CNN model.
Fig. 4 summarizes the use of bone scan according to the NCCN and AUA
guidelines, where each bar corresponds to the percentage of patients
who received a bone scan. Bone scans were used at modestly high rates
in high-risk patients (73%), while only 10% of low-risk patients re-
ceived a bone scan. When intermediate risk patients were substratified
into unfavorable risk and favorable risk according to the AUA guide-
lines, 39% and 23% underwent bone scan, respectively.

4. Discussion

We developed a pipeline using heterogeneous EHR data to assess
guideline adherence (the over- and under-use) of radionuclide bone
scans in newly diagnosed prostate cancer patients for staging prior to
treatment. To measure adherence, we developed electronic phenotypes
to classify patients into different clinical risk categories according to
two different guidelines because each clinical risk category has a dif-
ferent bone scan recommendation. Assessment of bone scan doc-
umentation required the transformation of heterogenous data to
knowledge using NLP technologies, with CNN models outperforming a
rule-based approach. Our work also provides a model for the demon-
strates the use of orthogonal NLP methods to adjust model precision for
individual use cases, allowing to titrate for higher precision to ensure
all high-risk patients needing a bone scan are identified, or for higher
recall to measure guideline adherence. For assessment of adherence to
the bone scan quality metric, it is critical to avoid false positives (label a
high-risk patient as ‘bone scan performed’ if he did not receive one),
therefore models tuned to the highest precision would minimize this
risk and lower the number of false positives. Integrating this informa-
tion at point of care will be essential to ensure both patients and clinics
have evidence necessary to guide bone scan use and treatment path-
ways.

Bone scans provide information on cancers that have metastasized
into skeletal structures. Pre-treatment metastases are important to
identify, as stage dictates the appropriate treatment and provides
prognosis for a patient. Bone scans were documented in diffuse sites in
the EHRs: as structured data (i.e. CPT codes), semi-structured data (i.e.Ta
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Table 3
Evaluation of NLP models in function of 100 manually annotated notes.

Model 1 Model 2 Model 3 Model 4

Rule-based CNN Rule-based and CNN Rule-based or CNN

Precision 0.924 0.882 0.968 0.850
Recall 0.871 0.957 0.857 0.971
F-measure 0.897 0.918 0.909 0.907
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radiology reports), and unstructured text (clinical narratives). To
identify and extract this information, we used both rule-based and
machine learning methods. Rule-based models are known to be very
conservative because the rules are built manually and cannot cover all
possible scenarios. Therefore, this approach displays high precision but
low recall, is limited by the variability of documentation, and can only
be improved with additional rules. On the other hand, the CNN model is
more flexible because each word is represented by a vector and similar
words have similar vectors. Therefore, if the neural network learns to
classify a sentence in a category, then subsequent sentences containing
similar words will have a higher probability of being classified in the
same category. CNN models have lower precision but higher recall
compared to rule-based approaches. Therefore, we used a combination
of the model predictions to balance the precision and the recall based
on our particular question. Our results indicate that by using different
iterations of the two NLP models, we can toggle between high precision
and high recall depending on the research question or clinical need. As
government and the health care industry begin to incorporate real

world evidence from EHRs into regulatory and evaluation purposes,
these different methods ensure the high accuracy and flexibility to
adjust output to fit regulatory or clinical needs. [29]

We find significant under-estimation of bone scan documentation
when using structured data alone. Our data suggest that advanced
technologies to leverage unstructured data buried in EHRs are needed
to accurately assess certain electronic phenotypes, such as those related
to treatment pathways or risk categories, as we have shown in other
work. [30,31] The limitations of EHR structured data regarding miss-
ingness and accuracy is concerning, especially as many studies focus
only on these data for clinical phenotyping. Therefore, the use of ad-
vanced technologies, such as neural networks, on unstructured clinical
narrative text will be critical for improving model accuracy, particu-
larly when assessing guideline adherence where payment incentives
and penalties might be relevant.

To classify patients into the different risk categories, clinical in-
formation was needed from multiple data sources at specific time per-
iods during the care pathway. Such clinical phenotyping is a

Fig. 3. Evaluation of NLP model predictions in 100 manual annotated notes. Each node represents a note. If a note mentions that a bone scan was performed, the
node is black. If a note mentions that the patient had not received a bone scan or that a bone scan is planned then the note is white.

Fig. 4. Guideline adherence. Percentage of patients undergoing a bone scan stratified by risk group according to the NCCN and AUA guidelines.
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fundamental task necessary to use EHRs for secondary research, which
may include both rule-based and machine learning approaches. [32] In
this study, we synthesized the granular digital data down to the patient
level. This included diagnostic information (e.g. PSA levels, Gleason
score) and clinical prognostic factors (e.g. summary stage), which were
collected from multiple sources in the clinical data warehouse. Using
this information, we classified patients into the categories necessary to
assess guideline adherence: high-risk, intermediate-risk, and low-risk.
Such classifications are essential to assess prognosis, treatment path-
ways, and quality of care.

Using our methods, we found the majority of high-risk patients had
received a bone scan while only 10% of low-risk patients had one,
which is in accordance with both the AUA and NCCN guidelines. Since
we could link directly to patient demographics in the EHR, we were
able to determine that the over-use or under-use of bone scans did not
differ by patient characteristics. Use of bone scans in intermediate risk
patients is controversial, since only a small fraction of these patients
will harbor metastatic disease detectable on a bone scan. [33] This
controversy is reflected in the relatively low bone scan rates of 30–40%
in our practice that includes many providers. Reducing the over-use of
bone scans in low risk patients has been identified in the Physician
Quality Reporting System, both to cut down unnecessary health care
expenditures, and to decrease unnecessary radiation exposure. [34]
Bone scan utilization is also a quality metric and is used by the Center of
Medicare and Medicaid services an subject to payment penalties. [35]
The methods we have developed could be used for quality metric
capture and reporting, both at the level of the individual clinician level
and at the department, practice and hospital level. Direct feedback on
inappropriate use of imaging in prostate cancer has been shown to fa-
vorably alter physician behavior. [36]

It is important to understand why some high-risk patients did not
receive a bone scan while other low-risk patients did receive one. Often,
guideline recommendations may not be available at point of care and
therefore patients in need of a bone scan may be missed. We found that
this was frequently the case when patients were classified as high risk
based only a single variable, i.e. PSA > 20 or Gleason Grade > 4.
However, these variables can also be erroneous recorded in registry
data [37] and therefore the clinician may be providing care consistent
with guidelines. For low-risk patients, a complaint of back pain could
signal bone metastases and guidelines state this is an indication for a
bone scan. The presence of symptoms, such as bone pain, is often not
recorded in the EHR. Therefore, while the recommendations from the
AUA and NCCN assist in clinical decisions regarding bone scans for
cancer staging, individual patients may present with additional criteria
that may signal alternative care pathways.

Important differences between the predictions of the CNN model
and the rule-based model were identified. For the rule-based model, by
default a sentence was negated if no rule could be applied. This decision
was made because in the training set, many sentences included the
word “bone scan” but they were describing guideline recommendations
and were not associated with performing a bone scan for the patient.
This property is not true for the CNN model therefore with the above
example, the rule-based model correctly predicts the sentence as ne-
gative while the CNN model could incorrectly predict it as positive. On
the other hand, in the validation set we found some sentences men-
tioning the use of bone scan for patients for which no rule existed be-
cause these sentences were not present in our training set. However, the
CNN model includes the word embeddings generated by word2vec,
where words with a similar semantic have similar vectors. In some
cases, this property can allow the CNN model to correctly label some
sentences with unknown formulations. These important differences
suggest that the CNN model might be a better solution for a decision-
support infrastructure because it is possible to create a feedback system
where the model can learn over time, while the rule based model would
need to have continuous manual rule building.

Our work has several limitations that should be mentioned. First,

our algorithms were constructed on an EHR from one institute.
However, the records encompass diverse providers (physicians, nurse
practitioners, physician’s assistants) and several practice settings (sur-
gical, medical radiation oncology, and primary care). In addition, we
have made our algorithms publicly available for validation elsewhere,
since privacy protections prohibit institutions from allowing us to test
our algorithms in their EHR directly. Second, even after pulling in-
formation from multiple data sources, only 40% of our eligible popu-
lation had complete data capture necessary for classification. A sig-
nificant portion of the key variables (e.g. Gleason score, PSA) needed to
classify cancer patients to appropriate risk categories were missing from
the CCR and EHRs, as we have previously reported. [21] This is often
the case for academic, tertiary care medical centers that have a large
proportion of patients seeking second opinions, where patients do not
receive initial biopsies or imaging at the tertiary center and therefore
the results of these tests may not be recorded in the EHR system. In-
teroperability would mitigate this issue, however healthcare systems
still struggle with data sharing and care coordination. [38] Third, the
imbalance in our training set might affect the results, as there were
many more positive than negative sentences. Buda et al concluded that
the imbalance effect has a significant impact on prediction. [39]
However, the imbalance ratios tried in their study (from 0 to 50) were
higher than those from our study. A future strategy could use over-
sampling from the underrepresented sample to address the imbalance in
the dataset. Fourth, radiology reports used in this study were semi-
structured. After consultation with a radiologist and a manual review of
the expressions, only “NUC BONE SCAN“, ”NM BONE WHOLE BODY“
and ”NM BONE SCAN” were identified as relevant to this study. Other
institutes wishing to replicate our study may use additional expressions
and terms. Fifth, our training dataset was limited to 300 sentences,
which resulted in missed rules. However, there is always a balance
between resources and for this project, we limited the training dataset.
Future iterations of this pipeline could expand the training dataset,
however it is unclear how many additional sentences would be required
to significant improve the performance of the model. Finally, some of
our data, such as the PSA values, were extracted from the registries (the
institutional Cancer Center Registry and the California Cancer Reg-
istry), and we have reported previously that they are subject to data
entry errors. These errors could bias our results. Fortunately, the
number of these errors are relatively small in the population and in-
frequently affect risk group classification in < 5% of cases. [40]

5. Conclusion

We have developed a method for prostate cancer patient risk stra-
tification and extraction of bone scan performance using 2 NLP models
for monitoring adherence to quality metrics by combining structural
and non-structural data from EHRs. The model based on a convolu-
tional neural network obtained better results than the rule-based model;
however, a combination of the two models to optimize performance to
suit individual use cases can be used to optimize the quality of the
annotations. While adherence with guidelines in our practice was very
good, documentation of adherence allows opportunities for quality
improvement at an individual or practice level. Our method could serve
as the basis of a decision-support algorithm to provide decision support
for practitioners.
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