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Abstract

Adequate tumor detection is critical in complete transurethral resection of bladder
tumor (TURBT) to reduce cancer recurrence, but up to 20% of bladder tumors are missed
by standard white light cystoscopy. Deep learning augmented cystoscopy may improve
tumor localization, intraoperative navigation, and surgical resection of bladder cancer.
We aimed to develop a deep learning algorithm for augmented cystoscopic detection of
bladder cancer. Patients undergoing cystoscopy/TURBT were recruited and white light
videos were recorded. Video frames containing histologically confirmed papillary
urothelial carcinoma were selected and manually annotated. We constructed CystoNet,
an image analysis platform based on convolutional neural networks, for automated
bladder tumor detection using a development dataset of 95 patients for algorithm
training and five patients for testing. Diagnostic performance of CystoNet was validated
prospectively in an additional 54 patients. In the validation dataset, per-frame sensitivity
and specificity were 90.9% (95% confidence interval [CI], 90.3–91.6%) and 98.6% (95% CI,
98.5–98.8%), respectively. Per-tumor sensitivity was 90.9% (95% CI, 90.3–91.6%).
CystoNet detected 39 of 41 papillary and three of three flat bladder cancers. With high
sensitivity and specificity, CystoNet may improve the diagnostic yield of cystoscopy and
efficacy of TURBT.
Patient summary: Conventional cystoscopy has recognized shortcomings in bladder
cancer detection, with implications for recurrence. Cystoscopy augmented with artificial
intelligence may improve cancer detection and resection.
© 2019 European Association of Urology. Published by Elsevier B.V. All rights reserved.
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Bladder cancer is the ninth most common malignancy
globally, with an estimated 430 000 new diagnoses
annually [1]. Standard diagnosis and surveillance of
bladder cancer rely on white light cystoscopy (WLC),
and over 2 million cystoscopies are performed annually in
the USA and Europe [2]. Suspicious findings prompt
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transurethral resection of bladder tumor (TURBT) in the
operating room for diagnosis and staging. Non–muscle-
invasive bladder cancer accounts for 75% of new diagno-
ses and is typically managed endoscopically [3]. High
recurrence rates necessitate frequent surveillance and
intervention.
adder Tumor Detection Using Deep Learning. Eur Urol (2019),

.V. All rights reserved.
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Identification and complete resection of non–muscle-
invasive bladder cancer reduces recurrence and progres-
sion; yet up to 40% of patients with multifocal disease have
incomplete initial resection [4]. A significant number of
papillary tumors and flat lesions that are difficult to discern
by WLC are visible with blue light cystoscopy [5]. While blue
light cystoscopy improves tumor detection and reduces
recurrence, it requires preoperative intravesical instillation
of hexaminolevulinate and specialized fluorescence cysto-
scopes [6]. Despite demonstrated benefit, adoption of blue
light cystoscopy remains modest. Low-cost, noninvasive,
easily adoptable adjunct imaging technologies are needed
to address the diagnostic shortcomings of WLC.

Recent advances in deep learning–based automated
image processing may address limitations of cystoscopy
and TURBT. Convolutional neural networks, with the
ability to learn complex relationships and incorporate
existing knowledge into an inference model, are particu-
larly promising. To address the limitations of WLC, we
used convolutional neural networks to develop a deep
learning algorithm, CystoNet, for augmented bladder
cancer detection.

With institutional review board approval and informed
participant consent, white light videos were collected
between 2016 and 2019 from patients undergoing clinic
flexible cystoscopy and TURBT. Cystoscopy without suspi-
cious lesions or biopsies confirmed with benign histology
was classified as normal. The algorithm development
dataset consisted of 141 videos from 100 patients who
underwent TURBT. Video frames containing pathologically
confirmed papillary urothelial carcinoma were selected,
Table 1 – Patient demographics and tumor characteristics for develop

Development dataset 

Training set Test set 

Data acquisition 2016–2018 

Source TURBT TURBT 

Patients 95 5 

Tumor histology—tumor number 142 (42 L G Ta, 54 H G Ta,
15 H G T1, 9 H G T2)

10 (1 L G Ta,
7 H G Ta, 2 H

Videos 136 5 

Normal frames 2335 1002 

Tumor frames 417 211 

True positives c – 186 

False negatives d – 25 

True negatives e – 992 

False positives f – 10 

Per-frame sensitivity – 88.2% (95% C
Per-tumor sensitivity g – – 

Per-frame specificity – 99.0% (95% C

CI = confidence Interval; CIS = carcinoma in situ; HG = high grade; LG = low grade
a Bladder cancer staging: Ta, T1, T2.
b Three patients underwent clinic flexible cystoscopy for diagnosis followed by t
c True positives were defined as lesions contained within the algorithm-generat
d False negatives were defined as frames containing histologically confirmed bla
e True negatives were defined as frames containing normal bladder mucosa (eith
biopsied) where the algorithm did not generate an alert.
f False positives were defined as frames containing normal bladder mucosa (eith
biopsied) where the algorithm generated an alert.
g Per-tumor sensitivity is defined as algorithm sensitivity for the detection of a h
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and tumors were outlined using LabelMe [7]. Flat lesions
were excluded as margins could not be annotated
accurately. The bladder neck, ureteral orifices, and air
bubbles were labeled for exclusion learning.

Our image analysis platform, CystoNet, was trained and
tested using the annotated development dataset (Supplemen-
tary Fig. 1). The training set contained 2335 frames of normal/
benign bladder mucosa and 417 labeled frames containing
histologically confirmed papillary urothelial carcinoma. Per-
formance of the model in the test set across a range of
probability thresholds was evaluated, and a threshold of
0.98 was selected for cancer presence (Supplementary Fig. 2).
In the development test set, the per-frame sensitivity for
tumor detection was 88.2% (95% confidence interval [CI], 83.0–
92.2%), and nine of 10 tumors were accurately identified with
specificity of 99.0% (95% CI, 98.2–99.5%; Table 1).

For validation, videos from an additional 54 patients
undergoing either TURBT or clinic flexible cystoscopy were
analyzed. All patients undergoing cystoscopy or TURBT for
bladder cancer evaluation were eligible for recruitment,
including patients with nonpapillary tumors. Full-length
cystoscopy videos were evaluated using CystoNet, and
sensitivity and specificity were determined after correlation
with final histopathology.

In the validation dataset, 31 patients had normal/benign
bladder mucosa on cystoscopy (normal cohort). In the other
23 patients (tumor cohort), 26 videos were recorded and
44 tumors identified (41 papillary urothelial carcinoma,
three carcinoma in situ [CIS]). Representative examples of
CystoNet overlay from clinic-based flexible cystoscopy and
TURBT frames are shown in Fig. 1 and Supplementary
ment and prospective datasetsa.

Validation dataset

Normal cohort Tumor cohort

2018–2019
Clinic cystoscopy Clinic cystoscopy + TURBT
31 23

 G T1)
– 44 (13 L G Ta, 15 H G Ta,

9 H G T1, 3 H G T2, 3 CIS,
1 inverted papilloma)

31 26 b

20 643 31 330
– 7542
– 6857
– 685
20 359 23 382
284 406

I, 83.0–92.2%) – 90.9% (95% CI, 90.3–91.6%)
– 95.5% (95% CI, 84.5–99.4%)

I, 98.2–99.5%) 98.6% (95% CI, 98.5–98.8%) –

; TURBT = transurethral resection of bladder tumor.

ransurethral resection of bladder tumor for treatment.
ed alert box that were histologically confirmed bladder cancers.
dder cancers where the algorithm did not generate an alert.
er biopsy proven benign or deemed normal by the practicing urologist and not

er biopsy proven benign or deemed normal by the practicing urologist and not

istologically confirmed bladder cancer in at least one frame.
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Fig. 1 – Representative bladder cancer detection using CystoNet. Green outlines (A–F) represent manual tumor annotation, blue shading (A–C) indicates
the algorithm-driven automated tumor segmentation, and red boxes (D–N) indicate the alerts generated by CystoNet. CystoNet tumor segmentation
(blue) and manual outline (green) of small papillary tumors located at (A) bladder dome, (B) posterior wall, and (C) anterior wall. The CystoNet alert
(red) and corresponding manual annotation (green) shown for (D and E) small solitary tumors and (F) larger, multifocal tumors. In the validation
cohort, automated detection of (G) a small tumor at the dome as seen from the bladder neck, (H) a large papillary tumor, and (I) a multifocal papillary
tumor with limited background contrast. (J) Example of CystoNet detection of a flat lesion with WLC pathologically confirmed to be carcinoma in situ;
(K) another example of carcinoma in situ with (L) corresponding photodynamic diagnosis under blue light cystoscopy. (M and N) False-positive
CystoNet alert of a small bladder diverticulum; (O) as the cystoscope is moved closer to inspect the area of the diverticulum, alerting box disappears,
which is suggestive of a benign lesion.
WLC = white light cystoscopy.
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Videos 1 and 2. There was no significant difference in false
alerts generated per cystoscopy between normal and
tumor-containing cystoscopies (0.1%, 95% CI, –0.9% to
1.4%; p = 0.856). Significantly more alerts were generated
during cystoscopy with a tumor compared with normal
(12.5%, 95% CI, 10.3–14.6%; p < 0.001; Supplementary
Table 1). Overall, the CystoNet algorithm identified bladder
cancer in the validation dataset with per-frame sensitivity
and specificity of 90.9% (95% CI, 90.3–91.6%) and 98.6% (95%
CI, 98.5–98.8%), respectively, and per-tumor sensitivity was
95.5% (95% CI, 84.5–99.4%; Table 1).

For development and validation of CystoNet, the cystosco-
py videos analyzed were representative of clinical practice:
low- and high-grade cancer, variable tumor size ranging from
a few millimeters to over 5 cm, solitary and multifocal tumors,
and varying degrees of cystoscopic visibility. While CystoNet
was trained on papillary urothelial tumors, three cases of CIS
in the prospective cohort were accurately identified, suggest-
ing that there are detectable features common to all bladder
cancers. Further work is needed to determine algorithm
performance with a variety of flat lesions.

Prior artificial intelligence–assisted WLC has focused on
analysis of static bladder images. One approach developed a
color segmentation system with good sensitivity for tumor
identification, but a false positive rate of 50% [8]. Another
achieved high sensitivity and specificity for cystoscopy
image classification using convolutional neural networks,
but training and validation relied on a highly curated
previously published image atlas limiting clinical transla-
tion [9]. Since the initial development of CystoNet was
based on analysis of cystoscopy videos, integration of
CystoNet in real time during cystoscopy and TURBT is
possible. Dynamic overlays of regions of interest hold
promise in improving diagnostic yield and thoroughness of
bladder tumor resection.

There are several limitations to our work. While
bladder tumors were defined histopathologically, “nor-
mal” was based on cystoscopic interpretation without
tissue diagnosis. For CystoNet to detect bladder cancer,
the tumor must be within the visual field of the
cystoscope. While the number of patients in the training
set was small, analysis of cystoscopy videos from
95 patients provided 2752 frames for algorithm develop-
ment, which was sufficient to achieve excellent perfor-
mance in distinguishing cancer from benign lesions due
to the relative homogeneity of gross tumor structure.
However, for subclassification of benign and malignant
lesions, a larger training set is needed. Despite these
limitations, this study represents a critical step toward
computer augmented cystoscopy and TURBT.

In conclusion, we have created a deep learning algorithm
that accurately detects bladder cancer. As cystoscopic tumor
detection is affected by clinician experience, clarity of visual
field, and tumor characteristics including size, morphology,
and location, CystoNet augmented cystoscopy has potential
to aid in training and diagnostic decision making, and
standardize performance across providers in a noninvasive
Please cite this article in press as: Shkolyar E, et al. Augmented Bl
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fashion without costly specialized equipment. Further, as
demand rises from an aging population, deep learning
algorithms such as CystoNet may serve to improve the
quality and availability of cystoscopy globally, by enabling
providers with limited experience to perform high-quality
cystoscopy, and facilitate a streamlined quality control
process [10].
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Supplementary material related to this article can be
found, in the online version, at doi:https://doi.org/10.1016/j.
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