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Abstract

The synaptic organization of the brain is constantly modified by activity-dependent synaptic

plasticity. In several neurological disorders, abnormal neuronal activity and pathological

synaptic connectivity may significantly impair normal brain function. Reorganization of neu-

ronal circuits by therapeutic stimulation has the potential to restore normal brain dynamics.

Increasing evidence suggests that the temporal stimulation pattern crucially determines the

long-lasting therapeutic effects of stimulation. Here, we tested whether a specific pattern of

brain stimulation can enable the suppression of pathologically strong inter-population syn-

aptic connectivity through spike-timing-dependent plasticity (STDP). More specifically, we

tested how introducing a time shift between stimuli delivered to two interacting populations

of neurons can effectively decouple them. To that end, we first used a tractable model, i.e.,

two bidirectionally coupled leaky integrate-and-fire (LIF) neurons, to theoretically analyze

the optimal range of stimulation frequency and time shift for decoupling. We then extended

our results to two reciprocally connected neuronal populations (modules) where inter-popu-

lation delayed connections were modified by STDP. As predicted by the theoretical results,

appropriately time-shifted stimulation causes a decoupling of the two-module system

through STDP, i.e., by unlearning pathologically strong synaptic interactions between the

two populations. Based on the overall topology of the connections, the decoupling of the two

modules, in turn, causes a desynchronization of the populations that outlasts the cessation

of stimulation. Decoupling effects of the time-shifted stimulation can be realized by time-

shifted burst stimulation as well as time-shifted continuous simulation. Our results provide

insight into the further optimization of a variety of multichannel stimulation protocols aiming

at a therapeutic reshaping of diseased brain networks.

Author summary

To clinically advance different types of brain stimulation, e.g., deep brain stimulation or

epicortical stimulation, in numerous clinical studies, typically only a few types of stimulus
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patterns have been delivered to different target areas in the midbrain or cortex. To further

leverage the power of these clinical trials we here present a theoretical and numerical

study demonstrating that the effects of brain stimulation may massively depend on varia-

tions of supposedly minor parameters. To this end, we introduce a time shift between

stimulus trains delivered to two anatomically separate neuronal populations interacting

through plastic synapses. Depending on the specific time shift, stimulation may be ineffec-

tive or induce pronounced changes of the connections between and, in turn, within the

neuronal populations, ultimately causing a long-lasting unlearning of abnormal neuronal

synchrony. To thoroughly understand the time shift-induced decoupling mechanism, we

first consider a simple two-neuron motif of two leaky integrate-and-fire neurons. Intrigu-

ingly, our results obtained in the two-neuron motif are in excellent agreement with the

two-population scenario, illustrating the predictive power of comparably simple models.

Our results are important in the context of the control of plastic neuronal networks and

provide testable hypotheses for the improvement of clinically used stimulation

techniques.

Introduction

Synaptic connections in cortical networks are highly adaptive due to activity-dependent synap-

tic plasticity [1]. Reshaping of connectivity patterns by plasticity mechanisms based on exter-

nal stimuli is necessary for normal brain function such as appropriate motor actions [2, 3].

Spike-timing-dependent plasticity (STDP) provides a mechanistic model for the modification

of the strength of synaptic connections according to the temporal coincidence of pre- and

postsynaptic activity [4–7]: Synapses are strengthened when the presynaptic spike precedes the

postsynaptic spike, whereas they are weakened in the reverse scenario [5]. In this way, neuro-

nal activity shapes the synaptic organization of brain networks [1, 8–11] which, in turn, adjusts

the activity of neurons in a feedback loop [12–15]. Normal brain function is shaped by struc-

turally and functionally interconnected brain areas mediated by plastic, network-based struc-

ture-function relationships [16].

Several brain disorders such as Parkinson’s disease (PD) [17–21], essential tremor [22–24],

Alzheimer’s disease (AD) [25, 26], epilepsy [27–30], schizophrenia [31] and autism spectrum

disorder (ASD) [32] are linked with abnormal brain activity and connectivity. For instance,

network interactions are severely affected in PD patients due to increased connectivity in corti-

cal/subcortical regions [19, 20], that are associated with abnormal neuronal activity [33–35].

Not all neurons and synapses are involved in the pathology to the same extent. For instance, in

PD, pallido-subthalamic gamma-aminobutyric acid (GABA)ergic synapses are up-regulated

[19], whereas glutamatergic cortico-subthalamic are down-regulated [36]. Abnormal synaptic

connectivity may induce abnormally increased neuronal synchrony, as in PD [19, 37], or

abnormally reduced neuronal synchrony, e.g., in AD [25, 26, 38], likely due to aberrant synap-

tic plasticity [37, 39–41]. Furthermore, increased long-range brain connectivity may underlie

seizure facilitation in patients with epilepsy [30] and may predict symptom severity in ASD

[32].

Therefore, counteracting abnormal changes in brain activity and connectivity by therapeu-

tic interventions may provide effective treatment approaches for brain disorders. Neural

circuits in the brain can be modulated by a variety of invasive and noninvasive electrical stimu-

lation strategies aiming at the recovery of normal circuit functions [42–46]. For instance,

noninvasive stimulation of cortical regions can be realized by transcranial direct current

PLOS COMPUTATIONAL BIOLOGY Time-shifted decoupling stimulation by spike-timing-dependent plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010853 February 1, 2023 2 / 38

github.com/MMadadiAsl/Stimulation-induced-

decoupling.

Funding: PAT gratefully acknowledges funding

support by the John A. Blume Foundation and the

Foundation for OCD Research (New Venture Fund

011665-2020-08-01). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: PAT works as

consultant for Boston Scientific Neuromodulation

and is inventor on a number of patents for invasive

and non-invasive neuromodulation. The remaining

authors declare that the research was conducted in

the absence of any commercial or financial

relationships that could be construed as a potential

conflict of interest.

https://doi.org/10.1371/journal.pcbi.1010853
https://github.com/MMadadiAsl/Stimulation-induced-decoupling
https://github.com/MMadadiAsl/Stimulation-induced-decoupling


stimulation (tDCS) or transcranial alternating current stimulation (tACS) which have shown

promising effects on motor and cognitive functions in neuropsychiatric disorders [43, 45, 47].

On the other hand, invasive high-frequency (> 100 Hz) deep brain stimulation (HF-DBS) is

an effective clinical therapy for pathological conditions such as medically refractory PD and

epilepsy [42, 48, 49]. However, reappearance of symptoms soon after the discontinuation of

stimulation [50] entails chronic stimulation which may further side effects [51, 52]. Also, DBS

delivered to the subthalamic nucleus (STN) and globus pallidus internus (GPi) is considered

as ineffective for treating impairment of gait and balance and is little beneficial for or even

worsens speech impairment [53]. Based on computational studies, it was suggested to counter-

act abnormal neuronal synchrony by stimulation techniques designed to specifically cause

desynchronization [54, 55].

In computational studies in oscillator and neuronal networks, different scenarios have been

proposed for the desynchronization of neural populations by single-site stimulation (i.e., tar-

geting one population) or multi-site stimulation (i.e., targeting two or more populations). For

instance, desynchronization may be realized by demand-controlled delayed feedback stimula-

tion [56–59] where the whole network is stimulated and registered at the same time which can

be challenging in a clinical situation. This can be resolved by spatially splitting the whole popu-

lation into two separate subpopulations, one being stimulated and the other being measured

[60]. A more efficient approach has been suggested to separate the stimulation and registration

processes in time rather than in space [61], i.e., by time-delayed feedback control of the patho-

logical activity. However, these methods require a real-time measurement of the network

activity. More importantly, smooth, non-pulsatile feedback stimulation techniques typically

violate safety requirements, in particular, charge density limits [62–64]. Hence, based on

computational studies, it was suggested to use linear and nonlinear delayed feedback signals to

modulate amplitude and sign of continuous pulse train stimulation [65–67]. Alternatively,

using multiple sites and tuning the temporal pattern of stimulation may have huge conse-

quences on the stimulation outcome [68–70]. For instance, coordinated reset (CR) [71] stimu-

lation is a theory-based multichannel patterned stimulation that targets subpopulation of

neurons at different sites sequentially, i.e., in a timely coordinated manner [71, 72]. Computa-

tionally, CR stimulation can shift network dynamics from pathologically synchronized states

to more physiologically favored states with desynchronized activity and, hence, induce long-

lasting desynchronizing effects that outlast stimulation offset [72]. The desynchronizing effects

[71], cumulative effects [73] and long-lasting effects [72] of the CR stimulation were validated

in pre-clinical as well as clinical proof-of-concept studies [74–78].

Prolonged stimulation effects are desirable since they can induce sustained therapeutic out-

come that outlast the cessation of stimulation. However, desynchronizing stimulation may not

necessarily weaken pathologically strong synapses between the neurons during stimulation

[79, 80]. Rather, long-lasting desynchronizing effects can be realized by decoupling neurons

[80], i.e., by desynchronizing the overly synchronized activity of neurons and, furthermore,

reduction of the pathologically strong synaptic connections between neurons. Overly synchro-

nized neuronal activity can arise due to either strong local connections within the brain

regions or due to the excessively potentiated long-range connections between the different

brain regions [81–84]. Therefore, therapeutic stimulation techniques aiming at the reduction

of abnormally synchronized activity could target both local connections and long-range

projections.

In the normal brain, information exchange between functionally specialized regions is cru-

cial for higher order brain functions [82, 85]. Such an inter-areal communication takes place

through long-range synaptic connections across the brain [86–88] and phase synchronization

may allow for controlling the inter-areal information exchange by dividing the time into the
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windows of high and low excitability [85]. Coherence between the activities of brain areas

might arise from generic mechanisms across cortex determined by long-range excitatory pro-

jections [88]. Abnormal long-range connectivity between brain areas was proposed as a poten-

tial pathophysiological mechanism [87, 89]. Pathological changes in inter-areal connectivity

can cause a functional reorganization of the brain characterized by altered activity and func-

tional connectivity patterns and, thereby impairs the normal brain function [87, 89, 90].

Cortical stimulation is one of the therapeutic strategies that typically requires a less invasive

surgical procedure in comparison to DBS surgery. Experimentally, it was shown that cortical

stimulation can induce changes in synaptic connectivity between two interacting networks

[91–95], in this way restoring relevant features of physiological connectivity. As shown both

computationally and experimentally [95, 96], rewiring of synaptic connectivity between two

interacting populations can be realized, e.g., by applying a specific set of stimuli to two popula-

tions to induce a time shift (delay) between their activity so that inter-population synapses

could be regulated through STDP. This motivated us to study a stimulation paradigm applied

to a cortical network model with more realistic assumptions where we explicitly considered

transmission delays along with STDP. We hypothesized that appropriate temporal detuning of

two stimulus trains delivered to two different populations, e.g., a time shift between stimuli,

could effectively decouple the two populations through STDP and induced pronounced effects

outlasting the cessation of stimulation. In fact, one of the goals of this computational study is

to demonstrate how minor parameter changes in comparably simple stimulation protocols

may massively change stimulation outcome.

To test our hypothesis, we used a generic cortical model to study theoretical conditions for

decoupling two initially strongly coupled neuronal populations (modules) by repetitive stimu-

lation of both populations with a time shift. To provide a theoretical basis for the simulation

results, we first considered a reciprocally coupled two-neuron motif with plastic synapses and

theoretically analyzed the optimal range of stimulation frequency and time shift to decouple

neurons with a given set of STDP parameters and transmission delays. We then simulated a

two-module model of cortical networks composed of weakly coupled excitatory and inhibitory

neurons within each population. The two populations interacted via inter-population excit-

atory-to-excitatory delayed connections modified by STDP. In this study we focused on the

modification of inter-population synapses between the two modules to study the effect of the

time-shifted two-site stimulation on the evolution of the plastic synapses between the two pop-

ulations and the resultant effect on the dynamics of the network. To this end we assumed that

the local connections within each population are weak and static. These assumptions meant

that the synchronized activity of the network was due to the pathologically strong long-range

connections and, furthermore, helped us to capture the pure effect of the modification of the

long-range connections on the reduction of synchronized oscillatory activity of the network.

Due to the initially strong inter-population synapses, the initial activity of the modules mim-

icked a pathological condition characterized by high firing rates of the neurons and large-

amplitude collective oscillations. Stimuli were separately delivered to the two modules, each of

them affecting an entire module, respectively. A dedicated time shift between the stimulus

trains for the two modules modified inter-population synapses through STDP. We showed

that the time-shifted stimulation enables the network to unlearn pathologically strong synaptic

interactions between the two modules. Effective decoupling of the two modules ultimately

caused a desynchronization of the network that persisted after stimulation cessation.

We showed that the time shift scheme may work in a rather generic manner. It can be

realized by time-shifted trains of single stimulus pulses as well as patterned delivery of time-

shifted bursts. The STDP potentiation and depression rates and time constants, and the delay

in the transmission of signals along the inter-population connections determine the ultimate
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stimulation-induced distribution of the synaptic strengths after stimulation offset. Our generic

results may contribute to the further development of temporally patterned stimulation in a

variety of multichannel stimulation protocols optimized for unlearning pathological connec-

tivity between neurons which can be adapted for cortical stimulation to induce long-lasting

therapeutic effects by shifting the dynamics of the diseased brain towards healthy attractor

states.

Methods

Neuron and network model

The pairwise analysis was performed on a two-neuron motif comprising two excitatory leaky

integrate-and-fire (LIF) neurons [97] connected by reciprocal plastic synapses (Fig 1A). As a

Fig 1. Representation of the two-neuron motif and neuronal network. (A) Two excitatory neurons coupled by reciprocal

plastic synapses with strength g21/g12. (B) Schematic of the brain and the stimulation electrodes (circles) where the two

stimulation signals (S1/S2) were separately delivered to two representative populations in panel C, e.g., in two hemispheres.

(C) Two reciprocally connected neuronal populations (modules) characterized by inter-population excitatory-to-excitatory

plastic synapses with mean coupling G21/G12. Each stimulation signal consists of intermittent bursts where T represents

inter-pulse interval within a burst and Δt is the time shift between the two stimulation signals delivered to each module. TON

is the stimulation ON-epoch for each stimulation burst and TOFF is the stimulation OFF-epoch between two successive bursts

within each stimulation signal.

https://doi.org/10.1371/journal.pcbi.1010853.g001
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model of cortical neuronal networks [81, 84, 98], two populations (i.e., modules), e.g., in two

hemispheres (see Fig 1B), were connected via inter-population plastic excitatory-to-excitatory

synapses (Fig 1C) [86, 99, 100]. Each module is a local balanced network (see S1(A) Fig) that

consists of N = 200 LIF neurons randomly connected in a sparse manner [101], of which Nex =

0.8N were excitatory and Nin = 0.2N were inhibitory in 4:1 proportion. The strength of inhibi-

tory synapses within each module was on average 4-fold the strength of excitatory synapses

(see S2A and S2B Fig), ensuring local excitation-inhibition balance [102, 103].

In the normalized units, subthreshold dynamics of the dimensionless membrane potential,

i.e., vi(t) = Vi(t)/Vth, of neuron i is described by the following differential equation:

dviðtÞ
dl

¼ � viðtÞ þ IsynðtÞ þ IextðtÞ þ IstimðtÞ; ð1Þ

where λ = t/τm is the dimensionless time in the units of the membrane time constant τm = 10

ms. When vi(t) reaches the firing threshold vth = 1, the neuron fires and the membrane poten-

tial resets to the resting value vr = 0. IsynðtÞ ¼
P

jI
nn
ij ðtÞ þ

P
jI
nm
ij ðtÞ is the synaptic current,

where Inmij ðtÞ ¼ cnmij gnmij snmj ðt � tÞ is the intra- (n = m) or inter-population (n 6¼m) synaptic cur-

rent from the presynaptic neuron j in module m to the postsynaptic neuron i in module n. cnmij
and gnmij are the corresponding elements of the adjacency (C) and synaptic strength (G) matri-

ces, respectively. τ = τd + τa is the total inter-module transmission delay in forward or backward

direction, i.e., the sum of dendritic(τd) and axonal (τa) transmission delays in the synapse con-

necting the pre- and postsynaptic neurons. snmj ðtÞ ¼
P

f expððt � tðf Þj Þ=tsÞYðt � tðf Þj Þ denotes

the spiking activity of neuron j with a time constant τs = 5 ms [104], where t(f) is the firing time

of neurons and Θ(t) is the Heaviside step function. Neuronal, synaptic and network model

parameters are given in Table 1.

Table 1. Neuronal, synaptic and network model parameters [84].

Parameter Symbol Value

Membrane time constant τm 10 ms

Spiking threshold Vth −40 mV

Resting membrane potential Vr −60 mV

Synaptic time constant τs 5 ms

Intra-module transmission delay τintra 0.0 ms

Total inter-module transmission delay τinter

�

11 ms

Upper bound of the synaptic strengths gmax 1.00

Lower bound of the synaptic strengths gmin 0.05

Intra-module inhibitory mean synaptic strength g inintra 0.8

Intra-module excitatory mean synaptic strength gexintra 0.2

Inter-module excitatory mean synaptic strength gexinter 0.8

Total number of neurons per module N 200

Number of excitatory neurons per module Nex 160

Number of inhibitory neurons per module Nin 40

Intra-module connection probability pintra 0.15

Inter-module connection probability pinter 0.15

�

Total inter-module delay is given by τinter = τd + τa, where the dendritic delay was fixed at τd = 0.5 ms and the

remaining delays were assigned to the axonal delay τa.

https://doi.org/10.1371/journal.pcbi.1010853.t001
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External background input

The noisy input, Iext(t), represents the external input from other parts of the brain that are not

considered in the model, considering the high spiking variability observed in cortex [105],

modeled as a homogeneous Poisson process which best represents single neuron dynamics

[81, 84]. In the model, each excitatory neuron within each module was driven by 8000 inde-

pendent Poisson excitatory spike trains, each with a mean rate of 1 spike/s. Each inhibitory

neuron within each module was driven by 6500 independent Poisson excitatory spike trains, at

the same mean rate. The synaptic strengths, transmission delays and external input were tuned

such that each population (when isolated) operated in an inhibition-stabilized regime, charac-

terized by irregular individual firing of neurons and desynchronized network activity (see S1

(B) Fig) [84, 102, 104]. However, the network operating point was close enough to the oscil-

latory regime such that strong long-range excitation could push the global activity towards a

synchronized regime [84, 86, 99]. The intra-population inhibitory synaptic strengths were

picked from a Gaussian distribution with mean 0.8 and standard deviation 0.05, whereas the

intra-population excitatory synaptic strengths were picked from a Gaussian distribution with

mean 0.2 and the same standard deviation (see S2A and S2B Fig). The inter-population excit-

atory synaptic strengths were chosen from a Gaussian distribution with mean 0.2 and standard

deviation 0.05 (see S1(C) Fig).

Stimulation protocol

Istim(t) in Eq (1) represents the stimulation current (S1/S2 in Fig 1) composed of intermittent

bursts that are simultaneously delivered to all (excitatory and inhibitory) neurons embedded

within a population:

IstimðtÞ ¼ K
X

i

dðt � tðiÞstimÞ; ð2Þ

where K is a dimensionless parameter representing the stimulation intensity, tðiÞstim denotes the

onset time of the individual stimulation pulses and δ(t) is the Dirac delta function. Given the

initial point of the stimulation (tð1Þstim), the time of the next pulse onset is determined by the fol-

lowing stimulation protocol:

tðiþ1Þ

stim ¼ tðiÞstim þ T þ dðk � iÞðTOFF � TÞ; ð3Þ

where T is the inter-pulse interval which alternatively represents the intra-burst frequency, i.e.,

ν = 1/T. The total duration of stimulation, i.e., stimulation epoch, was Tstim ¼ 5 s. k = 5 is the

number of pulses within a burst delivered for the duration of ON-epoch (TON = 120 ms). TOFF

= 360 ms represents the stimulation OFF-epoch between two successive stimulation bursts,

i.e., the inverse of burst delivery rate, within each stimulation signal (see Fig 1C).

S1/S2 stimulation signals could separately target two neurons (N1/N2 in Fig 1A) or two rep-

resentative populations (M1/M2 in Fig 1C) in two hemispheres as shown in Fig 1B. Assuming

that the S1 stimulation signal is delivered to N1 (M1) at tð1ÞstimðS1Þ ¼ 10 s, the S2 stimulation sig-

nal is delivered to N2 (M2) with a time shift Dt ¼ tð1ÞstimðS2Þ � tð1ÞstimðS1Þ that represents the time

shift between the onset times of stimulations delivered to the two neurons (populations), as

measured between the first pulse in each train.

Spike-timing-dependent plasticity (STDP)

Pre- (j) and postsynaptic (i) neurons within each module were connected to each other via

instantaneous static synapses with strength gnnij , whereas the two modules were connected by
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inter-module excitatory-to-excitatory plastic synapses with transmission delays from the pre-

synaptic neuron j in module m to the postsynaptic neuron i in module n with strength gnmij
modified according to the following pair-based STDP rule [6]:

Dgnmij ¼ A� sgnðDt þ xÞ expð� jDt þ xj=t�Þ; ð4Þ

where A± and τ± are the learning rate and the effective time constant of synaptic potentiation

(upper) and depression (lower sign), respectively, and sgn(Δt) is the sign function. Δt = tpost −
tpre is the instantaneous time lag between pre- and postsynaptic spike pairs and ξ = τd − τa indi-

cates the effective delay perceived at the synapse, i.e., the difference between dendritic and axo-

nal transmission delays [106].

Evaluated over the time interval between two successive spikes (T), the potentiation and

depression terms in Eq (4) compete to determine the net synaptic change in a synapse as fol-

lows [106]:

DgðTÞij ¼ Aþ expð� jDtþj=tþÞ � A� expð� jDt� j=t� Þ; ð5Þ

assuming that |Δt+| = Δt + ξ is the time lag used by the STDP rule for potentiation of the syn-

apse and |Δt−| = T − |Δt + ξ| is the depression time lag.

We used a generic, dimensionless model within which the synaptic weights are scaled so

that they reproduce the dynamics that mimic those observed in normal and diseased brains in

a realistic situation. The synaptic strengths were updated by an additive rule at each step of the

simulation, g! g + Δg. The value of the synaptic strengths was restricted in the range [gmin,

gmax] 2 [0.05, 1.00]. The synaptic strengths were set to gmin (gmax) via hard bound saturation

constraint once they crossed the lower (upper) bound of their allowed range. Plasticity model

parameters are given in Table 2.

Data analysis

Inter-population mean coupling. The mean coupling strength between the modules

from the presynaptic module m to the postsynaptic module n was measured by calculating the

average of the plastic inter-population synaptic strengths at a given time:

GnmðtÞ ¼
1

N

XN

i¼1

XN

j¼1

cnmij g
nm
ij ; ð6Þ

where N is the total number of neurons in each module. Furthermore, the time averaged inter-

population mean coupling between the two modules in the network (Gave) was evaluated over

10 s of network activity after stimulation offset.

Population activity. The population activity of module i in the network was calculated by

counting the number of spikes in a time interval which gives the number of active neurons at

Table 2. Plasticity model parameters [7, 107, 108].

Parameter Symbol Value

Maximum potentiation amplitude A+ 0.008

Maximum depression amplitude A− 0.005

Potentiation time constant τ+ 10 ms

Depression time constant τ− 20 ms

https://doi.org/10.1371/journal.pcbi.1010853.t002
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that interval:

AiðtÞ ¼
1

N

XN

j¼1

X

f

dðt � tðf Þj Þ; ð7Þ

where N is the total number of neurons in module i and t(f) is the firing time of individual

neurons.

Pairwise correlations. The Pearson correlation coefficient was used to calculate the spike

count correlation between pairs of neurons (i, j) in each module that is given by:

rij ¼
cij
si sj

; ð8Þ

where cij is the covariance between spike counts of the two neurons calculated from their spike

trains, and σi is the standard deviation of spike time distribution given by the corresponding

spike train. Correlations were calculated based on the spike times resulted from 10 s of net-

work activity before/after stimulation on/offset.

Spike count irregularity. The coefficient of variation of the inter-spike intervals (ISIs)

was calculated as a measure of the irregularity of spiking activity of neuron i:

CVi ¼
si

mi
; ð9Þ

where σi is the standard deviation and μi is the mean of the ISIs calculated from the spike time

distribution of neuron i given by its spike train evaluated over 10 s of network activity before/

after stimulation on/offset.

Population Fano factor. The population Fano factor (pFF) was used to measure the syn-

chrony of population activity in module i, defined as [109]:

pFFi ¼
s2½AiðtÞ�
m½AiðtÞ�

; ð10Þ

where Ai(t) represents the population activity defined in Eq (7), and σ2 and μ are the variance

and mean of the population activity, respectively. The pFF evaluates the normalized amplitude

of the variation of the population activity which increases when the neurons fire in synchrony

[84, 110]. Smaller values of the pFF correspond to desynchronized states, whereas greater val-

ues of the pFF imply synchrony in the network. The pFF was evaluated over 10 s of network

activity after stimulation offset.

Results

Two-neuron motif

We first studied if the time-shifted stimulation can decouple a two-neuron motif, i.e., reduce

the initially strong synaptic connections and, furthermore, suppress the firing activity of neu-

rons. For this, we explored the evolution of the synaptic strengths in a motif consisted of two

stochastically firing excitatory neurons coupled by reciprocal plastic synapses (see Fig 1A).

This motif is representative of two neurons in two different populations connected by long-

range connections and as will be shown below by demonstrating that results obtained in the

motif can adequately predict those for two connected populations. For simplicity and for ana-

lytical tractability, we considered the classical STDP profile characterized by asymmetric modi-

fication of the synapses based on Eq (4) [6]. We set the parameters of STDP according to the

biologically realistic, generic forms of cortical STDP profiles [7] characterized by larger
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potentiation rate (i.e., A+ > A−) and relatively longer time window for synaptic depression

(i.e., τ+ < τ−). The temporal STDP parameters are consistent with experimental observations,

e.g., in rat cortical slices [7]: tþ ¼ 13ms and t� ¼ 34ms, or those originally reported in rat

hippocampal cultures [6]: tþ ¼ 19ms and t� ¼ 34ms. Based on these observations, the direc-

tion of the synaptic change critically depends on the relative timing of pre- and postsynaptic

spikes on a millisecond time scale [4, 5]. Accordingly, STDP time constants of the order of 10–

40 ms were widely used in previous STDP modeling studies [1, 107, 108, 111, 112].

We then stimulated the two neurons periodically with period T (or alternatively with fre-

quency ν = 1/T) but at different times with a time shift Δt in order to find which values of T
and Δt lead to a depression of both synapses. First, we ignored the delay in the transmission of

the signals between the two neurons (i.e., when |ξ| = 0). Over a period each synapse experi-

ences a succession of potentiation and depression and the net change of the synaptic strength

depends on the superposition of the two changes [106, 113]. For more clarity we assumed that

the neuron N1 in Fig 1A is stimulated first and the neuron N2 is stimulated after the time shift

Δt. The 1! 2 synapse experiences a potentiation (Dgþ
21

) and a depression (Dg �
21

), and it will be

depressed if Dgþ
21
< Dg �

21
. By the same token, the reverse synapse (i.e., 2! 1) is depressed

when Dgþ
12
< Dg �

12
. Taken together, the condition for depression of synapses in both directions

will be given by DgðTÞ21 ðDtÞ < 0 and DgðTÞ12 ðDtÞ < 0 (see Eq (5) in Methods).

The regions for depression (blue) and potentiation (red) of both synapses and the potentia-

tion of one synapse and the depression of the other (orange) are shown Fig 2 in the Δt-T plane,

as predicted theoretically by calculating the net synaptic change for reciprocal synapses

between two neurons given by Eq (5). The results indicate that for the chosen STDP parame-

ters, for most values of Δt and T the synapses will be potentiated in one direction and will be

depressed in the other, leading to unidirectional connectivity. For the simultaneous depression

of synapses in two directions, which is the target of our time-shifted stimulation approach,

there is a desired range for Δt and T where the neurons should fire almost in anti-phase, i.e., Δt
� T/2 = 1/2ν. The numerical results shown in S3 Fig for an exemplary set of parameters

(marked by point b in Fig 2A) verify the theoretical prediction, valid in the absence of axonal

and dendritic delays.

Fig 2. Theoretical prediction of the emergent two-neuron connectivity. Qualitative colors show the synaptic structure between a pair of pre- and

postsynaptic neurons calculated based on the synaptic change in Eq (5) over a period (T): Decoupled (blue), unidirectional (orange) and bidirectional (red)

regimes. STDP parameters were A+ = 0.008, A− = 0.005, τ+ = 10 ms and τ− = 20 ms. (A) Points a: (11, 48) ± 9 ms, b: (15, 30) ms and c: (31, 54) ± 6 ms

represent (Δt, T) pairs obtained from simulations performed in S1 Fig before, during and after the stimulation, respectively, for |ξ| = 0.0 ms. (B) |ξ| = 5.0 ms;

the effective delay at synapse reshapes the Δt-T plane. (C) Points a: (21, 45) ± 8 ms, b: (5, 30) ms and c: (41, 50) ± 6 ms show the same (Δt, T) pairs as in A,

but obtained from numerical simulations performed in Fig 3 before, during and after the stimulation, respectively, for |ξ| = 10.0 ms.

https://doi.org/10.1371/journal.pcbi.1010853.g002
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Next, we explicitly considered the role of realistic transmission delays in the model. As

shown previously [106, 113], the difference between the dendritic and axonal delays (ξ = τd −
τa), enters the formula for the modification of the synapses in Eq (4), since the effect of the fir-

ing of pre- and postsynaptic neurons builds up at the synapse after axonal and dendritic (back-

propagation) transmission delays, respectively. In this case, the condition for depression of the

synapses in two directions is given by DgðTÞ21 ðDt þ xÞ < 0 and DgðTÞ12 ðDt þ xÞ < 0. In Fig 2B and

2C, regions for three different kinds of final pairwise synaptic connections are shown for two

different values of |ξ|, representing median transmission delay between cortical populations

[114]. We considered positive values of ξ since for long-range connections axonal delays are

greater than dendritic delays. Intriguingly, at small values of the firing period (i.e., at high stim-

ulation frequencies), and also at greater periods (i.e., at low stimulation frequencies), a close-to

in-phase firing may lead to depression of both synapses. This is illustrated by a numerical

experiment in Fig 3A and 3B with exemplary parameters marked by point b: The simulation

related to (Δt, T) = (5, 30) ms in Fig 2C demonstrates the validity of the analytical predictions.

Note, with this set of parameters coincidence of the spontaneous firing of the neurons led to a

potentiation of both synapses (point a in Fig 2C). In contrast, stimulation with appropriate

parameters (point b in Fig 2C) led to a depression of both synapses after stimulation offset

(point c in Fig 2C). Obviously, administration of additional trains of stimuli leads to a further

depression of the synapses. Fig 3C also shows that in the two-neuron motif either with (bot-

tom) or without (top) transmission delay, the time-shifted stimulation effectively reduced the

mean firing rates in both cases. This lead to a desynchronization of the two-neuron motif by

Fig 3. Suppression of the synaptic strengths between two neurons by time-shifted stimulation. (A) Time course of neuron discharges (N1/N2)

and the synaptic strengths (g21/g12) are shown for two neurons when STDP parameters were A+ = 0.008, A− = 0.005, τ+ = 10 ms and τ− = 20 ms,

and |ξ| = 10.0 ms. (B) (Top) Results in panel A are shown with a higher resolution. (Bottom) Stimulation signals were delivered to N1 (S1) and N2

(S2) for the duration of Tstim = 5 s (stimulation ON period in A) with time shift Δt = 5 ms and frequency ν = 33.3 Hz (inspired by parameters

shown in point b in Fig 2C). (C) Time course of the mean firing rate of neurons (f1/f2) for |ξ| = 0.0 ms (top) with (Δt, T) = (15, 30) ms and for |ξ| =

10.0 ms (bottom) with (Δt, T) = (5, 30) ms.

https://doi.org/10.1371/journal.pcbi.1010853.g003
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reducing the coincidence of the neuronal discharges where the neurons were unable to resyn-

chronize their activity due to the weakened coupling.

Bidirectionally connected populations

We then replaced each neuron in the two-neuron motif by a population of excitatory and

inhibitory neurons and studied whether the theoretical predictions obtained in the two-neu-

ron motif were valid for two bidirectionally connected populations (i.e., two modules in Fig

1C). The approach employing two-neuron motifs and then translating the results to two inter-

acting populations was successfully used previously in several computational studies [108, 115,

116]. By the same token, several studies used neuronal network models comprising two popu-

lations interacting via long-range excitatory-to-excitatory delayed projections modified by

STDP [84, 100]. Weakly coupled excitatory and inhibitory neurons within each population

were connected in a sparse manner. The synaptic strengths, transmission delays and external

input were tuned such that each population operated in an inhibition-stabilized regime, char-

acterized by irregular individual firing of neurons (see S1(B) Fig) [84, 102, 104]. However, the

network operating point was close enough to the oscillatory regime such that strong long-

range excitation could elicit pathological synchronous firing [18, 117] of the two modules with

high firing rate [84, 86, 99], as consistent with anatomical evidence that cortical excitation has

a larger spread than local inhibition due to long-range projections of cortical pyramidal neu-

rons [118, 119]. As shown previously, when this long-range excitation is sufficiently strong,

the network dynamics exhibit synchronous oscillations, whereas decoupling of the two popu-

lations deteriorates collective oscillations [86, 99]. Stimuli were delivered to the two popula-

tions separately, thereby homogeneously affecting all excitatory and inhibitory neurons in

each population, respectively. By stimulating both populations with time-shifted stimulus

pulse trains, we aimed at inter-population decoupling, i.e., reduction of the strong, plastic syn-

aptic connections between the two populations, in this way inducing an effect outlasting the

cessation of stimulation. This, in turn, caused a desynchronization of the populations. The

parameters of the stimulation, including frequency and time shift, were chosen based on our

results obtained in a pair of neurons as shown in Fig 2.

We first examined the system in the absence of any transmission delay. In that case, the

stimulation can suppress the inter-population connections and desynchronize the neuronal

activity in the populations in a long-lasting manner, exceeding cessation of stimulation (see S4

Fig). Note, taking into account realistic transmission delays changes the stimulation parame-

ters required for decoupling and desynchronizing the two cortical modules (see Fig 2C).

Experimental estimates of delays in long-range inter-population connections vary from a few

to tens of milliseconds [120] and, hence, cannot be ignored in biologically realistic simulations.

As shown previously [112, 121], in the absence of transmission delays synapses tend to evolve

in an asymmetric manner, giving rise to unidirectional connections, where depression of a

synapse usually comes at the expense of potentiation of the reverse synapse. Therefore, bidirec-

tional depression of synaptic strengths is unlikely to occur in the absence of transmission

delays, especially for balanced STDP profiles [112, 121]. In contrast, in the presence of trans-

mission delays, simultaneous bidirectional depression or potentiation of reciprocal synapses is

more likely to occur (see Refs. [106, 113, 122] and Fig 2A-C).

Inter-population delays represent the delay in the transmission of signals between the two

distant brain regions which interact through long-range projections. Such a range of transmis-

sion delays were experimentally observed in cortico-cortical connections, e.g., between pri-

mary somatosensory cortex (S1) and secondary somatosensory cortex (S2) in rabbits (* 2–30

ms) [123] and cats (* 2–40 ms) [124]. In humans, the average-sized myelinated fiber
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interconnecting the temporal lobes would have an inter-hemispheric delay of over 25 ms [125,

126]. The inter-module delays in our study are chosen to lie within this range of realistic delays

for long range connections, but the choices are exemplary (e.g., 5 and 10 ms) and the results

can be easily adopted for two specific areas with a known transmission delay.

In this study, we fixed the dendritic (back-propagation) delay at a biologically realistic value

τd = 0.5 ms, whereas the remaining delays were assigned to the axonal delay. The dynamical

and structural characteristics of the network before and after stimulation are shown in Fig 4.

The initial values of the connection strengths were chosen based on the previous results [113].

The neurons in the two populations fired in an irregular and asynchronous manner when the

two populations were isolated, while they fired synchronously and the populations oscillated

in an anti-phase manner when the two populations were connected by the long-range excit-

atory projections (Fig 4A1). Other phase relationships could be obtained depending on the

choice of the inter-populations delays (see S4 Fig). This models of a pathological state with

strong phase-locked oscillations of the two populations (Fig 4D, left), regular spiking (Fig 4C,

grey) at a high rate (Fig 4H) and high pairwise correlation (Fig 4B, grey) between the spiking

activities of the neurons in each module. Based on the values of the periods and the time-shift

between the stimulus trains in the two-neuron motif (Fig 2), the outcome of stimulation can

be predicted. The simulation results for the two populations (Fig 4F and 4G) are in accordance

with the prediction of the theoretical results (Fig 2C). To induce an unlearning of the patholog-

ical state, we choose stimulation parameters from the two-neuron motif given by point b in

Fig 2C in order to decouple the two populations (frequency ν = 1/T = 33.3 Hz, time shift Δt = 5

ms and delay |ξ| = 10.0 ms). After 5 s of stimulation, the mean synaptic strengths between both

cortical modules were significantly suppressed in both directions (Fig 4F). Accordingly, right

after stimulation the initially pronounced oscillations of both cortical modules are suppressed

(Fig 4A2 and 4E, colored), and the neurons fire at a much lower rate and in an irregular man-

ner (Fig 4B, 4C and 4H, colored).

The persistent effect of the stimulation on desynchronization and decoupling might be of

great clinical interest. It appears the persistent effect was driven by lower firing rates and

uncorrelated firing of the neurons after the cessation of stimulation. In this case, it is important

to know under what conditions the firing rate and the synchrony remains low after stimulation

ceases. The noise level [84] and strength of the local excitatory and inhibitory connections

[102, 104] may actually play a role in this process; however, we intended to highlight the role

of inter-population connections in the emergence and disappearance of the pathologically syn-

chronous activity. To this end, the intra-population synaptic strengths, transmission delays

and external input were tuned such that each isolated population worked in a normal, irregular

and asynchronous condition where the initially strong synaptic connections between the two

populations led to the synchronous firing of the two modules with high firing rate. Our obser-

vations in Fig 5 revealed that stimulation-induced reduction of the inter-population synaptic

strengths below a threshold prevents the re-potentiation of synaptic strengths and, thereby the

re-synchronization of the population activity where the firing rates remain low after the stimu-

lation cessation. This results in the low-frequency and uncorrelated firing of neurons within

each population following stimulation which leads to a depression-dominated modification of

the synaptic strengths (according to the STDP profile) and, thereby stabilizes the network’s

dynamics and connectivity in a loosely connected state.

This realizes the decoupling and desynchronizing effects of the stimulation. In fact, stimula-

tion of both populations with a time shift results in a significant reduction of inter-population

coupling strength through STDP. This causes a desynchronization of the populations due to a

decay of the external drive from the reciprocal population [127]. In this way, the decoupled

populations return to their desynchronized firing activity in the absence of a significant
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Fig 4. Decoupling by time-shifted stimulation in the network. (A1,A2) Raster plots and population activities (percentage of neurons firing per time window) are

shown for the modules (M1/M2) before/after stimulation on/offset. (B,C) Distribution of the pairwise correlation and spike count irregularity of each module before

(grey) and after (colored) stimulation epoch. (D) Snapshot of phase lags (Δf) between synchronous discharges from the two modules before t = 9 s, left) and after

(t = 25 s, right) stimulation epoch. The radial bars show the distribution of the phase lags. (E) Fourier transform frequency of the population activity of each module

before (grey) and after (colored) stimulation epoch. (F) Time course of the inter-population mean coupling (G21/G12). (G) Distribution of the inter-population

synaptic strengths before (grey) and after (colored) stimulation epoch. (H) Time course of the mean firing rates (f1/f2) of neurons in each module. The modules were

stimulated with time shift Δt = 5 ms and frequency ν = 33.3 Hz (point b in Fig 2C) for the duration of Tstim = 5 s (highlighted area in F and H). The effective delay was |

ξ| = 10.0 ms. STDP parameters were A+ = 0.008, A− = 0.005, τ+ = 10 ms and τ− = 20 ms.

https://doi.org/10.1371/journal.pcbi.1010853.g004
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external drive where the individual neurons fired stochastically. These irregular activity states

reflect basic properties of normal cortical states [105, 128, 129].

Moreover, the initial distribution of the synaptic weights was chosen to give rise to patho-

logical dynamics. However, as it has been shown previously, that the mean of the initial distri-

bution of the synaptic weights or its standard deviation could, in principle, affect the emerging

dynamics and structure due to multistability of synchronized and desynchronized states [130]

or multistability of weak and strong connectivity regimes in plastic neuronal networks [113].

Long-lasting decoupling by STDP

Intriguingly, after stimulation offset the connections continue to weaken. This is a very impor-

tant point for the design of stimulation protocols that enable long-lasting effects. To avoid a

relapse of the pathological dynamics the system has to be shifted into the basin of attraction of

Fig 5. Stimulation-induced decoupling depends on the STDP parameters. (A1,A2) Colors show the imbalance between STDP potentiation and

depression rates, and time constants for |ξ| = 0.0 ms (A1) and |ξ| = 10.0 ms (A2). A− = 0.005 and τ− = 20 ms were fixed and A+ and τ+ were varied. Arrows

show the direction of synaptic change calculated theoretically based on Eq (5) where each corner of A1 and A2 labeled as the emergent synaptic structure

between two neurons marked as bidirectional (right top), unidirectional (left top and right bottom) and decoupled (left bottom) states. Point a: (A+/A−, τ+/

τ−) = (1.6, 0.5) shows parameters used for stimulation in Figs 3 and 4. Parameters shown in points b: (1.2, 0.8) and c: (1.6, 1.6) were used to provide a

comparison. (B) Time course of the synaptic strengths in the two-neuron motif (g21/g12) and inter-population mean coupling between two modules in the

network (G21/G12) are shown for STDP parameters represented by points a-c in A2, respectively. The highlighted area indicates the stimulation epoch. The

horizontal dotted lines (grey) roughly show the threshold (Gth� 0.3) where the synaptic strengths must cross to obtain a stable loosely connected network

structure. Stimulation parameters were ν = 33.3 Hz and Δt = 5 ms.

https://doi.org/10.1371/journal.pcbi.1010853.g005
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the desynchronized state, rather than still remaining in regimes supporting repotentiation of

the synapses (i.e., red or orange zone in Fig 2). In fact, the targets of our stimulus protocol are

the basins of attraction of favorable, desynchronized states (cf. Ref. [131]) with STDP profiles

satisfying the condition A+τ+ < A−τ− [107] (blue region in Fig 5A1 and 5A2), where the irregu-

lar neuronal firing and the low inter-module correlation may enable a continued depression of

the synapses between both cortical modules. We hypothesized that the decrease of the synaptic

weights below a certain threshold can prevent from re-potentiation of the synapses and the

corresponding relapse of pathological dynamics after the cessation of stimulation.

To test this hypothesis and to demonstrate the predictive ability of the two-neuron results

we repeated the simulations for both the two-neuron motif and the bidirectionally connected

neuronal populations with different sets of STDP parameters (three sets are shown in Fig

5A2). Changing the ratio of potentiation and depression rates and time constants leads to dif-

ferent trade-offs between potentiation and depression regimes. For illustration, we used the

same stimulation protocol with fixed parameters (ν = 33.3 Hz and Δt = 5 ms) and a given delay

|ξ| = 10 ms, and observed qualitatively different outcomes by changing the STDP parameters:

Simultaneous depression of the synapses (Fig 5Ba and 5Bb) or simultaneous potentiation of

the synapses (Fig 5BC). While A+τ+ < A−τ− was ensured in Fig 5Ba and 5Bb, the mean rates of

the depression of the synapses were different because of the different STDP parameters.

Whether or not the strong synaptic connections between the two neurons or two popula-

tions are weakened during stimulation and continue to weaken after the cessation of stimula-

tion depends on the STDP parameters. The depression of the synaptic strengths below a

threshold leads to a continued weakening of synaptic connections outlasting stimulation offset

(Fig 5Ba). By changing the STDP parameters, it might take longer to enter the targeted basin

of attraction. For instance, if at stimulation offset not all synaptic weights were below thresh-

old, the connections got re-potentiated thereafter (Fig 5Bb). In contrast, in Fig 5BC the stimu-

lation was unsuccessful since for the selected set of STDP parameters the stimulation induced

a potentiation of the synapses. These behaviors were fairly predicted by the direction of the

synaptic change (indicated by arrows) in Fig 5A1 and 5A2 calculated from Eq (5) for the two-

neuron motif where each corner in panels A1 and A2 marks the emergent pairwise synaptic

structure. A successful, long-lasting decoupling stimulation requires the stimulation frequency

and time shift to be chosen in a way that STDP depression parameters dominate over potentia-

tion. In addition, a sufficient amount of stimulation has to be delivered to ensure that the syn-

aptic weights fall below threshold in order to cause a desynchronization of the populations.

The final network topology after the cessation of stimulation can be roughly estimated based

on the theoretical results in Fig 2 and simulation results in Fig 5, depending on the STDP

parameters. The initial structural connectivity matrix of the network is shown in S5A1 Fig,

using a binary representation which follows a random degree distribution (S5A2 Fig). To find

the final network topology based on the synaptic strengths (S5B1 Fig), we transformed the struc-

tural connectivity matrix into a binary connectivity matrix shown in S5B2 Fig, by introducing a

threshold over which the link is maintained in the binary matrix. The final synaptic strength

matrix and the final connectivity matrix of the network are shown in S5B1, S5B2, S5C1 and

S5C2 Fig for two different sets of the STDP parameters used in Fig 5Ba and 5BC, respectively.

Particularly, successful stimulation-induced decoupling results in a significantly reduced con-

nectivity (S5B2 Fig) where most of the long-range connections are depressed (S5B1 Fig) so that

they are eliminated in the binary connectivity matrix (S5B3 Fig). In contrast, unsuccessful stim-

ulation-induced decoupling is associated with significantly increased synaptic strengths (S5C1

Fig) where the final connectivity is equivalent to the initial structural connectivity (cf. S5C2 and

S5A1 Fig), both following the same random degree distribution (cf. S5C3 and S5A2 Fig).
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Burst stimulation vs. continuous stimulation

So far, we used a time-shifted burst stimulation pattern (see Fig 6A1, top) in order to suppress

the synaptic connections between the two neurons (Fig 3A) or the two modules (Fig 4F). In

this case, the depression of the synaptic strengths at the end of each stimulation epoch occurs

in a step-like manner due to the ON/OFF epochs of the burst stimulation (TON/TOFF in Fig

6A1, top). When the stimulation parameters, i.e., time shift, frequency and integral amount of

stimulation, are adequately tuned based on the given STDP parameters, stimulation of suffi-

cient duration can effectively decouple strongly connected neurons in the two-neuron motif as

well as the two-module network.

Fig 6. The effect of stimulation pattern on the stimulation outcome. (A1) Burst stimulation pattern (top) vs. continuous stimulation pattern

(bottom) with the same frequency and time shift between the two signals (i.e., ν = 33.3 Hz and Δt = 5 ms). (A2,A3) Time course of the synaptic

strengths in the two-neuron motif (g21/g12) and the inter-population mean coupling between two modules in the network (G21/G12) are shown for

burst and continuous patterns delivered to each module for |ξ| = 10.0 ms. (B1) Time-shifted stimulation (top) vs. control coincident stimulation

(bottom) with the same frequency (ν = 33.3 Hz). (B2,B3) Same as A2 and A3, but for the burst stimuli delivered with and without time shift. The

highlighted area indicates the stimulation epoch. STDP parameters were A+ = 0.008, A− = 0.005, τ+ = 10 ms and τ− = 20 ms.

https://doi.org/10.1371/journal.pcbi.1010853.g006
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To demonstrate whether mutually shifting the stimulation pulse patterns in time by Δt
may work in a rather generic way, we additionally considered a continuous stimulation pat-

tern (Fig 6A1, bottom), implemented by eliminating the OFF-epoch (TOFF) from the stimu-

lation protocol by setting TOFF = T in Eq (3). Note that the continuous stimulation was

applied to the system with the same intra-burst frequency (i.e., ν = 33.3 Hz) as of the burst

stimulation. In both scenarios, the stimulation signals delivered to the two neurons or two

modules were time-shifted by Δt = 5 ms. As one can hypothesize, the application of a contin-

uous stimulation pattern in this setting expedited the rate of decoupling due to the elimina-

tion of TOFF (a time window enabling the synaptic strengths to re-increase) as it is shown in

Fig 6A2 and 6A3. In reality, however, the continuous stimulation might invoke slower sec-

ondary processes such as adaptation which might counteract the desired effects. However,

this remains to be tested experimentally. On the other hand, the integral current delivery is

much higher in the case of continuous stimulation. The results obtained with continuous

stimulation indicate that the synaptic weight reduction induced by time-shifted stimulus

delivery may be a mechanism that applies to a larger class of stimulation patterns, not only to

periodic delivery of bursts.

Time-shifted stimulation vs. unshifted stimulation

We illustrated that by introducing a simple time shift between the stimulation signals applied

to two neurons or to two bidirectionally connected neuronal populations effectively reduced

strong synaptic connections between the populations and caused a desynchronization of the

populations. In particular, to demonstrate the significance of the time shift in the burst stimu-

lation pattern (shown in Fig 6B1, top) we considered a control condition, where bursts were

delivered coincidentally, without time shift (shown in Fig 6B1, bottom) and studied its impact

on the two-neuron motif and the two-module network.

We repeated the simulations for the two-neuron motif and the two-module network,

thereby taking into account realistic transmission delays in the model. The control condition

was implemented by setting Δt = 0. In this case, spontaneous background activity may cause

jitters between in-phase stimulation pulses resulting in the emergence of small time lags

between neuronal spikes which can lead to the potentiation of the synapses in both directions

since A+ > A− in Eq (5). Therefore, in this setting the type of synaptic modification is deter-

mined by the dominance of the STDP-induced potentiation over STDP-induced depression

rather than the STDP time constants (τ+ < τ−) that are important at greater time lags. As

shown in Fig 6B2 and 6B3, the control stimulation induced a reciprocal potentiation of the

synapses between the two neurons in the two-neuron motif and, by the same token, potenti-

ated the inter-population synaptic connections between the two bidirectionally connected

neuronal populations (cf. green/orange curve with black/magenta one in Fig 6B2 and 6B3).

Note that the emergent connectivity patterns shown in Fig 2 are theoretical predictions (Eq

(5) in Methods) based on deterministic single neuron dynamics evaluated over the time inter-

val between two regular spikes [106]. While the theoretical results roughly predict the stimula-

tion-induced emergent structure of the two-neuron motif and the two populations, the

irregular firing of the neurons in the case of two populations makes deviations from the theo-

retical results. In fact, during stimulation most of the neurons are forced to spike at the stimu-

lation frequency so that the theoretical predictions are supposed to hold. However, at the

extreme points, e.g., at Δt = 0 as in Fig 6B2 and 6B3, the synaptic strengths change only due to

the jittering around Δt = 0 where the potentiation dominates since A+ > A−. Note that such an

effect of jittering which is not reflected in Fig 2, is only significant for Δt = 0 and in general for

the points lying in the borders of the potentiation/depression areas.
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Targeting excitatory cells or inhibitory cells during stimulation

In our model, we assumed the external stimulation as a simple input current separately deliv-

ered to the two modules, affecting all excitatory and inhibitory neurons in each population,

respectively. To investigate whether the stimulation outcome depends on the type of stimu-

lated cells, i.e., excitatory cells vs. inhibitory cells, we specifically stimulated excitatory neurons

in Fig 7A1 and inhibitory neurons in Fig 7A2 with the same stimulation and STDP parameters

used in Fig 4 (see Tables 2 and 3). Slightly varied stimulation/model parameters led to a similar

outcome (not shown). Interestingly, in either case the stimulation outcome is similar to the

case where all excitatory and inhibitory neurons were stimulated (Fig 4). Particularly, the

mean synaptic strengths between the two populations were significantly reduced after the ces-

sation of stimulation (Fig 7B1 and 7B2). After 5 s of stimulation, both excitatory (Fig 7C1, top)

Fig 7. Targeting excitatory cells or inhibitory cells during stimulation. Stimulation outcome when only excitatory neurons (left column) and only inhibitory

neurons (right column) were stimulated. (A1,A2) Raster plots are shown for the modules during a 100 ms window of the 5 s stimulation epoch. In each module,

neurons #1 to #40 are inhibitory and the remaining are excitatory. For clarity, the onset times of stimulation are indicated with black circles around each panel. (B1,

B2) Time course of the inter-population mean coupling. (C1,C2) Time course of the mean firing rates of excitatory (top) and inhibitory (bottom) neurons in each

module. Stimulation and STDP parameters were similar to those used in Fig 4 (see Tables 2 and 3).

https://doi.org/10.1371/journal.pcbi.1010853.g007
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and inhibitory (Fig 7C1, bottom) neurons fired at a lower rate when only the excitatory neu-

rons were stimulated. Following stimulation of only the inhibitory neurons, the firing rate of

inhibitory neurons increased during stimulation (Fig 7C2, bottom), reducing the firing rate of

excitatory neurons during and after stimulation (Fig 7C2, top).

In a realistic situation, however, depending on whether the external stimulation represents

tDCS/tACS or a sensory stimulus, it may affect excitatory and inhibitory cells differentially

[132–136]. For instance, inhibitory neurons can be activated at low stimulation intensities,

whereas excitatory neurons would require stronger stimulation, as revealed by computational

[132–134] as well as experimental findings [135, 136]. The stimulation frequency can also dif-

ferentially modulate the firing rate of excitatory and inhibitory neurons. While at low fre-

quency (i.e., 5 Hz), the firing rate of inhibitory neurons is preferentially increased, at higher

frequencies (i.e., 26 and 52 Hz), the excitatory neurons show increased firing rates [133, 134],

potentially due to the intrinsic difference in decay times of excitatory and inhibitory synapses

[134]. Therefore, careful selection of specific frequencies and amplitudes of the stimulus may

allow for selective enhancement and suppression of the excitation-inhibition ratio.

Rescaling stimulation frequency and time shift

In order to study the influence of the stimulation time shift (Δt) and frequency (ν) on the

stimulation outcome we ran numerical simulations for a reasonable range of Δt and ν and

measured the averaged inter-population mean coupling between the two neuronal populations

given by Eq (6) and the synchrony level by the pFF of the activity of each module given by Eq

(10), as it is shown in Fig 8. The pFF evaluates the normalized amplitude of the variation of the

population activity which increases when the neurons fire in synchrony [84, 110].

When transmission delays were not considered in the model (Fig 8A1–8A4), stimulation

frequencies over 50 Hz with a small time shift (i.e., Δt< 10 ms) and stimulation frequencies

Table 3. Summary of the stimulation model parameters.

Effective delay Parameter Symbol Value Figures

|ξ| = 0.0 ms Stimulation time shift Δt 15 ms

Unshifted stimulation 0 ms

Inter-pulse interval T 30 ms

Intra-burst frequency ν 33.3 Hz Fig 3C, top

Burst stimulation ON-epoch TON 120 ms Fig 8A1–8A4

Burst stimulation OFF-epoch TOFF 360 ms S3 Fig

Continuous stimulation OFF-epoch 30 ms S4 Fig

Total duration of stimulation Tstim 5 s

Number of pulses within a burst k 5

|ξ| = 10.0 ms
�

Stimulation time shift Δt 5 ms

Unshifted stimulation 0 ms Fig 3A

Inter-pulse interval T 30 ms Fig 3C, bottom

Intra-burst frequency ν 33.3 Hz Fig 4

Burst stimulation ON-epoch TON 120 ms Fig 6

Burst stimulation OFF-epoch TOFF 360 ms Fig 7

Continuous stimulation OFF-epoch 30 ms Fig 8B1–8B4

Total duration of stimulation Tstim 5 s S5 Fig

Number of pulses within a burst k 5

�

Effective delay is given by ξ = τd − τa, where the dendritic delay was fixed at τd = 0.5 ms and the remaining delays were assigned to the axonal delay τa [106].

https://doi.org/10.1371/journal.pcbi.1010853.t003
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below 20 Hz with a large time shift (i.e., Δt> 70 ms) failed to desynchronize neuronal activity

in each module (Fig 8A1 and 8A2, dark red) or suppress strong inter-population connections

between the modules (Fig 8A3 and 8A4, dark red). However, stimulation frequencies below 50

Hz with greater time shifts (i.e., 10 ms< Δt< 70 ms) induced desynchronizing effects (Fig

8A1 and 8A2, light red) and suppressed inter-population connectivity in the network (Fig 8A3

and 8A4, light red). Point a characterized by (Δt, ν) = (15 ms, 33.3 Hz) in Fig 8A1–8A4 shows

the set of time shift and stimulation frequency used for decoupling stimulation in the absence

of delays (see S3 and S4 Figs). The blue (N/A) region in Fig 8 shows the range of parameters

where the constraint 0< Δt< T = 1/ν is not satisfied.

Inclusion of realistic transmission delays in the model crucially reshapes the optimal

range of stimulation parameters required to induce decoupling effects (shown in Fig 8B1–

8B4). In particular, in this case, stimulation frequencies over 60 Hz or below 30 Hz both with

a small time shift (i.e., Δt< 10 ms = |ξ|) induced desynchronizing effects (Fig 8B1 and 8B2,

light red) and suppressed inter-population connectivity (Fig 8B3 and 8B4, light red). This

was also seen for stimulation frequencies below 20 Hz with medium range time shifts (i.e., 40

ms < Δt< 80 ms). However, intermediate stimulation frequencies (i.e., 10 Hz < ν< 50 Hz)

with time shifts in the range 20 ms < Δt< 30 ms can be detrimental since they induce syn-

chronized activity states with strong inter-population synaptic connections (Fig 8B1–8B4,

dark red). Point b, given by (Δt, ν) = (5 ms, 33.3 Hz), in Fig 8B1–8B4 corresponds to the time

shift and stimulation frequency selected for decoupling stimulation in the presence of delays

(see Figs 3 and 4).

Fig 8. Rescaling the parameters of time-shifted decoupling stimulation. (A1-A4) Synchrony level measured by the pFF of the activity of each module

(A1,A2) and the averaged inter-population mean coupling (Gave) between the two modules in the network (A3,A4) obtained by numerical simulations for

different values of stimulation frequency and time shift with |ξ| = 0.0 ms, evaluated over 10 s of activity after stimulation offset. (B1-B4) Same as A1-A4, but

with |ξ| = 10.0 ms. STDP parameters were A+ = 0.008, A− = 0.005, τ+ = 10 ms and τ− = 20 ms. Points a and b in the figure indicate the stimulation frequency

and time shift used in Fig 2A and 2C, respectively. Blue (N/A) region shows the range of parameters where the 0< Δt< T = 1/ν constraint is not satisfied.

https://doi.org/10.1371/journal.pcbi.1010853.g008
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The theoretically predicted multistability of decoupled (blue), unidirectional (orange) and

bidirectional (red) connectivity regimes for the two-neuron motif in Fig 2 supports the stimu-

lation-induced neuronal activity and synaptic connectivity emerging in the two-module net-

work in Fig 8 fairly well. The inventory of these attractor states allows to choose the

parameters of the time-shifted stimulation appropriately so that the stimulation pattern can

lead to an unlearning of pathologically strong synaptic connectivity between the two modules

and cause a desynchronization of the modules (light red in Fig 8), in this way inducing a sus-

tained decoupling effect.

However slight deviations from these parameters produce undesirable effects so prediction

precision will be important for translation. Summary of the stimulation model parameters is

given in Table 3.

Discussion

Our results illustrate that subtle changes of a stimulation protocol may have significant impact

on the stimulation outcome. We presented a time-shifted two-channel stimulation approach

in a generic cortex model that aims at decoupling two interacting neuronal populations by

employing STDP, i.e., by unlearning pathologically strong synaptic interactions between the

two populations. This simple intervention caused pronounced changes of the network dynam-

ics and connectivity, outlasting the cessation of stimulation. In our model intra-population

synaptic connections were weak and static and they had no role in the generation of synchro-

nized oscillations and instead, synchronization of the populations was due to initially strong

inter-population connections. Accordingly, decoupling of the two populations by the stimula-

tion-induced reduction of inter-population excitatory projections below a threshold caused

desynchronized and sparse activity of the neurons which is hallmark of the normal activity of

cortical neurons [128, 129]. Remarkably, this state was stable and the pathological connectivity

and dynamics did not relapse after cessation of the external stimulus.

In our model, each isolated module is an inhibition-stabilized local balanced network (see

S1(A) Fig) [102, 103] and the two modules interact through long-range excitatory projections

[137]. This fundamentally differs from a Hebbian-assembly model [103], i.e., a single excit-

atory population of neurons recurrently exciting itself. In our model, each local balanced net-

work consists of both excitatory and inhibitory neurons in 4:1 proportion where the strength

of inhibitory synapses within each module is on average 4-fold the strength of excitatory syn-

apses. Connectivity and network parameters were tuned such that each population operated in

an inhibition-stabilized regime, characterized by irregular individual firing of neurons and

desynchronized network activity (see S1(B) Fig) [102, 104]. However, the network operating

point was close enough to the oscillatory regime such that strong long-range excitation could

elicit oscillatory global activity [84, 102, 104]. Accordingly, S1(C) Fig (top) demonstrates local

balanced amplification (LBA) [103, 138] in an isolated module in our model which shows the

firing rate of the excitatory (rE) and inhibitory (rI) populations in response to a pulse of input

(IE) to the excitatory population at time t = 0s that sets rE = 10 Hz (rI = 0 Hz; representing the

baseline of activity), similar to the protocol used by Murphy and Miller (2009) [103]. In this

case, increase of the local recurrent excitation is stabilized with stronger inhibition through

LBA so that excitation-inhibition ratio is finally balanced (also see S1(C) Fig, bottom) [103].

To reduce stimulation-induced side effects (see e.g. Ref. [52]) and to restore physiological

function, it is desirable to reduce the integral amount and duration of stimulation. Accord-

ingly, we do not only focus on acute effects (during stimulus delivery), but also on beneficial

long-lasting effects, persisting after the cessation of stimulation [72, 73, 131]. Computationally,

desynchronizing stimulation can shift adaptive networks from pathological attractor states
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towards physiological states [72, 80, 130]. In this way, therapeutic stimulation effects can be

achieved that persist after discontinuation of stimulation [72, 80], as demonstrated in pre-clin-

ical as well as clinical proof-of-concept studies [74–78]. However, the efficacy of desynchroniz-

ing stimulation crucially depends on the adaptation of stimulation parameters to the

synchronization properties of the targeted network activity [80]. Furthermore, acute desyn-

chronization does not necessarily lead to long-lasting changes of network activity [79, 80].

Apparently, enduring desynchronization can only be achieved if the pathological network con-

nectivity is also modified by the external stimuli [79, 80], i.e., when the reduction of strongly

synchronized activity is accompanied by a reduction of pathologically strong synaptic connec-

tivity, to avoid relapse and reappearance of symptoms.

Control of synchronization in neuronal populations and rewiring of synaptic connections

by stimulation was previously addressed in a number of computational studies. For example,

different patterns of sequential activations of subpopulations of neurons with a small intra-

population delay (time shift) between multiple stimulation sites (see Fig 9A) can induce an

unlearning of pathological connectivity due to the desynchronization of neuronal activity in

adaptive network models of phase oscillators [72] as well as a various neuron models [70, 130,

131, 139–141]. Another study focused on harnessing the underlying STDP in the network to

reshape synaptic connectivity by applying dedicated stimuli in a two-population network

model of excitatory and inhibitory LIF neurons [116]. Anti-phase delivery of charge-balanced

stimulation pulses to the excitatory subpopulation and the inhibitory subpopulation with a

small time shift led to a reduction of the average synaptic weight between the two subpopula-

tions in the network along with a strong desynchronizeation [116]. More recently, it was

shown that two-site stimulation of cortical populations with long inter-population delays (i.e.

time shifts) between stimulation sites (see Fig 9B) can induce changes in the inter-population

synaptic connectivity in a network of LIF neurons which are similar to the classical STDP pro-

file [96]. Consistent with our results, the induction of significant plastic changes in inter-popu-

lation connections was crucially affected by appropriate stimulus timing [96].

Cortical stimulation may offer simpler ways to modulate abnormally synchronized activity

which is less invasive in comparison to DBS surgery. However, cortical stimulation may also

have its limitations. For instance, electrical stimulation can intrinsically evoke

Fig 9. Illustrative representation of the time-shifted stimulation. (A) Schematically refers to a variety of bi-/multichannel stimulation techniques

where the delays between different stimulation sites (yellow circles) are approximately the same. (B) Schematically refers to bi-/multichannel

stimulation techniques with at least two qualitatively different delays, i.e., small delays within and long delays between stimulation sites.

https://doi.org/10.1371/journal.pcbi.1010853.g009
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nonphysiological spatiotemporal patterns and complicated neural responses in cortical net-

works due to the transsynaptic activation of axons [95, 142]. Here, we used a simple and

generic cortical model [81, 84, 98] to illustrate the critical role of the time shift in shaping

long-lasting decoupling effects induced by stimulation. A simple model enables clear predic-

tions based on a detailed investigation that is valid for a large parameter space, whereas com-

plex and detailed computational models with many parameters may be difficult to study

because of their high-dimensional phase space and the associated computational cost. Further-

more, we focused on the decoupling of the two populations achieved by the stimulation-

induced reduction of the plastic synaptic connections between the populations and for sim-

plicity assumed that the modules have only static synapses. However, assuming plastic synap-

ses within each module may affect the presented results. In this case, the time-shifted

stimulation should first decouple the two modules externally and, then, reduce the internal

coupling of each module to ensure that long-lasting decoupling and desynchronizing effects

can be achieved.

Introducing a time shift is a comparably simple procedure which does not require complex

technical solutions, e.g., required for the detection of biomarkers, as in the case of demand-

controlled stimulation [143]. By means of this maneuver (i.e., introducing the time shift), a

variety of different bi-/multichannel stimulation protocols may have significantly different

long-term effects. Our findings thus may have quite generic implications for different cortical

stimulation strategies, e.g., through epicortical electrodes or intracortical electrodes. On the

other hand, cortical networks may exhibit evoked or spontaneous collective oscillations in the

absence of temporally structured stimuli, despite irregular and weakly correlated activity pat-

tern of individual neurons, known as the normal state of the cortical activity [128, 129]. By the

same token, physiological states in subcortical networks are characterized by uncorrelated

neuronal activity as opposed to pathological states that are characterized by abnormally syn-

chronized activity, for example, in PD [18]. This suggests that the results obtained for the sim-

ple cortical model may also be, in principle, applicable to basal ganglia (BG) models subjected

to multichannel DBS protocols.

Interestingly, for the parameter ranges that we tested, qualitatively similar results were

obtained for both the patterned delivery of bursts and trains of single stimulus pulses, implying

that the time shift scheme works with burst stimulation as well as with continuous stimulation.

This suggests that the reshaping of activity-connectivity patterns by time-shifted stimulus

delivery may be a mechanism that applies to a larger class of stimulation patterns. This is

encouraging for further test in more complex network models with more sophisticated intrin-

sic dynamics as well as in pre-clinical (animal) studies and clinical tests.

The role of the introduced time (phase) shift between stimulation signals delivered to the

two populations is critical. Our results show that the time-shifted stimulation is more effective

when the stimulation signals are almost in anti-phase (i.e., π phase lag or Δt� 1/2ν), whereas

the almost in-phase stimulation (with zero phase lag or Δt� 0) failed to induce decoupling

effects in our model. We used a typical STDP profile that is experimentally observed in cortex

[7] and a reasonable range for cortico-cortical transmission delay [114], but in general, as pre-

dicted by our theoretical analysis, the effective time shift for stimulation deviates from anti-

phase based on the inter-population transmission delay (see Fig 2) and the shape of the STDP

learning window (see Fig 5). The phase-specificity of the decoupling effects in our model is

consistent with previous experimental studies suggesting that in-phase cortical stimulation has

a synchronizing effect on the neuronal activity in the target node, whereas anti-phase stimula-

tion can cause desynchronizing effects [144]. Targeting multiple nodes of brain networks thus

may enable stimulation strategies to improve stimulation outcome by phase manipulation

between stimulation sites.
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In this study, we focused on stimulation effects that persist after cessation of stimulation

which are thought to be mediated by longer lasting models of synaptic plasticity such as STDP

and, thereby, we neglected the potential role of short-term synaptic plasticity. However, stimu-

lation-induced effects of the short-term synaptic plasticity can differentially modulate excit-

atory and inhibitory synapses depending on the frequency as well as the site of stimulation

[145–148], which can affect both intra and inter-population interactions. For instance, experi-

mentally it was demonstrated that low-frequency electrical stimulation (� 100 Hz) of thalamic

structures can induce short-term synaptic facilitation, likely mediated by glutamate release

[148, 149], whereas stimulation of BG nuclei was associated with short-term synaptic depres-

sion, likely mediated by local GABA release [145, 146]. This site-specificity may be lost during

higher frequencies of electrical stimulation (> 100 Hz) which are usually associated with sup-

pression of neuronal activity due to short-term synaptic depression [148, 150, 151]. Yet, short-

term or long-term synaptic plasticity alone may be insufficient to capture the whole range of

stimulation-induced effects in modeling studies [148, 151]. Alternatively, incorporation of

both short-term and long-term synaptic plasticity in models may provide a more accurate

description of synapse-level effects vs. network-level effects of stimulation.

This paper is meant to serve as conceptual foundation of the time-shifted stimulation of suf-

ficiently distant neuronal populations, applicable with different stimulation modalities. For

direct electrical brain stimulation, e.g., DBS, one may additionally calculate the spatial distribu-

tion of the electric field to predict the volume of tissue activated (VTA), initially introduced by

Rattay (1986) [152]. Of note, this approach considers stimulus effects on a silent axon [153] as

opposed to intrinsically active neurons. For instance, VTA-based analysis [154–156] was used

in combination with accurate DBS electrode location [157] and co-registration of patients’

brains onto an average template brain [158] in retrospective group-level analyses in large

patient cohorts to provide optimal stimulation targets or optimal connectivity patterns for the

prediction of favorable outcomes in future patients [159]. However, while the co-registration

of VTA and magnetic resonance imaging (MRI) provides a visual approximation, its validity

critically depends on the underlying theoretical model, specifically ignoring intrinsic neuronal

dynamics and local impedance changes [159]. The same principles and limitations apply to a

VTA-based approach for the design of multi-contact leads for multichannel stimulation proto-

cols [160]. Accordingly, more detailed models taking into account representation of the three-

dimensional (3D) neuroanatomy, the time-dependent electric field generated by DBS elec-

trodes, and the biophysical mechanisms that regulate the neural response to stimulation [161–

164] may shed light on the mechanisms of action of electrical stimulation [165].

STDP-induced reorganization of cortical networks by stimulation has been addressed in a

number of experimental works related to our computational results. For instance, paired stim-

ulation [166], i.e., time-locked pairing of two stimulations delivered to two sites, allows to

directly activate, e.g., cortico-cortical pathways connecting two areas, to study changes in

inter-population connections through STDP [95, 167]. Experimental findings in humans sug-

gest that STDP-like changes in cortico-cortical inter-hemispheric connectivity crucially

depend on the delay (time shift) between paired stimuli delivered to two sites (also see Fig 9B)

in the primary motor cortex [91, 92], as well as paired stimulation protocols targeting intra-

hemispheric connectivity with short-range [93, 168] and long-range [93, 94] pairing delays

(also see Fig 9A). Amazingly, bidirectional STDP-like changes in inter-hemispheric connec-

tions can be achieved by changing which hemisphere is stimulated first [169].

A recent in vivo study in awake, behaving monkeys demonstrated that STDP could be

induced via time-shifted paired stimulation of two interacting cortical sites (namely, A and B)

[95]. By assuming a fixed stimulation protocol and varying the delay (time shift) between sti-

muli, STDP-like changes in the strength of connections between the two sites were achieved
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which were similar to classical single-cell findings in vitro [5–7]. For instance, positive delays

between paired stimuli (i.e., pre-before-post or A!B) led to a strengthening of inter-popula-

tion synapses, whereas negative delays (i.e., post-before-pre or B!A) weakened the synaptic

connections [95]. Moreover, small time shifts between stimuli (< 20 ms) induced significant

synaptic changes, whereas greater time shifts (> 50 ms) fell outside the functional temporal

window of STDP [95], similar to the classical STDP profile [6, 7]. Interestingly, consistent with

previous computational findings [96] and our results, a zero delay between paired stimulations

did not induce significant changes in inter-population connections [95].

Ultimately, reorganization of cortical networks following stimulation [170–174], e.g., corti-

cal remapping during perceptual performance, can be also interpreted as some sort of decou-

pling mediated by plasticity [175–177]. For instance, temporally correlated sensory inputs to

the digits can lead to the merging of digit representations on the cortical surface, associated

with topographic reorganization of the primary somatosensory cortex (SI) evidenced by

electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic

resonance imaging (fMRI) [170–174]. Particularly, it was shown that synchronous co-activa-

tion of the digits in humans led to an increase in temporal coherence of the fMRI signal due to

temporal coincidence between the two-digit inputs, whereas asynchronous co-activation

induced no significant change [172, 173]. Increased coherency is associated with reduced digit

separation for the synchronous input, i.e., cortical representations for synchronously co-acti-

vated fingers moved closer together, whereas asynchronously co-activated fingers showed seg-

regated cortical representations [172, 173]. Although mechanisms behind these changes are

unclear, stimulation-induced strengthening/weakening of cortical synaptic connections via

frequency-dependent synaptic plasticity may be one of the candidates that has been linked to

the tactile discrimination performance [175–177].

Cognitive processes are related to structure-function relationships, in which the product of

structurally and functionally interconnected brain areas is the basis for higher brain functions

[16]. While we do not claim that our simple models might sufficiently explain complex cogni-

tive processes, it may nevertheless contribute to testable predictions as to how cognitive pro-

cesses may be impaired, e.g., by abnormal transmission delays. For instance, impaired

cognitive function in multiple sclerosis (MS) may reflect damage to brain regions due to

inflammatory demyelination, thus causing inhibition of axonal transmission. Potentially,

impairments of cognitive (and non-cognitive) processes due to abnormal transmission delays

have been found in MS [178]. Specifically, long-term memory, which is believed to be related

to plastic changes of synapses, is one of the most consistently impaired cognitive functions in

MS and is seen in 40–65% of patients [179].

Our study is meant to serve as a starting point for a top-down development for time-shifted

stimulation protocols administered to remote targets. For comparison, for the improvement of

DBS in PD, a top-down approach first used rather simple models, such as phase oscillator net-

works [72] and later more detailed and advanced models [130, 180, 181]. Remarkably, already

the computational studies in simpler models, e.g., phase oscillator networks, provided key pre-

dictions, regarding long-lasting desynchronization [72, 131], cumulative desynchronization

effects [73] and optimal stimulus patterns [79, 182] and parameters [183]. These computa-

tional studies revealed non-trivial predictions about stimulus-response characteristics of plas-

tic neuronal networks, specifically the qualitative difference of acute effects (observed during

stimulation), acute after-effects (shortly after cessation of stimulation) and long-term after-

effects [72, 79, 140]. In addition, this top-down approach revealed fundamentally different

effects of desynchronizing vs. decoupling stimulation patterns [80]. These findings and phe-

nomena were substantially different from what was known about regular DBS. Furthermore,

these computationally derived results served as predictions and were critical to the
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development of appropriate experimental and study protocols, ultimately enabling to verify

these predictions in animal experiments [74, 76–78, 184] and clinical studies [75, 185, 186].

We presented a simple and generic stimulation approach that causes pronounced changes

of the network dynamics and connectivity, outlasting the cessation of stimulation. While the

conclusions are mainly predictions, the model has the potential to advance clinical therapeutic

techniques for a range of pathological conditions. Simple network models can be employed in

order to thoroughly understand a wide range of stimulation-induced effects by performing

detailed numerical and analytical analysis [72, 73, 80, 130, 187–189]. This enables us to make

predictions that guide the analysis of more detailed and biophysically realistic networks [180,

188–193] as well as pre-clinical [74, 76, 194, 195] and clinical studies [75, 186, 196]. Although

variations of model parameters may crucially determine collective dynamics and inter-popula-

tion connectivity pattern, starting with such simple models and further refining them enables

to generate testable predictions for numerical studies in more biophysically realistic models as

well as for pre-clinical and clinical studies, e.g., by employing whole-brain modeling and inclu-

sion of patient-specific connectivity patterns tuned to match electrophysiology and neuroim-

aging data [188, 189, 193].

The two-neuron motif is a simple, yet well-understood basic model in computational neu-

roscience [106, 108, 115, 116]. Results of the two-neuron motif served as predictions for the

two-population model and were tested by numerical comparison with results obtained in the

latter model. On the other hand, the two-population model is an established model for cortical

neuronal networks with modular structure [84, 86, 99, 100]. It is widely used to study reliable

signal propagation across cortex [84], inter-hemispheric phase coherence despite long-range

transmission delays [100], synchronization between oscillations emerging from separated cor-

tical areas [197], as well as in vivo conditioning protocols that produce cortical plasticity [95,

96]. In that sense, as demonstrated by our thorough analysis, the comparably simple two-neu-

ron motif represents the dynamics of the two-population model convincingly well. Results

obtained in the two-population model provide non-trivial predictions for experimental and

clinical tests. The validity of these predictions will, in turn, depend on the validity of the two-

population model. While the latter was thoroughly derived [84, 86, 99, 100], it cannot account

for all possible additional features of cortical networks, e.g., ranging from layering to glial cells.

The success of computational studies [96] to explain experimental outcomes of paired stimula-

tion protocols that produce cortical plasticity [95] suggests that simple cortical models incor-

porating STDP may be able to explain the neural mechanisms underlying stimulation-induced

cortical plasticity between two populations. Our results thus may contribute to the further

optimization of a variety of bi-/multichannel stimulation protocols aimed at the therapeutic

reshaping of brain networks.

Supporting information

S1 Fig. Balanced amplification in the inhibition-stabilized local network. (A) Diagram of

the isolated module M1 (with no projections from the module M2) as a balanced circuit with

an excitatory (triangle) and an inhibitory (circle) population. Excitatory connections are green

and inhibitory connections are red. (B) Raster plot (top) and population activity (middle) of

the isolated module M1. (Bottom) Fourier transform frequency of the population activity (left)

and distribution of the spike count irregularity (right) of the isolated module M1. (C) (Top)

Firing rate of the excitatory (rE) and inhibitory (rI) populations in response to a pulse of input

(IE) to the excitatory population at time t = 0 s that sets rE = 10 Hz (rI = 0 Hz; representing the

baseline of activity). (Bottom) Excitatory-inhibitory response ratio for the top panel.

(EPS)
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S2 Fig. Distribution of the intra- and inter-population synaptic strengths in the model. (A,

B) The intra-population inhibitory synaptic strengths were picked from a Gaussian distribu-

tion with mean 0.8 and standard deviation 0.05, whereas the intra-population excitatory syn-

aptic strengths were picked from a Gaussian distribution with mean 0.2 and the same standard

deviation. (C) The inter-population excitatory synaptic strengths were chosen from a Gaussian

distribution with mean 0.2 and standard deviation 0.05.

(EPS)

S3 Fig. Suppression of the synaptic strengths between two neurons by time-shifted stimu-

lation in the absence of delays. Time course of neuronal activity (N1/N2) and the synaptic

strengths (g21/g12) are shown for two neurons with STDP parameters A+ = 0.008, A− = 0.005,

τ+ = 10 ms and τ− = 20 ms, and |ξ| = 0.0 ms. Stimulation parameters were (Δt, T) = (15, 30) ms.

(EPS)

S4 Fig. Decoupling by time-shifted stimulation in the network in the absence of delays.

(A1,A2) Raster plots and population activities are shown for the modules (M1/M2) before/

after stimulation on/offset. (B,C) Distribution of the pairwise correlation and spike count

irregularity of each module before (grey) and after (colored) stimulation. (D) Snapshot of

phase lags (Δf) between synchronous discharges from the two modules before (t = 9 s, left)

and after (t = 25 s, right) stimulation. (E) Fourier transform frequency of the population

activity of each module before (grey) and after (colored) stimulation. (F) Time course of the

inter-population mean coupling (G21/G12). (G) Distribution of the inter-population synaptic

strengths before (grey) and after (colored) stimulation. (H) Time course of the firing rate of

neurons (f1/f2) in each module. The modules were stimulated with time shift Δt = 15 ms and

frequency ν = 33.3 Hz for the duration of Tstim = 5 s (highlighted area in F and H). STDP

parameters were A+ = 0.008, A− = 0.005, τ+ = 10 ms and τ− = 20 ms.

(EPS)

S5 Fig. Initial and final network topology. (A1) Structural connectivity matrix of the network

(i.e., inter-population excitatory-to-excitatory connections) drawn using a binary representa-

tion, i.e., connectivity matrix array, cij = 1 if the two neurons are connected, and cij = 0, other-

wise. There were Nex = 160 excitatory neurons within each population. (A2) Degree

distribution of the initial network topology with random connection probability pinter = 0.15.

(B1) Final synaptic strength matrix of the network. (B2) Binary representation of the final con-

nectivity matrix of the network constructed by introducing a threshold (h = 0.3), i.e., connec-

tivity matrix array, cij = 1 if gij� h, and cij = 0, otherwise. (B3) Degree distribution of the final

network topology. Panels B1-B3 were depicted for the STDP parameters used in Fig 5Ba with

(A+/A−, τ+/τ−) = (1.6, 0.5). (C1-C3) Same as B1-B3, but for the STDP parameters used in Fig

5BC with (A+/A−, τ+/τ−) = (1.6, 1.6).

(EPS)

Author Contributions

Conceptualization: Mojtaba Madadi Asl, Alireza Valizadeh, Peter A. Tass.

Formal analysis: Mojtaba Madadi Asl, Alireza Valizadeh, Peter A. Tass.

Investigation: Mojtaba Madadi Asl.

Methodology: Mojtaba Madadi Asl, Alireza Valizadeh, Peter A. Tass.

Project administration: Alireza Valizadeh.

PLOS COMPUTATIONAL BIOLOGY Time-shifted decoupling stimulation by spike-timing-dependent plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010853 February 1, 2023 28 / 38

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010853.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010853.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010853.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010853.s005
https://doi.org/10.1371/journal.pcbi.1010853


Supervision: Alireza Valizadeh, Peter A. Tass.

Visualization: Mojtaba Madadi Asl.

Writing – original draft: Mojtaba Madadi Asl, Alireza Valizadeh, Peter A. Tass.

Writing – review & editing: Mojtaba Madadi Asl, Alireza Valizadeh, Peter A. Tass.

References

1. Song S, Abbott LF. Cortical development and remapping through spike timing-dependent plastic-

ity. Neuron. 2001; 32(2):339–350. https://doi.org/10.1016/S0896-6273(01)00451-2 PMID:

11684002

2. Ramanathan D, Conner JM, Tuszynski MH. A form of motor cortical plasticity that correlates with

recovery of function after brain injury. Proceedings of the National Academy of Sciences. 2006; 103

(30):11370–11375. https://doi.org/10.1073/pnas.0601065103 PMID: 16837575

3. Noback CR, Ruggiero DA, Strominger NL, Demarest RJ. The human nervous system: structure and

function. 744. Springer Science & Business Media; 2005.

4. Gerstner W, Kempter R, van Hemmen JL, Wagner H. A neuronal learning rule for sub-millisecond tem-

poral coding. Nature. 1996; 383(6595):76. https://doi.org/10.1038/383076a0 PMID: 8779718
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