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Synaptic network structure
shapes cortically evoked
spatio-temporal responses of STN
and GPe neurons in a
computational model

Justus A. Kromer1*, Hemant Bokil2 and Peter A. Tass1

1Department of Neurosurgery, Stanford University, Stanford, CA, United States, 2Boston Scientific

Neuromodulation, Valencia, CA, United States

Introduction: The basal ganglia (BG) are involved in motor control and play

an essential role in movement disorders such as hemiballismus, dystonia,

and Parkinson’s disease. Neurons in the motor part of the BG respond to

passive movement or stimulation of di�erent body parts and to stimulation of

corresponding cortical regions. Experimental evidence suggests that the BG are

organized somatotopically, i.e., specific areas of the body are associated with

specific regions in the BG nuclei. Signals related to the same body part that

propagate along di�erent pathways converge onto the same BG neurons, leading

to characteristic shapes of cortically evoked responses. This suggests the existence

of functional channels that allow for the processing of di�erent motor commands

or information related to di�erent body parts in parallel. Neurological disorders

such as Parkinson’s disease are associated with pathological activity in the BG

and impaired synaptic connectivity, together with reorganization of somatotopic

maps. One hypothesis is that motor symptoms are, at least partly, caused by

an impairment of network structure perturbing the organization of functional

channels.

Methods: We developed a computational model of the STN-GPe circuit, a central

part of the BG. By removing individual synaptic connections, we analyzed the

contribution of signals propagating along di�erent pathways to cortically evoked

responses. We studied how evoked responses are a�ected by systematic changes

in the network structure. To quantify the BG’s organization in the formof functional

channels, we suggested a two-site stimulation protocol.

Results: Our model reproduced the cortically evoked responses of STN and GPe

neurons and the contributions of di�erent pathways suggested by experimental

studies. Cortical stimulation evokes spatio-temporal response patterns that are

linked to the underlying synaptic network structure. Our two-site stimulation

protocol yielded an approximate functional channel width.

Discussion/conclusion: The presented results provide insight into the

organization of BG synaptic connectivity, which is important for the development

of computational models. The synaptic network structure strongly a�ects the

processing of cortical signals and may impact the generation of pathological

rhythms. Our work may motivate further experiments to analyze the network

structure of BG nuclei and their organization in functional channels.
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basal ganglia, evoked responses, functional channels, network connectivity,multichannel
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1. Introduction

The BG are a sub-cortical complex that consists of several

nuclei, such as the subthalamic nucleus (STN) and the globus

pallidus (Soghomonian and Jagaroo, 2016). Due to different

synaptic projections, the latter is divided into internal (GPi)

and external segments (GPe). The BG play an important role

in decision-making, motor control, and motor learning. Several

neurological disorders are associated with abnormal BG activity,

such as excessive synchronization in Parkinson’s disease, and

alternations in synaptic connectivity (Hammond et al., 2007;

Madadi Asl et al., 2022b). The STN and GPe circuit is in the

center of the BG and is believed to be critical for the generation of

oscillations (Plenz and Kital, 1999; Bevan et al., 2002; Crompe et al.,

2020). Furthermore, the STN is a major target for high-frequency

deep brain stimulation, the current standard of care for medically

refractory Parkinson’s disease (Krack et al., 2003).

The STN receives topographically organized glutamatergic

inputs from the cerebral cortex via the cortico-STN hyperdirect

pathway, and gamma-aminobutyric acid (GABA)ergic inputs from

the GPe via the cortico-striato-GPe-STN indirect pathway (see

Figure 1) (Jeon et al., 2022). Additionally, synaptic input to the

BG nuclei is organized somatotopically (Nambu, 2011), i.e., motor

cortical neurons in regions representing different body parts project

to different regions in these nuclei (Monakow et al., 1978; Nambu

et al., 1996, 2002; Miyachi et al., 2006). On the other hand, BG

neurons respond to motor cortex stimulation (Nambu et al., 2000;

Kita and Kita, 2011; Polyakova et al., 2020) and to active and passive

movement of corresponding body parts (DeLong et al., 1985).

These characteristics are harnessed during stereotaxic surgery for

electrode placement for deep brain stimulation as a treatment for

movement disorders such as Parkinson’s disease (Kaplitt et al.,

2003; Krack et al., 2003).

Experimental studies in primates and rodents analyzed the

response of STN and GPe neurons to electrical stimulation of

different cortical areas, including the limb regions of the motor

cortex, the primary sensory cortex, and the supplementary motor

area (Nambu et al., 2000; Kita et al., 2004; Kita and Kita, 2011;

Polyakova et al., 2020). The effect of local injections of glutamate

and GABA antagonists into the STN (Polyakova et al., 2020), the

GPe (Kita et al., 2004) as well as into the putamen and the GPe

(Polyakova et al., 2020) on evoked responses was studied to get

further insight into the involved pathways (Kita et al., 2004; Jaeger

and Kita, 2011; Polyakova et al., 2020). Responding STN neurons

showed complex response patterns characterized by an early and

a late excitation followed by a late inhibition. These patterns

indicated that signals from the stimulated cortical region reach

STN neurons via two pathways: the monosynaptic cortico-STN

pathway and the polysynaptic cortico-striato-GPe-STN pathway

(Nambu et al., 2000; Kita and Kita, 2011; Polyakova et al.,

2020). Furthermore, responding GPe neurons show characteristic

responses consisting of an early excitation, an inhibition, and a late

excitation (Nambu et al., 2000; Jaeger and Kita, 2011; Kita and Kita,

2011). The analysis of these evoked responses revealed the complex

interplay of synaptic pathways in the cortico-basal ganglia circuit.

Evidence from animal models suggests that Parkinson’s disease

is not only accompanied by abnormal neuronal synchrony

(Hammond et al., 2007) but also by alterations of synaptic

connectivity in the BG (Fan et al., 2012; Chu et al., 2015,

2017; Madadi Asl et al., 2022b) and impaired somatotopy (Filion

et al., 1988; Boraud et al., 2000; Cho et al., 2002). Furthermore,

characteristic features of cortically evoked responses change in

6-hydroxydopamine (6-OHDA) lesioned rats, an animal model

for Parkinson’s disease (Kita and Kita, 2011). Besides Parkinson’s

disease, abnormal alterations of the somatotopic organization of

the BG and their cortical inputs have been observed in other

movement disorders (Bronfeld and Bar-Gad, 2011), such as motor

tics (McCairn et al., 2009), appearing as a symptom, for instance, in

Tourette syndrome, and dystonia (Tamburin et al., 2002; Delmaire

et al., 2005). This suggests that alterations of synaptic connectivity

shape cortically evoked responses, and likely affect the processing

of cortical stimuli.

In the present paper, we build on these results and explore to

which extent cortically evoked responses of STN and GPe neurons

can be used to infer characteristics of the underlying synaptic

network structure. In a computational model, we show that a

characteristic width of parallel “functional channels” in the BG,

which allow for parallel processing of multiple stimulation-induced

cortical inputs, can be obtained based on the cortically evoked

responses of STN and GPe neurons. Considering the underlying

channel structure may be advantageous for the parameter

adjustment and stimulation contact usage during multisite deep

brain stimulation, for instance, for the delivery of coordinated reset

stimulation in animal models for Parkinson’s disease (Tass et al.,

2012; Wang et al., 2016, 2022; Bore et al., 2022) or Parkinson’s

disease patients (Adamchic et al., 2014).

To study the relation between synaptic connectivity and

cortically evoked responses, we developed a computational model

of the BG that incorporates a simplified type of somatotopy

(Nambu, 2011), where neurons tend to project to neurons that

represent similar body parts characterized by similar (spatial)

coordinates, as well as two modified somatotopy variants.

Our model produces cortically evoked responses that mimic

experimental data from rats (Kita and Kita, 2011). We analyzed

the spatio-temporal pattern of cortically evoked responses and

explored how it is affected by perturbations of the synaptic network

structure. To quantify the width of parallel functional channels

in the BG, we suggest a two-site stimulation approach in which

two cortical stimuli cause two evoked responses in the STN and

GPe. We quantify the modulation of the evoked response to a test

stimulus by the presence of a priming stimulus and show how an

approximate channel width can be inferred. The latter measures the

minimum distance between cortical areas whose input to the BG is

processed independently.

The present paper is organized as follows. First, we introduce

our computational model and present details on the incorporated

experimental data on synaptic connectivity as well as the

suggested two-site stimulation technique. Next, we show that

our computational model reproduces the experimentally observed

characteristic sequence of excitations and inhibitions. Then, we

analyze the spatio-temporal response pattern and study how it is

affected by variations of the synaptic network structure. We present

simulation results on evoked responses of STN and GPe neurons

during two-site cortical stimulation and show how an estimate of
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FIGURE 1

Schematics of neuron placement and the three network structures considered throughout the paper. (A) Neurons (black dots) were placed in the

interval [−L/2, L/2] (Model and methods). Similar coordinates, sX, refer to neurons representing similar body parts. A total of 103 cortical (CTX), 100

STN, 300 GPe, and 103 striatal (STR) medium spiny neurons (MSN) was considered. (B) Schematic of the STN-GPe circuit and its CTX and STR Poisson

input (gray). Green arrows indicate glutamatergic and red arrows GABAergic synaptic interaction. Stimulation (yellow) is delivered to the CTX Poisson

spike generators and leads to a transient increase of spiking activity in the cortex. Excitatory CTX input to the striatum is modeled by increasing STR

MSN activity following CTX stimulation (see Model and methods). (C1–C3) Schematics of nearest postsynaptic neurons networks (N-networks) (C1),

displaced postsynaptic neurons networks (D-networks) (C2), and skip postsynaptic neurons networks (S-networks) (C3). A small number of

connections of each type are shown for a single presynaptic neuron in a small portion of the network (dashed gray box in A). The actual numbers of

connections are given in Table 2. In N-networks (C1), neurons project to postsynaptic neurons at similar coordinates. In D-networks (C2), 10% of the

synaptic connections are randomly selected to connect to postsynaptic neurons with coordinates shifted by d (blue, see Model and Methods).

Connections before shifting are marked by dashed light blue arrows. In S-networks (C3), neurons project to postsynaptic neurons with similar

coordinates except that every second postsynaptic neuron is skipped.

the width of functional channels in the cortico-BG network can be

obtained. Finally, we discuss our results.

2. Model and methods

We developed a computational model of the STN-GPe

circuit that accounts for topographically organized synaptic

connections. Following earlier studies, individual neurons were

modeled by adaptive quadratic integrated-and-fire neurons to

ensure low computational costs (Lindahl et al., 2013; Fountas

and Shanahan, 2017). The organization of synaptic connections

was partly motivated by earlier computational studies (Terman

et al., 2002; Hahn and McIntyre, 2010; Kumaravelu et al., 2016),

partly based on experimental data on the synaptic connectivity

in the STN-GPe circuit (Oorschot, 1996; Sadek et al., 2007;

Baufreton et al., 2009; Kita and Kita, 2011; Koshimizu et al.,

2013; Ketzef and Silberberg, 2021), and partly obtained from

parameter optimization to reproduce experimentally observed

mean firing rates of the neurons (Fountas and Shanahan,

2017). Note that firing rates of BG neurons in rats vary

depending on the state, e.g., awake, anesthetized, resting.Whenever

possible, we considered the data from Kita and Kita (2011) in

anesthetized rats, as they provide a detailed analysis of cortically

evoked responses.

2.1. Neural network model

2.1.1. Dynamics of membrane potentials
Following the approach of Lindahl et al. (2013) and Fountas and

Shanahan (2017), individual neurons were modeled using adaptive

quadratic integrate-and-fire neurons. This class of models was

found to reproduce a wide class of neuronal spiking and bursting

behavior (Izhikevich, 2003). The dynamics of the membrane

potential, vi, of the ith GPe neuronwasmodeled as follows (Fountas

and Shanahan, 2017)

CGPe
i

d

dt
vi = kGPe(vi − vr,GPe)(vi − vt,GPe)− u1i + IGPe,

d

dt
u1i = aGPe(bGPe(vi − vr,GPe)− u1i). (1)

CGPe
i is themembrane capacitance, IGPe the applied current, and u1i

is a slow recovery variable with time scale given by 1/aGPe. vr,GPe

is the resting potential and vt,GPe corresponds to the threshold

potential. The other parameters adjust the shape of the nullclines

and were chosen according to Fountas and Shanahan (2017).
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We considered the parameter set for GPe neurons that

exhibited periods of high frequency discharges (referred to as

“GPe type B” neurons in Fountas and Shanahan (2017). These

correspond to prototypic GPe neurons which present the largest

neuronal population in the GPe and project to the STN (Mallet

et al., 2012; Abdi et al., 2015). Neurons with this type of dynamics

were observed more often than others in experiments in monkeys

at rest (≈ 85% of GPe neurons in DeLong, 1972). Abdi et al. found

that about two-thirds of GPe neurons are prototypic neurons in

dopamine-intact rats (Abdi et al., 2015).

Whenever the membrane potential passed a threshold vGPepeak, the

state variables were reset, i.e., vi → cGPe and u1i → u1i + dGPe

(Fountas and Shanahan, 2017).

To describe the dynamics of the membrane potential of the ith

STN neuron, an additional slow variable was introduced (Fountas

and Shanahan, 2017):

CSTN
i

d

dt
vi = kSTN(vi − vr,STN)(vi − vt,STN)− u1i − wSTNu2i

+ ISTN,
d

dt
u1i = aSTN(b

STN(vi − vr,STN)− u1i),

d

dt
u2i = ãSTN(G(vi)b̃

STN(vi − ṽr,STN)− u2i). (2)

The first two equations describe the dynamics of the membrane

potential and a recovery variable, similar to the dynamics of GPe

neurons given in Equation (1). In addition, a second recovery

variable u2i is used to describe the dynamics of STN neurons.

G(vi) is the Heaviside step function, H(ṽr,STN − vi), such that u2i
activates below ṽr,STN and causes a rebound response (Fountas and

Shanahan, 2017).

In rat brain slices, the majority of STN neurons was found to

produce rebound burst firing after removal of a hyperpolarizing

current (17 out of 20 neurons in Bevan et al., 2000). We modeled

such STN neurons using the parameter set for rebound bursting

STN neurons from Fountas and Shanahan (2017).

Whenever the membrane potential passed a threshold vSTNpeak +

Uu2i, the state variables of STN neurons were reset vi → cSTN −

Uu2i, u1i → u1i + dSTN, and u2i → u2i + d̃STN (Fountas and

Shanahan, 2017). Here,U = (wSTN|u2i|+1/wSTN)−1 (Fountas and

Shanahan, 2017).

To ensure heterogeneity, the membrane capacitances of

neurons of each type X=STN or X=GPe were distributed according

to a Gaussian distribution with mean 〈CX
j 〉 and standard deviation

0.1〈CX
j 〉. A complete list of the parameter values used to model GPe

and STN neurons can be found in Table 1.

Cortical (CTX) neurons and striatal medium spiny neurons

(MSN)s expressing D2 receptors were modeled as Poisson spike

generators with baseline firing rates rCTX and rMSN, respectively.

We used rCTX = 4 Hz since Dejean et al. (2008) reported 4.1± 1.3

spikes per second in freely moving rats. In addition, we selected

rMSN = 0.67 Hz, representing the firing rate of spontaneously

active medium spiny D2 neurons in anesthetized rats in the

dopamine-intact state in Kita and Kita (2011). Note that rMSN is

well in the range of 0.8±0.2 Hz reported by Dejean et al. (2008) for

freely moving rats.

TABLE 1 Parameters for single-neuron dynamics according to Fountas

and Shanahan (2017).

GPe STN

〈CSTN / GPe
j 〉 (pF) 68.0 23.0

kSTN / GPe (nS/mV) 0.943 0.439

vr,STN / GPe (mV) −53.0 −56.2

ṽr,STN / GPe (mV) −60.0

vt,STN / GPe (mV) −44.0 −41.4

ISTN / GPe
bias (pA) 64.0 56.1

wSTN / GPe 0.1

˜wSTN / GPe 0.0

aSTN / GPe (1/ms) 0.0045 0.021

bSTN / GPe (nS) 3.895 4.0

ãSTN / GPe (1/ms) 0.123

b̃STN / GPe (nS) 0.015

vSTN / GPe
peak (mV) 25.0 15.4

cSTN / GPe (ms) −58.36 −47.7

dSTN / GPe (pA) 0.353 17.1

d̃STN / GPe (pA) −68.4

θSTN / GPe 3.0 0.5

In our computational model, we simulated 103 CTX and 103

MSN Poisson spike generators that provided synaptic input to the

STN and GPe, respectively. The STN consisted of 100 neurons and

the GPe of 300 neurons. The ratio of the total numbers of STN and

GPe model neurons was selected to reproduce the ratio observed

in young adult rats by Oorschot (1996). There, the total number of

STN neurons was estimated as (13.56 ± 1.41) ×103 (mean ± std.)

and the total number of GPe neurons as (45.96±5.12)×103 (mean

± std.).

2.1.2. Synaptic dynamics
To model synaptic connections, we considered the time-

dependent conductances gX,Yj (t), with dynamics given by

τX,Y
dgX,Yj

dt
= −gX,Yj . (3)

τX,Y is the synaptic time scale. gX,Yj (t) describes the total input

conductance for synaptic inputs from neurons in nucleus X to the

neuron j in nucleus Y. gX,Yj was increased instantaneously at all

spike arrival times: gX,Yj → gX,Yj + GX,Y, at times ti + λX,Y. Here,

ti is the spike time of a presynaptic neuron and λX,Y is the synaptic

transmission delay between presynaptic spike time and the arrival

of the action potential at the synapse.

We considered GABAergic synapses and two types of receptors

for glutamatergic synapses: alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors and slower N-methyl-

D-aspartic acid (NMDA) receptors. As GABA and AMPA are

considered rather fast, we neglect the rise time of the corresponding
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synaptic conductances. The resulting postsynaptic currents were

given by Fountas and Shanahan (2017)

IX,YZ,j = gX,Yj (EX,Y − vj), Z = GABA,AMPA. (4)

EX,Y is the synaptic reversal potential. The dynamics of gX,Yj is given

by Equation (3) and the corresponding τX,Y is the decay time of the

synaptic potentials.

In contrast, NMDA receptors are rather slow and the rise time

of the corresponding conductance is of the order of the decay

times for GABA and AMPA currents (Kumaravelu et al., 2016).

We therefore modeled the rise and the decay of the corresponding

synaptic conductances after each spike arrival:

IX,YZ,j (vj) = (gX,Yslow,j − gX,Yfast,j)(E
X,Y − vj), Z = NMDA. (5)

The dynamics of both the slow, gX,Yslow,j, and fast conductance,

gX,Yfast,j, were given by Equation (3), and the corresponding synaptic

time scales quantify the fast rise and the slow decay of the

total synaptic conductance gX,Yslow,j − gX,Yfast,j, respectively, for the

resulting postsynaptic currents. In addition, we considered a

voltage-dependent magnesium plug for the NMDA receptors given

by Fountas and Shanahan (2017)

B(v) = 1.0/(1.0+ 0.28 exp(−0.062 v)). (6)

The total postsynaptic current IYj into neuron j in Equations (1)

and (2) was then given by

IGPej = ISTN,GPeAMPA,j (vj)+ B(vj) I
STN,GPe
NMDA,j (vj)+ IMSN,GPe

GABA,j (vj)

+ IGPe,GPeGABA,j (vj)+ IGPebias +
√

2θGPeCGPe
j ξj(t) (7)

and

ISTNj = ICTX,STNAMPA,j (vj)+ B(vj) I
CTX,STN
NMDA,j (vj)+ IGPe,STNGABA,j (vj)+ ISTNbias

+
√

2θSTNCSTN
j ξj(t),

(8)

respectively. Here, ISTNbias and IGPebias are constant bias currents that

adjust the baseline activity of STN and GPe neurons, respectively.

ξj(t) is zero mean, white Gaussian noise with amplitude scaled by

θX. All parameter values related to the synaptic dynamics are given

in Table 2.

2.1.3. Synaptic network structure
Synaptic connections in the BG are somatotopically organized

(Nambu, 2011). To incorporate somatotopy in our computational

model, we introduced coordinates sX, where X denotes the

corresponding nucleus, as before. The maximal range of these

coordinates is denoted by L and will be set to one. For a

given neuron, sX represents the feature that is represented, e.g.,

the body part or motor program. Similar coordinate values of

different neurons refer to similar features. Alternatively, given

that synaptic connections in the BG are organized somatotopically

(Nambu, 2011), sX can be interpreted as a spatial coordinate.

Neurons in each nucleus were equidistantly placed in the

interval [−L/2, L/2].

In our reference scenario, which will be referred to as N-

network throughout the paper, neurons connect to postsynaptic

neurons with similar features, i.e., sX ≈ sY, where X refers to

the presynaptic nucleus and Y to the postsynaptic nucleus. Thus,

the somatotopic organization of synaptic connections is intact.

In the computational model, we fixed the number of outgoing

connections per neuron, NX,Y, according to the values given in

Table 2. Below, we give more details on the choices of NX,Y. Then,

for each presynaptic neuron, we chose the postsynaptic neurons

such that the difference in coordinates |sY−sX|wasminimal among

all possible postsynaptic neurons.

Parkinson’s disease and other neurological disorders impact

many aspects of the nervous system. Here, as discussed below,

we focus on synaptic reorganization. We compared the results

for N-networks with perturbed network structures in which a

portion of synaptic connections was rearranged. Specifically, we

considered D-networks and S-networks, which were constructed

as follows.

• D-networks: The first type of perturbation of N-networks

was a displacement of a fraction of connections. Specifically,

we randomly selected a portion P of the connections and

rearranged them such that |(sY − d) − sX| was minimal

(see Figure 1C2 for an illustration). Thus, these connections

then targeted postsynaptic neurons that were displaced by

d. Throughout the present paper, we chose P = 0.1

and d = 0.15L. Connections were randomly selected for

displacement according to a uniform probability distribution.

D-networks mimic the situation were the somatotopy is

perturbed such that a region representing a certain body part

also forms projections to a region that represents a different

body part. This was motivated by results in the 1-methyl-

4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) monkey model

of Parkinson’s disease, where pallidal neurons in control

conditions responded to movement of a single joint but

neurons responded to movement of multiple joints after

MPTP intoxication (Filion et al., 1988; Boraud et al., 2000;

Pessiglione et al., 2005; Bronfeld and Bar-Gad, 2011).

• S-networks: The second type of perturbation of the network

structure was a skipping of neurons in the postsynaptic

nucleus (see Figure 1C3 for an illustration). This led to an

increase in the projection area in the postsynaptic nucleus.

In the present paper, we considered the case where every

second postsynaptic neuron was skipped. Thus, synaptic

connections were implemented as in N-networks, except

that each presynaptic neuron projected only to every second

postsynaptic neuron, starting with the one for which |sY −

sX| was minimal (see Figure 1C3). This network structure

was motivated by experimental studies on striatal neurons
in the 6-OHDA rat model for Parkinson’s disease (Cho
et al., 2002). There, neurons related to a certain body part
occurred in clusters in healthy controls. After 6-OHDA

lesion, the cluster size shrank and some of the neurons
at the borders became related to different body parts,
suggesting a larger overlap of regions representing different
body parts.
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TABLE 2 Parameters used to model synaptic interaction.

τX,Y (ms) λX,Y (ms) GX,Y (nS) EX,Y (mV) NX,Y

CTX→STN (AMPA) 2 [1] 1.01 opt. 0 [1] 3 [1]

CTX→STN (NMDA) 2 [3], 100 [1] λ
CTX,STN
AMPA 0.6 GCTX,STN

AMPA 0 [1] 3 [1]

STN→GPe (AMPA) 2 [1] 1.02 opt. 0 [1]

STN→GPe (NMDA) 2 [3], 100 [1] λ
STN,GPe
AMPA 0.36 GSTN,GPe

AMPA 0 [1]

GPe→GPe 5 [4] 5.0 [5] opt. −85 [3] 20 [6]

MSN→GPe 5 [3] 7.4 [5]3 opt. −85[3] 10 [1]

GPe→STN 8 [4] λSTN,GPe opt. −84 [4] 1 [7]

CTX→MSN 10.5 [2]

For NMDA receptors, the first synaptic time scale τX,Y represents the rise and the second the decay time. Values obtained from numerical optimization (“opt.”) are given in Table 3. NSTN,GPe

was a free parameter. References: [1] Fountas and Shanahan (2017), [2] Kita and Kita (2011), [3] Kumaravelu et al. (2016), [4] Lindahl et al. (2013). [5] Ketzef and Silberberg (2021), [6] Kita

(2007), and [7] Baufreton et al. (2009).

1. Was adjusted such that the onset of the early excitation in cortically evoked response occurs at∼5− 6 ms [2].

2. Was adjusted such that the onset of the early excitation in cortically evoked response occurs at∼7− 10 ms [2].

3. Onset delay of prototypic neurons to striatial stimulation was 7.34± 0.35 ms and that of arkypallidal cells 8.6± 0.43 ms [5]. Here, we only considered prototypic neurons.

To ensure that the obtained network did not depend on the
order in which synaptic connections were added between neurons,
we added small random offsets to the neurons’ coordinates

that were uniformly distributed between zero and 10−4L for

CTX and MSN Poisson spike generators and between zero and

10−3L for STN and GPe neurons. This way, there were no

two neuron pairs that had identical distances to each other.

Then, pairs of pre- and postsynaptic neurons were sorted

according to the distances between them, and synaptic connections

were added.

The numbers of outgoing connections per presynaptic

neuron, NX,Y, were either motivated by experimental data,

taken from earlier computational studies, or obtained from

parameter optimization.

• For the outgoing synaptic connections of the two populations

of Poisson spike generators, we chose NCTX,STN = 3

and NMSN,GPe = 10, which reproduced the connection

probabilities used for random connections in Fountas and

Shanahan (2017), where the connection probability for CTX

to STN connections was 0.03 and the connection probability

for MSN to GPe connections was 0.033.

• Baufreton et al. (2009) studied GPe→STN connections. They

found that these connections were sparse but highly selective.

Based on the number of synaptic boutons per GPe neuron

in the STN, they estimated that each GPe neuron forms only

enough synaptic boutons to contact< 2% of the STN neurons.

Furthermore, they reported that GPe neurons form many

synapses with each postsynaptic STN neuron. Their data also

suggest that neighboring STN neurons rarely receive input

from the same GPe neuron. Based on these findings, we chose

NGPe,STN = 1.

• Kita (2007) observed that large areas of somata and dendrites

of the GPe projection neurons are covered with synaptic

boutons. The majority of which belonged to striatal axons.

We chose NGPe,GPe = 20 outgoing GPe→GPe connections

per GPe neuron such that the majority of GABAergic synapses

came from striatal neurons.

• The numbers of outgoing STN→GPe connections differ

substantially among previous computational models. Hahn

and McIntyre (2010) considered rather focused projections of

STN neurons to GPe neurons, resembling a high degree of

specificity of STN→GPe connections in functionally related

areas in the GPe as observed experimentally in monkeys

(Shink et al., 1996). In their computational model, STN

neurons only project to GPe neurons in the same channel, i.e.,

each STN neuron projected to the three closest GPe neurons

(NSTN,GPe = 3). Other computational studies considered

more diffuse STN→GPe connections, e.g., in Fountas and

Shanahan (2017) each STN neuron projected to 30% of the

GPe neurons (corresponding to 90 STN→GPe connections

per STN neuron). In Lindahl et al. (2013), each STN neuron

had 30 STN→GPe connections. These latter numbers were

motivated by experimental data on the organization of STN

and STR synaptic terminals in the GPe obtained from earlier

labeling studies in monkeys (Hazrati and Parent, 1992; Parent

and Hazrati, 1993). In these studies, it was suggested that

STN→GPe and STR→GPe connections are highly organized

and that STN excitation targets larger groups of GPe neurons.

In contrast, STR inhibition specifically targets subsets of

these groups. Later, STN projections were studied in more

detail in rat brain segments (Koshimizu et al., 2013). There,

STN neurons were found to form large numbers of axon

boutons inside the GPe. Furthermore, boutons were highly

clustered in groups indicating projections to localized groups

of pallidal neurons. Furthermore, there was high variability

in the number of axon boutons formed per STN neuron.

Throughout the present paper, we varied the number of STN-

GPe connections to study to which extent our results depend

on NSTN,GPe. Specifically, we considered the cases NSTN,GPe =

3 (Hahn and McIntyre, 2010) and NSTN,GPe = 30 (Lindahl

et al., 2013), spanning the range from highly focused (each

STN neurons targets 1% of GPe neurons) onto a small cluster

of GPe neurons to diffuse projections onto a macroscopic

portion of the GPe (each STN neurons targets 10% of GPe

neurons).
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The values of all maximal synaptic conductances, GX,Y, were

chosen such that experimental data for the stationary mean firing

rate of STN and GPe neurons were reproduced. In particular,

we followed Fountas and Shanahan (2017) and considered a

sequence of scenarios in which different neuronal populations

were inhibited. Following, we describe the resulting parameter

adjustment algorithm:

1. Estimation of G
CTX,STN: In the first step, we applied a

parameter optimization algorithm to find values of GCTX,STN

such that the mean firing rate of STN neurons was close to

experimental data from Farries et al. (2010) in rats in vivo. In

these rats, a large excitotoxic lesion was applied to the GPe. In

our computational model, this was implemented by considering

only the CTX spike generators and the STN neurons, i.e., the

STN was isolated from the GPe by setting GGPe,STN = 0 nS.

Farries et al. (2010) reported STN firing rates of 20.7 ± 5.2

Hz during these experiments, which was about twice as large

as the firing rate of STN neurons measured in rats with intact

GPe (9.5 ± 3.5 Hz). The parameter optimization procedure

was performed as follows: The firing rate of STN neurons

was estimated by performing simulations of the computational

model for 40 s and 12 different initial conditions. Each initial

condition had a random realization of membrane capacitances,

initial values of membrane potentials, and slow variables. To

reduce finite size effects, neurons close to the borders of the

interval for sX were ignored and only spikes of the center third of

STN neurons were recorded (STN neurons with indices 33−66)

during the time interval t ∈ [30, 40) s. Then, an estimate

of the average mean firing rate rSTNest was obtained based on

the spike count. These simulations were repeated for different

values of GCTX,STN and the difference between rSTNest and 20.7 Hz

(Farries et al., 2010) was minimized using the python function

“scipy.optimize.minimize” (scipy version 1.5.4) with “Nelder-

Mead” method and a tolerance of 0.1. We used GCTX,STN = 1

nS as the initial guess. This procedure led to GCTX,STN = 0.125

nS.

2. Estimation of GGPe,STN: To estimate the value of GGPe,STN, we

followed the approach of Fountas and Shanahan (2017) and

added the GPe to the model from (1) using GCTX,STN = 0.125

nS. For this step, the GPe neurons were modeled by a population

of 300 Poisson spike generators with mean firing rate of 30.4

Hz (Kita and Kita, 2011, anesthetized rats). Then, we applied

a similar algorithm as described in the previous paragraph

optimizing the value of GGPe,STN such that the firing rate of STN

neurons became close to 11.8 Hz. Kita and Kita (2011) measured

11.8 ± 9.1 Hz in rats that were anesthetized with isoflurane.

The initial guess was GGPe,STN = 6.82 nS which was the peak

conductance measured by Baufreton et al. (2009). Baufreton

et al. reported a range for GGPe,STN of 0.51 − 25.33 nS). This

optimization led to GGPe,STN = 1.11 nS

3. Estimation of G
STN,GPe: Next, we adjusted the parameters

GSTN,GPe and NSTN,GPe. For NSTN,GPe, we considered two

values that were taken from previous computational studies:

NSTN,GPe = 3 (Hahn and McIntyre, 2010) and NSTN,GPe = 30

(Lindahl et al., 2013). For both values of NSTN,GPe, GSTN,GPe was

adjusted by considering the CTX-STN-GPe network without

GABAergic inputs to GPe neurons. Celada et al. (1999) found

that local bicuculline infusion, a GABA antagonist, into the

globus pallidus of anesthetized rats led to a ≈ 55% increase

of the mean firing rate of neurons in the globus pallidus.

Note that the firing rate of these neurons in anesthetized rats

might differ from the one in awake rats. Motivated by these

experiments, we performed a similar optimization algorithm as

in the previous paragraphs. During optimization, we replaced

the STN neurons with a population of Poisson neurons firing

with a mean firing rate of 11.8 Hz. This implicitly assumed

that altered spiking of pallidal neurons in response to local

bicuculline infusion had little effect on the majority of STN

neurons. During optimization, the value of GSTN,GPe was varied

such that GPe firing rates were 55% higher than in control

conditions. For the control case, we used the firing rates from

Kita and Kita (2011), who measured 30.4 ± 11.4 Hz in rats

anesthetized with isoflurane. Thus, our target firing rate for GPe

neurons was 47.12 Hz. To tune GSTN,GPe, we ran the parameter

optimization algorithm to find a value of GSTN,GPe for which the

GPe firing rate was close to the target values. For NSTN,GPe = 3

the algorithm led to GSTN,GPe = 15.8 nS for which we obtained

rGPeest ≈ 47.1 Hz. For NSTN,GPe = 30, we found GSTN,GPe = 1.5

nS resulting in rGPeest ≈ 47.0 Hz.

4. Estimation of GMSN,GPe and G
GPe,GPe: For the two different

values ofNSTN,GPe described in the previous paragraph and their

corresponding values of GSTN,GPe, we searched for values of the

maximal conductances GMSN,GPe and GGPe,GPe such that the

STN firing rate was close to the target value 11.8 Hz (Kita and

Kita, 2011, anesthetized rats) and the GPe firing rate was close to

the target value 30.4 Hz (Kita and Kita, 2011, anesthetized rats)

in the intact STN-GPe circuit (Figure 1). We minimized

1R =

∣

∣

∣

∣

rSTN − 11.8 Hz

σSTN

∣

∣

∣

∣

+

∣

∣

∣

∣

rGPe − 30.4 Hz

σGPe

∣

∣

∣

∣

, (9)

with σSTN = 9.1 Hz and σGPe = 11.4 Hz being the

estimated standard deviations of single neuron baseline firing

rates obtained from Kita and Kita (2011) (anesthetized rats)

(see Tables 1, 2 in Kita and Kita, 2011). Using a similar

optimization algorithm as in the previous paragraphs, we found

thatGMSN,GPe = 5.54 nS andGGPe,GPe = 0.44 nSminimized1R

for NSTN,GPe = 3 (the resulting firing rates were rSTNest ≈ 13.6

Hz and rGPeest ≈ 30.5 Hz). For NSTN,GPe = 30, we found that

GMSN,GPe = 12.0 nS and GGPe,GPe = 0.21 nS minimized 1R,

which led to rSTNest ≈ 11.8 Hz and rGPeest ≈ 30.4 Hz.

2.2. Cortical stimulation

Cortical stimulation was modeled by temporally increasing the

firing rate of cortical Poisson spike generators. We implemented a

spatial stimulus profile that determined the probability P(sCTXi |s0)

at which a cortical Poisson spike generator at coordinate sCTXi

spikes in response to a stimulus delivered to s0

P(sCTXi |s0) =



1+

(

sCTXi − s0

σs

)2




−1

. (10)
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TABLE 3 Parameters for network connectivity.

Parameter Value Source

NCTX,STN 3 (Fountas and Shanahan, 2017)

NMSN,GPe 10 (Fountas and Shanahan, 2017)

NGPe,STN 1 (Baufreton et al., 2009)

NGPe,GPe 20 estimated, (Sadek et al., 2007; Baufreton
et al., 2009)

NSTN,GPe 3 (Hahn and McIntyre, 2010)

30 (Lindahl et al., 2013)

GCTX,STN 0.125µscale nS Result of optimization (1)

GGPe,STN 1.11µscale nS Result of optimization (2)

GSTN,GPe 15.8µscale nS Result of optimization (3) for
NSTN,GPe = 3

1.5µscale nS Result of optimization (3) for
NSTN,GPe = 30

GMSN,GPe 5.81µscale nS Result of optimization (4) for
NSTN,GPe = 3

12.0µscale nS Result of optimization (4) for
NSTN,GPe = 30

GGPe,GPe 0.44µscale nS Result of optimization (4) for
NSTN,GPe = 3

0.21µscale nS Result of optimization (4) for
NSTN,GPe = 30

We introduced a scale factor of µscale = 0.85.

This profile was motivated by the shape of the profile of

electrical stimuli used in Lysyansky et al. (2013). σs is the width

of the stimulus profile and will be set to σs = 0.05L/π if not

mentioned otherwise.

In experiments, cortical stimulation of the limb region resulted

in a response of STR MSNs (Kita and Kita, 2011). We modeled the

effect of the cortex on MSN activity by modifying the firing rate

of the MSNs in response to afferent cortical neurons. Specifically,

the MSN spike generator that was the closest to a cortical spike

generator that spiked at time t0 in response to the stimulus, fired

a spike between time t and time t + h with probability

P(t|sMSN
i , t0) =

{

p(t − t0 − λCTX,MSN)h, spike of closest cortical spike generator at t0

rMSN, otherwise
.(11)

Here, p(t − t0) was chosen such that it approximated the shape

of the probability density for a striatal spike after a stimulus at time

0 given in Figure 4A of Kita and Kita, 2011

p(t) =



























ηe
−(t−µ)2

2σ2 , t < 2µ

0, 2µ ≤ t < 2µ + tstart
t−tstart

tend−tstart
, 2µ + tstart ≤ t < 2µ + tend

rMSN, t ≥ 2µ + tend

, t > 0, (12)

with η = 0.145, µ = 2.1, σ = µ/3. We used tstart = 100 ms and

tend = 300 ms.

Cortical activation consisted of periodic sequences of 500

stimulus pulses delivered every 1.7 s (Kita and Kita, 2011). We also

considered two-pulse stimulation where two pulses were delivered

every 1.7 s.We refer to the first of the two pulses as priming stimulus

and to the second pulse as test stimulus. The priming stimulus was

centered at sCTX = −1s/2 and the test stimulus was delivered after

1t and centered at sCTX = 1s/2. 1s and 1t were varied. The

two-pulse stimulation setup is illustrated in Figure 2.

2.3. Numerical details

Numerical integration was performed using the Euler–

Maruyama method (Kloeden and Platen, 1992) with an integration

time step of 0.05 ms. Numerical integration and data analysis

was done in python. The times when the dynamics of individual

neurons was reset were considered as the spike times.

The peristimulus time histograms (PSTHs) in Figures 3, 4

were calculated as follows: first, simulations were run for five

different trials, i.e., while the same realizations of single neuron

parameters and network realizations were used in each trial,

different realizations of the noisy input currents and Poisson inputs

were considered. After, 40 s of simulated time the stimulation

was started. A total of 500 stimuli was delivered for one-site

stimulation. From the recorded spike trains, PSTHs were calculated

by estimating the probability of a spike of the neuron in the very

center of the sX axes during a certain time bin of width 1 ms relative

to the closest stimulus onset. Results are shown in Figures 3, 4.

To estimate the distributions of single-neuron mean firing

rates (Figure 6), we performed simulations of 96 trials for each of

the networks and each value of NSTN,GPe. For each neuron, the

mean firing rate was estimated by calculating the number of spikes

during a time interval of nine seconds starting after 31 seconds of

simulated time. Results in Figure 6, show a histogram of the single-

neuron mean firing rates of the center 30 STN (−1/6 < sSTNi <

1/6) and the center 100 GPe neurons (−1/6 < sGPei < 1/6).

To estimate the spatio-temporal responses in Figures 5, 7, 8,

we performed simulations for 24 trials and calculated PSTHs as

in Figures 3, 4 for neurons at different coordinates sX. From these

PSTHs, the probability for a neuron with coordinate between sX

and sX+0.01/L (STN and GPe) and sX and sX+0.001/L (CTX and

MSN) at a time lag between t and t + 1 ms relative to the closest

stimulus onset was estimated by calculating the average number of

spikes in that time and coordinate bin per trial and stimulus from

the set of obtained single-neuron PSTHs. For one-site stimulation

(Figures 5, 7) 500 stimuli were delivered, as in Figures 3, 4. For

two-site stimulation (Figure 8), 500 pairs of stimuli were delivered.

For each data point in Figure 9, we performed simulations

similar to the ones in Figure 8 for two scenarios. In the first

scenario, one-site stimulation was delivered to the cortical location

1s/2 and in the second one two-site stimulation was delivered to

±1s/2, respectively. Then, LX
base (Equation 13) and LX

re (Equation

14) were calculated as described in Section 3.6.

3. Results

Responses of STN and GPe neurons evoked by cortical

stimulation were studied in monkeys (Nambu et al., 2000; Kita

et al., 2004; Polyakova et al., 2020) and in rodents (Kita and

Kita, 2011). Electrical stimuli were delivered to the motor cortex
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FIGURE 2

Schematics of two-pulse stimulation. (A) The priming stimulus (red) and the test stimulus (yellow) were delivered to two cortical locations. The

distance between these locations was 1s. (B) We delivered periodic sequences of priming and test stimuli and studied how the time lag, 1t, and the

distance between stimuli, 1s, a�ected the response of BG neurons.

FIGURE 3

PSTHs obtained from computational model. (A–D) PSTHs for the center STN (A, C) and the center GPe (B, D) neuron obtained from simulations for

the N-network. Colored curves show single-neuron PSTHs for five di�erent trials. In each trial 500 stimuli were delivered and the center neurons’

PSTHs were recorded. The black curves show averages of these trials. Simulations were performed for two N-networks with di�erent numbers of

STN to GPe connections, NSTN,GPe, corresponding to a small projection area (NSTN,GPe = 3 as used in Hahn and McIntyre, 2010) and to a large

projection area (NSTN,GPe = 30 as used in Lindahl et al., 2013), respectively. The vertical dotted line marks the stimulus delivery at t = 0 and the

horizontal gray line marks the baseline firing rates rSTN and rGPe in the absence of stimulation.

(Nambu et al., 2000; Kita et al., 2004; Kita and Kita, 2011;

Polyakova et al., 2020) and the primary sensory cortex (Nambu

et al., 2000) and PSTHs of responding STN and GPe neurons

were recorded.

Responses of STN neurons showed an early and a late

excitation followed by a long inhibition, whereas responses of

GPe neurons showed an early excitation, an inhibition, and a

late excitation. These characteristics were observed in rodents

and in monkeys. Combining cortical stimulation with local drug

injection, experiments inmonkeys revealed that these characteristic

features result from the interplay of two pathways: the cortico-STN

glutamatergic hyperdirect pathway and the cortico-striato-GPe-

STN indirect pathway (Kita et al., 2004; Kita, 2007; Jaeger and Kita,

2011; Polyakova et al., 2020).

Using our computational model, we explored how the

characteristics of motor cortical stimulation-evoked responses

depend on synaptic network connectivity. To this end, we

mimicked the experimental setup in our computational model and

studied PSTHs of STN and GPe neurons. We delivered cortical

stimulation (Model and methods). Cortical stimuli were centered

at sCTX = 0, if not mentioned otherwise.

3.1. Evoked responses in computational
model

PSTHs obtained from simulations of our computational model

are shown in Figure 3. PSTHs of STN and GPe neurons show the

typical characteristics observed in experiments. In particular, the

characteristic sequence of an early excitation, a late excitation, and a

long inhibition in responding STN neurons (Figures 3A, C) and the

sequence of an early excitation, an inhibition, and a late excitation

in respondingGPe neurons (Figures 3B, D) were reproduced by our

computational model.

The number of STN→GPe connections had a strong impact

on how well the individual features were pronounced. The early

excitation in GPe neurons was most pronounced for NSTN,GPe = 3

(Figure 3B), whereas it became less pronounced for large NSTN,GPe

(Figure 3D). This was because the model with NSTN,GPe = 3 had

stronger excitatory STN to GPe connections. The corresponding

maximal conductance was chosen such that the STN and GPe

firing rates were close to experimental data. Consequently, a small

number of STN inputs strongly excited postsynaptic GPe neurons

(see Table 3).
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FIGURE 4

Local blockage of incoming connections a�ects evoked responses. (A–F) PSTHs for center STN (A, C, E) and center GPe (B, D, F) neurons obtained

from simulations of the N-network, when incoming connections of respective types were blocked. Thin colored curves show single-neuron PSTHs

from five di�erent trials, each averaged over 500 stimuli. Black curve shows average over PSTHs from di�erent trials. The red curve shows the control

case (same as black curves in Figures 3A, B). Simulations were performed for three di�erent cases: (top) all incoming cortical connections to the

center three STN neurons were blocked; (center) all incoming GPe connections to the center three STN neurons were blocked; and (bottom) all

incoming STR MSN connections to the center three GPe neurons were blocked. The vertical dotted line marks the stimulus delivery at t = 0 and the

horizontal gray line marks baseline firing rates in the absence of stimulation. Parameters: NSTN,GPe = 3.

3.2. Glutamatergic and GABAergic inputs
shape cortically evoked responses

Experimental studies explored the origin of the characteristic

pattern of excitations and inhibitions in the PSTHs. In monkeys,

incoming connections were blocked by local injection of

GABA and glutamate antagonists (Kita et al., 2004; Polyakova

et al., 2020). In our computational model, we created similar

scenarios by cutting incoming connections to individual

STN or GPe neurons. The resulting PSTHs are shown

in Figure 4.

Cutting cortical inputs to single STN neurons led to a reduction

of the amplitude of the early excitation in the response of these

neurons to cortical stimuli (Figure 4A). Furthermore, their mean

firing rate decreased. In responding GPe neurons, cutting cortical

input to STN neurons reduced the amplitude of the early excitation

substantially (Figure 4B).

Cutting all GPe inputs to the responding STN neurons strongly

diminished the amplitude of the second excitation and the late

inhibition. Furthermore, it increased the mean firing rate of STN

neurons (Figure 4C). It also led to slow, damped oscillations of

the instantaneous firing rate following the initial early excitation

(Figure 4C). In responding GPe neurons, we also found an increase

in the mean firing rate. Furthermore, the amplitude of the early

excitation increased, and slow oscillations occurred after the second

excitation (Figure 4D).

Finally, cutting striatal inputs to responding GPe neurons

led to a reduction of the amplitude of the second excitation

of responding STN neurons and to a shortening of the

late inhibition (Figure 4E). In responding GPe neurons, it

strongly suppressed the inhibition between early and late

excitations (Figure 4F).

3.3. Spatio-temporal characteristics of
cortical stimulation-evoked responses

Next, we studied the spatio-temporal characteristics of

cortically evoked responses in the computational model. To this

end, we analyzed the trial-averaged responses of BG neurons with

different coordinates (see schematics in Figure 1).

In Figure 5, we show the trial-averaged instantaneous firing

rate, p(t, sX), of a neuron with coordinate sX in nucleus X. For

comparison, we marked the mean firing rate of cortical neurons

(4 Hz), STR MSNs (0.67 Hz), STN neurons (11.8 Hz), and of GPe

neurons (30.4 Hz) on the color axes in Figure 5. The response of

BG neurons strongly depended on their baseline firing rate and on

|sX|, i.e., the coordinated difference to the stimulus center. Neurons

with similar coordinates as the stimulated cortical neurons, sX ≈ 0,

possessed the characteristic responses presented in Figure 3. STN

neurons with small |sSTN| showed a pronounced late inhibition

(Figure 5B). In the GPe, neurons with moderate |sGPe| showed

a substantially shorter late excitation than GPe neurons with

|sGPe| ≈ 0. The dependence of cortically evoked responses on

the coordinate sX was more pronounced for large NSTN,GPe = 30

(Figures 4C, D).

Motivated by the impact of NSTN,GPe on the evoked responses

of BG neurons, we studied the impact of the network structure

on the distributions of single-neuron mean firing rates and the

spatio-temporal characteristics of cortically evoked responses.
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FIGURE 5

Cortically evoked spatio-temporal responses in a simulated N-network. Rows show responses of inner CTX (top), MSN (second to top), STN (second

to bottom), and GPe neurons (bottom). Columns (A, B) show results of the computational model for NSTN,GPe = 3 and columns (C, D) show results for

NSTN,GPe = 30. (A) Raster plots of spiking activity in the computational model triggered by a cortical stimulus at t = 0. y-axes shows neuron

coordinates, sX. (B) trial-averaged instantaneous firing rate p(t, sX) of neurons at location sX obtained by averaging over 500 stimuli and 24 realizations

of noise and Poisson input. Color code indicates firing rate changes relative to baseline firing rate in the absence of stimulation (white). Increases in

firing rate are shown in red/black and decreases in blue. (C, D) Same as (A, B) but for NSTN,GPe = 30. Parameters: NSTN,GPe = 3 (A, B) and NSTN,GPe = 30

(C, D). CTX stimuli were centered at sCTX = 0.

3.4. Network structure shapes distribution
of single-neuron mean firing rates

Next, we analyzed how the network connectivity affected the

dynamics of STN and GPe neurons. We considered three network

structures: N-networks, D-networks, and S-networks. N-networks

were obtained by implementing outgoing synaptic connections

such that the presynaptic neurons connect to postsynaptic neurons

with similar coordinates. D-networks were obtained in the same

way, except that 10% of synaptic connections were randomly

selected and displaced systematically (Model and methods). Lastly,

S-networks were obtained like N-networks except that neurons

were only allowed to project to every second neuron in the

postsynaptic nucleus (see Model and methods for more details).

Estimated distributions of single-neuron mean firing

rates of STN and GPe neurons obtained from simulations of

the computational model are shown in Figure 6. Firing rate

distributions were unimodal except for D-networks and small

NSTN,GPe. For the latter, individual STN to GPe connections

were strong, and random displacement of connections in the

D-network led to variability in the number of incoming STN

connections per GPe neuron. Few incoming connections resulted

in low mean firing rates, whereas many incoming connections

resulted in high mean firing rates. This led to the additional peaks

in Figure 6B.

Following, we will restrict our analysis to networks with

NSTN,GPe = 3, thereby modeling a high degree of specificity

of STN→ GPe connections as reported by experimental studies

in monkeys (Shink et al., 1996). We continue by analyzing

how the network structure affects the spatio-temporal pattern of

evoked responses.

3.5. Network structure shapes evoked
spatio-temporal responses

We studied cortically evoked responses in N-networks, D-

networks, and S-networks. Figure 7 shows simulated responses of

BG neurons to cortical stimuli for the three network structures.

Column A shows the results for the N-network from Figure 5B. In

the D-network, a displacement of randomly selected connections

by d = 0.15L led to additional responses of STN neurons near

sSTN = 0.15L and responses of GPe neurons near sGPe = 0.15L

(Figure 7B). We also find that the evoked response of neurons with

lower baseline activity deviated from the characteristic response

patterns (blue horizontal lines in Figure 7B). In contrast, in an S-

network, neurons showed less pronounced response patterns than

in N-networks and overall reduced baseline activity (Figure 7C).

The strong variability of single-GPe neurons’ mean firing

rates in D-networks (see also Figure 6) can be seen in Figure 7B.
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FIGURE 6

Distribution of single-neuron mean firing rates depended on network structure. Panels (A–D) show distributions of single-neuron mean firing rates

for an N-network, a D-network, and an S-networks. The left column shows simulation results for STN and the right column results for GPe neurons.

Panels (A, B) show results for NSTN,GPe = 3 and panels (C, D) for NSTN,GPe = 30. Estimates of single-neuron mean firing rates were obtained by

counting the number of spikes in a simulated time window of 9 s. Prior to that a 31 s time window was simulated to ensure stationary dynamics.

Mean firing rates of the inner 30 STN neurons (−1/6 < sSTNi < 1/6) (A, C) and the inner 100 GPe neurons (−1/6 < sGPei < 1/6) (B, D) for a total of 96

realizations of the noise and the Poisson input are shown.

FIGURE 7

Representative cortically evoked spatio-temporal responses in an N-network, a D-network, and an S-network. Rows show spatio-temporal response

patterns of CTX (top), MSN (second to top), STN (second to bottom), and GPe neurons (bottom). Columns (A–C) show results from simulations of

the computational model for an N-network (A), a D-network (B), and an S-network (C). Blue arrows mark displacement d = 0.15L in D-network.

Results were averaged over 24 trials with di�erent realizations of noise and Poisson input. For each trial results were averaged over a sequence of 500

stimuli. Cortical stimuli were centered at sCTX = 0. Responses of individual STN and GPe neurons strongly depended on, |sX|, with X=STN,GPe (see

also Figure 5).
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While neurons at some coordinates, sGPe, fired at a low rate and

responded only weakly to cortical stimuli, others were highly active

and showed strong responses. In our computational model, this

resulted in high trial-averaged instantaneous firing rates p(t, sGPe)

for certain sGPe and low p(t, sGPe) for others.

So far, our results suggest that alterations of the network

connectivity lead to changes in the evoked spatio-temporal

response pattern. We studied two types of alterations: first, in

D-networks, we randomly selected 10% of the connections and

exchanged the postsynaptic neurons by postsynaptic neurons

at different locations (shifted by d relative to the original

postsynaptic neuron). This led to a weaker response in the

original target region and an additional response in another

region. Second, in S-networks, the responding region was larger;

however, responses to cortical stimulation were weaker as a

whole.

3.6. BG responses to cortical two-site
stimulation

Next, we delivered a sequence of pairs of priming and

test stimuli to different cortical coordinates. This mimicked the

stimulation of neuronal populations representing different features.

In our computational model, this was implemented by delivering

the priming stimulus to a cortical population centered at sCTXI =

−1s/2 and the test stimulus to a population centered at sCTXII =

1s/2 (Figure 2). The stimulus profiles were given by Equation

(10).

Representative spatio-temporal responses for 1s = 0.1L are

shown in Figure 8. For a rather large time lag of 1t = 100 ms,

each stimulus caused spatio-temporal responses that were similar

to the ones caused by a single stimulus in the respective network

(compare Figures 7, 8).

Next, we performed a more detailed analysis of the response

patterns. To this end, we compared two cases: (i) only the test

stimulus was delivered to sCTXII = 1s/2 at time ts and (ii) the

priming stimulus and the test stimulus were delivered: the priming

stimulus to sCTXI = −1s/2 at time ts − 1t and the test stimulus

to sCTXII = 1s/2 at time ts. Note that we only considered positive

inter-stimulus intervals, 1t > 0. In what follows, we mark

quantities corresponding to case (i) by the index “i” and quantities

corresponding to case (ii) by the index “ii”.

For our analysis, we averaged the trial-averaged PSTHs of

all neurons with coordinates that were close to sCTXII , i.e., sX ∈

[1s/2− A/2,1s/2+ A/2], with X=STN,GPe. Here, A is the width

of the coordinate range over which responses were averaged. In

the case (i), only the test stimulus was delivered at time ts to the

stimulation site at 1s/2. We denote the average response of BG

neurons in nucleus X with sX ∈ [1s/2 − A/2,1s/2 + A/2] at

time t as FX
(i)(t|1s/2). In case (ii), an additional priming stimulus

was delivered to the stimulation site at −1s/2 at time ts − 1t. We

denote the average response of BG neurons in nucleus X with sX ∈

[1s/2−A/2,1s/2+A/2] at time t asFX
(ii)(t|1s/2,−1s/2,1t). We

used A = 0.045L.

To study how much the presence of the priming stimulus

alters the response evoked by the test stimulus, we evaluated two

quantities. The first quantity was

L
X
base(1t,1s) : =

∫ ts

ts−T−

dt

∣

∣

∣

∣

F
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Here, T− > 0 is the time range prior to the test stimulus during

which the change of the neurons’ trial-averaged instantaneous

firing rate due to the presence of the priming stimulus was

evaluated. LX
base(1t,1s) measures how much the presence of the

priming stimulus affects spiking of neurons in nucleus X shortly

before their evoked response to the test stimulus. It therefore

provides information on howmuch the baseline activity of neurons

in nucleus X is affected by the priming stimulus. The second

quantity we evaluated was

L
X
re(1t,1s) : =

∫ ts+T+

ts

dt
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LX
re(1t,1s) measures how much the presence of the priming

stimulus affected the responses of neurons in nucleus X evoked by

the test stimulus.

In Figure 9, we show results for LX
base(1t,1s) and LX

re(1t,1s)

for an N-network, a D-network, and an S-network obtained

from simulations of our computational model. LX
base(1t,1s) and

LX
re(1t,1s) showed different dependencies on 1t and 1s. For

short inter-stimulus intervals, 1t, LX
base(1t,1s) was close to zero,

indicating that the baseline activity prior to the test stimulus was

not affected by the presence of the priming stimulus. For long inter-

stimulus intervals, LX
base(1t,1s) increased and finally saturated for

fixed 1s as more and more of the response evoked by the priming

stimulus impacts the baseline activity of neurons before their

response to the test stimulus. The saturation for large 1t indicates

that the impact of the response evoked by the priming stimulus was

over before neurons responded to the test stimulus. Additionally,

increasing the coordinate difference, 1s, between stimulated

cortical subpopulations reduced the impact the priming stimulus

had on neurons responding to the test stimulus in N-networks

and S-networks. Accordingly, a characteristic width of functional

channels in which cortical inputs are processed independently

may be derived. In contrast, in D-networks LX
base(1t,1s) attained

another local maximum as a function of 1s when 1s was close to

the displacement, d, of synaptic connections (Figures 9E, G).

Remarkably, LX
re(1t,1s) showed a more complex dependence

on 1t and 1s than LX
base(1t,1s). Several local maxima occurred

at small 1s and at 1t ≈ 5 − 10 ms, 1t ≈ 30 − 40 ms, and

1t ≈ 50−60 ms for STN neurons (Figure 9B) and at1t ≈ 10−15

ms for GPe neurons. A comparison of these times with the PSTHs

in Figure 3 suggested that they correspond to the timings of the two

excitations and the gap in between in the PSTHs of STN neurons

(Figure 3A) and the timing of the first excitation in the PSTHs of

GPe neurons (Figure 3B). However, the delay between STN and

GPe neurons needs to be considered (1 ms in simulations; however,

it took about 5 ms for the postsynaptic neurons to respond to
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FIGURE 8

Spatio-temporal response to cortical two-site stimulation. Panels (A–C) show representative trial-averaged responses of simulated BG and cortical

neurons at di�erent locations, sX, to cortical two-site stimulation. Stimulation sites were at ±1s/2 and the inter-stimulus interval was 1t. Column (A)

shows results for an N-network, column (B) results for a D-network, and column (C) results for an S-network. Blue arrows mark displacement

d = 0.15L in D-network. Rows show the instantaneous firing rates of neurons at location sX in the cortex, the striatum, the STN, and the GPe (from

top to bottom). Parameters: σs = 0.05L/π , 1s = 0.1L, 1t = 100 ms, NSTN,GPe = 3. Results were averaged over 500 stimuli and 24 realizations of noise

and Poisson input.

incoming excitatory input due to the finite time constant of the

membrane potential).

Most remarkable, for all considered network structures,

LSTN
re (1t,1s) was more sensitive than LX

base(1t,1s) or

LGPe
re (1t,1s) in the sense that the influence of the priming

stimulus was measurable for larger 1s, i.e., when stimulation

sites were further apart. In particular, an inter-stimulus interval

of about 30 − 40 ms between the stimulus deliveries led to

the largest coordinate difference between stimulation sites for

which the influence of the second stimulus was measurable using

LSTN
re (1t,1s) (Figures 9B, F, J). Note that this time interval

also corresponded to the inter-stimulus intervals for which

LSTN
re (1t,1s) showed a local maximum for at 1s ≈ d in

D-networks (Figure 9F).

4. Discussion

Cortically evoked responses of STN and GPe neurons exhibit

characteristic sequences of excitations and inhibitions that were

observed in rodents (Kita and Kita, 2011) and primates (Nambu

et al., 2000; Kita, 2007; Jaeger and Kita, 2011; Polyakova et al., 2020).

We developed a computational model of the STN-GPe circuit

that reproduced these response characteristics and related them

to aspects of the topology of synaptic connections. Furthermore,

we presented a one- and a two-site stimulation technique to

quantify the width of functional channels in the BG network.

Our results suggest that details of the synaptic connectivity

are critical for the processing of cortical signals. They further

support the use of computational models that include synaptic

connectivity that is derived from experimental findings rather

than random connections. The presented one- and two-site

stimulation protocols enable probing of connectivity patterns in

preclinical experiments. Based on our computational results on

the effect of alterations of network connectivity on cortically-

evoked responses, one may design preclinical experiments to falsify

or verify our predictions. With such a combined computational

and experimental approach, one may reveal further characteristics

of synaptic connectivity in the BG and may identify patterns of

synaptic reorganization in neurological diseases, e.g., Parkinson’s

disease.

The characteristic pattern of excitations and inhibitions in

cortically evoked responses of STN and GPe neurons was studied

experimentally (Nambu et al., 2000; Kita et al., 2004; Kita, 2007;

Kita and Kita, 2011; Polyakova et al., 2020). Cortical stimulation

triggered characteristic responses of STN neurons that consisted of

an early excitation and a late excitation, which were separated by a

gap, and a long, late inhibition (Nambu et al., 2000; Polyakova et al.,

2020). In GPe neurons, responses showed an early excitation that

was followed by an inhibition and a late excitation (Nambu et al.,
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FIGURE 9

Modulation of evoked responses by a priming stimulus. Panels (A–D) show results for N-networks, panels (E–H) for D-networks, and panels (I–L) for

S-networks. In the left column, we show the natural logarithm of LX
base(1t,1s) and in the right column the natural logarithm of LX

re(1t,1s) for

X = STN and X = GPe, respectively. Parameters: NSTN,GPe = 3. PSTHs used for the calculation of LX
base(1t,1s) and L

X
re(1t,1s) were averaged over

sequences of 500 stimuli and over 24 realizations of noise and Poisson input. For D-networks, we used d = 0.15L (red, dashed line). T+ = 200 ms and

T− = 190 ms.

2000; Kita, 2007; Jaeger and Kita, 2011). These features were well

reproduced by our computational model (Figure 3).

Polyakova et al. (2020) found that local injection of glutamate

receptor antagonists into the STN diminished the early excitation,

and that the injection of muscimol (a GABA receptor agonist) into

the striatum or the GPe diminished the late excitation. Their results

supported the suggestions of earlier studies that the early excitation

in the evoked response of STN neurons is caused by glutamatergic

input via the cortico-STN hyperdirect pathway and the late

excitation results from disinhibition due to GABAergic input via

the cortico-striato-GPe-STN indirect pathway (Nambu et al., 2000).

In our computational model, we modeled these experiments by

cutting glutamate inputs to single STN neurons (to mimic the

local injection of glutamate receptor antagonists) and by cutting

inhibitory inputs to STN neurons (to mimic the local injection of

GABA antagonists) (Figure 4). In accordance with Polyakova et al.

(2020) we observed a suppression of the early excitation in the

former case (Figure 4A) and a suppression of the late excitation

in the latter case (Figure 4C). However, in our computational

model, the latter case also led to damped beta oscillations in the

instantaneous firing rate of STNneurons (Figure 4C). Such damped

oscillations were not reported by Polyakova et al. (2020). However,

Polyakova et al. reported high variability in the amplitude of the

early and late excitations in the responses of STN neurons after

local injection of a GABA antagonist. In our computational model,

cutting GPe inputs to STN neurons destabilized the characteristic
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response pattern of excitations and inhibitions in both responding

STN and GPe neurons (Figures 4C, D). A similar destabilizing

effect may occur in the experiments and may cause high variability

of the amplitudes of excitations among responding STN neurons

(Polyakova et al., 2020). Together, these findings suggest that the

GPe→STN connections are critical for the GPe-STN network to

process cortical input and stabilize baseline activity. The results

from our computational model further suggest that cutting STR

MSN inputs to single GPe neurons would diminish the inhibition

in the GPe neurons’ responses (Figure 4F) and also reduce the

amplitude of the late excitation in the evoked response of STN

neurons (Figure 4E). These results are in accordance with other

experiments by Polyakova et al. (2020) in which the injection of

muscimol into the putamen reduced the amplitude of the second

excitation in STN neurons substantially. Our results on the effect

of cutting STR MSN inputs to GPe neurons are also in line

with the experimental results of Kita et al. (2004); however, Kita

et al. injected a GABA antagonist locally into the GPe, which

also reduced GABAergic input from other GPe neurons and not

only STR MSN input. In our computational model, only STR

MSN inputs were cut, which resulted in a substantial weakening

of the inhibition in the response of GPe neurons (Figure 4F).

Furthermore, our computational results suggest that the late

excitation in the GPemay be partly due to excitatory input from the

STN and partly due to disinhibition after striatal inhibition. This is

in accordance with previous results by Kita and colleagues (Kita

et al., 2004; Kita, 2007).

The variability of the STN and GPe neurons’ baseline firing

rates contributed to the variability of single-neuron responses

to cortical stimuli in our computational model. In more detail,

the characteristic features of neuronal responses were most

pronounced among neurons with high baseline activity (see

Figures 5, 7). Unfortunately, it is difficult to compare the responses

of STN or GPe neurons with low mean firing rates to cortical

stimuli to experimental data, because such neurons were often

excluded from the analysis in experimental studies (Kita et al., 2004;

Kita and Kita, 2011; Polyakova et al., 2020).

N-networks and S-networks resulted in unimodal distributions

of single-neuron mean firing rates for STN and GPe neurons

(Figure 6). In contrast, in D-networks, baseline firing rates of GPe

neurons showed a multimodal distribution (Figure 6B). The shapes

of these distributions obtained from our computational model

reproduced experimental data for STN neurons as observed in

studies in rat brain slices qualitatively; a histogram of single-neuron

firing rates of tonically spiking STN neurons in rat brain slices can

be found in Beurrier et al. (1999). However, the mean firing rate

in that study was higher than in our model, as our model was

fitted to experimental data from anesthetized rats presented in Kita

and Kita (2011). A histogram of single-neuron mean firing rates of

GPe neurons can be found in Figure 8B of Miguelez et al. (2012).

There, a significant portion of GPe neurons did not spike (≈ 25%

in Miguelez et al., 2012), and the broad distribution of single-

neuron mean firing rates of GPe neurons suggests high variability

of single-neuron mean firing rates. In our model, GPe neurons

with a small number of incoming STN connections possessed very

low firing rates (Figure 6B). High variability of single-neuron mean

firing rates occurred due to variability in the number of incoming

STN→GPe connections, which was only realized in D-networks

for a small number of STN→GPe connections, NSTN,GPe = 3.

For the latter, individual connections were substantially stronger

than for NSTN,GPe = 30 because parameters were adjusted to fit

the STN and GPe firing rates to experimental data (Figure 5B). The

random displacement of connections in D-networks led to broader

distributions of single-neuronmean firing rates in D-networks than

in N-networks or in S-networks.

Our results suggest that cortical stimulation results in complex

spatio-temporal response patterns in the STN and GPe. These

patterns result from the propagation of signals along the cortico-

STN hyperdirect pathway and along the cortico-striato-GPe-

STN indirect pathway (Figure 1B), and the convergence of these

pathways onto the same regions in the STN and the GPe. In our

computational model, these patterns strongly depended on the

underlying structure of synaptic connections (Figure 7). Evidence

from animal models suggests that the synaptic network structure in

the BG nuclei is impaired in the dopamine-depleted state in animal

models for Parkinson’s disease (Fan et al., 2012; Miguelez et al.,

2012; Chu et al., 2015; Pamukcu et al., 2020). Modulation of evoked

responses of individual BG neurons in the dopamine-depleted state

has been reported and analyzed by Kita and Kita (2011) in a

rodentmodel for Parkinson’s disease. The authors observed that the

characteristic patterns of excitations and inhibitions were strongly

affected by dopamine depletion. Our results suggest that dopamine

depletion may also affect the spatio-temporal pattern of evoked

responses and affect the structure of parallel functional channels in

the BG.

In the present paper, we studied three types of networks: a

base case with an intact functional channel structure and two

cases in which this structure was perturbed. In the base case,

neurons projected to neurons expressing similar features. This was

realized inN-networks by connecting neurons with similar (spatial)

coordinates sX (Figure 1C1). This mimicked an intact somatotopic

organization of synaptic connections (Nambu, 2011) and precise

reciprocal loops between STN and GPe (Kita, 2007). In addition,

we considered two types of altered network structures: First, in D-

networks a shift in synaptic connectivity was induced for a fraction

of the neurons such that they would connect to neurons with

shifted (spatial) coordinates sX + d (Figure 1C2). Second, in S-

networks, neurons projected to an enlarged area in the postsynaptic

nucleus such that neurons with less similar coordinates were

also targeted (Figure 1C3). The described changes in the network

structure had a strong impact on cortically evoked spatio-temporal

responses of STN and GPe neurons. While cortical stimulation

in N-networks only triggered responses of neurons with similar

coordinates, a second neuronal population expressing different

features responded in D-networks. Interpreting these results,

stimulation or activation of a cortical region corresponding to a

certain body part or motor program would also activate neuronal

populations representing different body parts or motor programs

in D-networks. Such a perturbation of the BG structure may lead to

the inability to activate these body parts independently. In contrast,

in S-networks, cortical stimuli triggered less pronounced responses

but of a bigger neuronal population. Such an alteration of the BG

structure may correspond to less coordinated motor movements

in response to cortical activation. Evidence from animal models
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suggests that a reorganization of network connectivity emerges in

several BG related movement disorders, e.g., Parkinson’s disease

(Bronfeld and Bar-Gad, 2011). Experimental studies in the MPTP

monkey model suggest that both types of impairment, i.e.,

responses to different body parts (D-network) and broadening

of the projection region (S-network), may occur in the BG in

Parkinson’s disease. Boraud et al. (2000) reported that, under

normal conditions, arm- and leg-related GPi neurons occurred

in clusters and were linked to a single joint. In contrast, in the

MPTP monkey model for Parkinson’s disease, the overall number

of responding neurons increased, and most responding neurons

were linked to multiple joints (Boraud et al., 2000). Filion et al.

(1988) reported that in MPTP monkeys, more globus pallidus

neurons responded to the movement of a certain body part. Also,

neuronal responses were elicited by the movement of more than

one joint and by movements in different directions. Furthermore,

some neurons responded to the movement of both upper and lower

limbs on both the ipsi- and the contralateral sides. In contrast, in

healthy animals, responses were only caused by the movement of

a single joint on the contralateral side and in one direction (Filion

et al., 1988). In rats, Cho et al. (2002) analyzed the reorganization

in the lateral striatum (sensorimotor striatum) following 6-OHDA

lesion. In controls, STR neurons that responded to the same body

part were organized in clusters. However, after 6-OHDA lesion,

the cluster size was reduced, and the portion of STR neurons

that responded to more than one body part increased by a factor

of 16 (Cho et al., 2002). These findings supported a hypothesis

advanced by Mink (1996) that the BG’s primary role may be the

focused selection of the “correct” motor program and inhibition

of competing ones. Synaptic reorganization in disorders such as

Parkinson’s disease would diminish action selection and cause

motor symptoms.

Of particular interest for further analysis of the synaptic

network structure of the BG would be to measure aspects of

the synaptic connectivity in experiments. In earlier studies, the

organization of cortico-STN connections was analyzed in tracer

studies in monkeys (Monakow et al., 1978; Nambu et al., 1996).

Furthermore, in Jeon et al. (2022), neuroanatomical techniques

were used to construct 3D connectivity maps in mice and

compare them to results from 7T MRI and tractography studies in

humans. In the present study, we suggested a two-site stimulation

protocol in which a test and a priming stimulus are delivered

to two cortical stimulation sites at a certain distance and with

a certain inter-stimulus interval. Analyzing how the priming

stimulus influences the response of neurons to the test stimulus,

we found that if the priming stimulus is applied long (> 100

ms) before the test stimulus, varying the spatial distance between

cortical stimulation sites yields an approximate “channel width,”

characterizing the width of the cortical area in which stimulation

activates the considered area in the STN or GPe (Figures 9A, C).

This method may be used to analyze the spatial characteristics

of the somatotopic organization in the BG. To realize two-site

stimulation in an experiment, the response of single BG neurons

to cortical stimuli would be measured, similar to the experiments

performed by Nambu et al. (2000); Kita et al. (2004); Jaeger and

Kita (2011); Kita and Kita (2011); and Polyakova et al. (2020).

Then a priming stimulus would be administered with a time

lag 1t and at a distance 1s from the original, test stimulus.

Measuring the BG neuron’s PSTH for a long sequence of stimuli

and comparing it to the one in the absence of the priming

stimulus yields estimates of the quantities Lx
base(1t,1s) and

Lx
re(1t,1s). Evaluating, these quantities for different 1t and 1s

yields similar data as the one shown in Figure 9 for each responding

BG neuron.

The presented two-site stimulation protocol also allowed us

to measure the displacement of synaptic connections in D-

networks. In these networks, neurons in the considered region

of the STN or GPe responded to stimulation of two distinct

cortical regions (Figures 9E–H). Our computational results suggest

that this method is most sensitive when the modulation of the

evoked response of STN neurons by an earlier cortical stimulus

rather than the modulation of their baseline activity is considered

(Figures 9B, F, J), in particular for an inter-stimulus interval of

about 30 − 40 ms. This time interval may be affected by synaptic

transmission delays and needs to be verified experimentally. In our

computational model, an approximate of the width of functional

channels was also obtained if the modulation of the baseline

activity of STN or GPe neurons by the presence of the cortical

priming stimulus was studied (Figures 9A, E, I). This approach

may also be realized by applying only one cortical stimulus

and studying variations of neuronal activity from their baseline

activity. However, the baseline activity may vary over time, whereas

evoked responses possess characteristic features. In general, two-

site stimulation may help to get a deeper understanding of the

topology of synaptic connections in the BG, the somatotopic

organization of the cortico-BG circuits, and to which extent this

structure is impaired in animal models of neurological disorders,

e.g., Parkinson’s disease.

More detailed information on the organization of synaptic

connections could inform future computational models.

Current computational models often either consider random

connectivity between nuclei, e.g., Lindahl et al. (2013); Ebert

et al. (2014); Madadi Asl et al. (2022a); Adam et al. (2022); Salehi

et al. (2023), or they incorporate parallel channels either by

considering macroscopic parallel circuits of randomly connected

subpopulations, e.g., Leblois et al. (2006); Fountas and Shanahan

(2017), or by constructing parallel channels on the scale of the

individual neurons, e.g., Terman et al. (2002); Hahn and McIntyre

(2010); Lourens et al. (2015). The latter is somewhat comparable

to the synaptic connectivity used in the present study. Our

results suggest that differences in the organization of synaptic

connections in computational models strongly impact cortically

evoked responses and likely affect other characteristics of neuronal

activity, such as synchronization or the existence of pathological

oscillations. An accurate implementation of synaptic connections

may be critical for generating clinically relevant hypotheses, e.g.,

about the response to brain stimulation.

Recently, Schmidt et al. (2020) related the shape of deep

brain stimulation-evoked potentials to the involved pathways.

While no information on somatotopic maps was revealed, the

authors suggested that the shape of deep brain stimulation-evoked

potentials may serve as a biomarker for adaptive deep brain

stimulation, or may guide parameter selection and electrodes

placement for deep brain stimulation in Parkinson’s disease
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(Schmidt et al., 2020; Dale et al., 2022). Our results may motivate

preclinical and clinical studies to use cortical as well as BG one- or

two-site stimulation to analyze the spatial arrangement of synaptic

connections between BG nuclei. Such insight may help to improve

computational models of the BG and models on high-frequency

deep brain stimulation as a treatment for medically refractory

Parkinson’s disease significantly.

To reduce complexity, we did not consider some aspects of the

STN and GPe nuclei during the derivation of our computational

model. For instance, recent experimental studies reported the

existence of multiple neuron types with distinct functionality

in the STN (Jeon et al., 2022) and the GPe (Mallet et al.,

2012; Abdi et al., 2015; Mastro et al., 2017), which may affect

network functionality such as the processing of cortical responses

and rhythm generation (Suryanarayana et al., 2019; Gast et al.,

2021). Neuron types in the GPe include prototypic neurons and

arkypallidal neurons (Mallet et al., 2012; Abdi et al., 2015). While

prototypic neurons have been found to project mainly to the

STN and down-stream nuclei, arkypallidal neurons project to the

striatum thereby providing feedback to this upstream nucleus.

Anatomical studies also reported projections of STN neurons to

the striatum (Beckstead, 1983; Kita and Kitai, 1987). Here, we

neglected upstream synaptic connections of the STN-GPe circuit

and focused on the most common neuron type in the GPe, i.e.,

prototypic neurons. There is also evidence from anatomical studies

that STN neurons form local axon collaterals suggesting recurrent

STN connections (Hammond and Yelnik, 1983; Gouty-Colomer

et al., 2018); However, recent studies performing simultaneous

multi-cell recordings in rat brain slices reported the absence of

functional intra-STN connectivity (Steiner et al., 2019). Therefore,

we did not consider synaptic connections between STN neurons in

our computationalmodel. Another simplification is the assumption

of a one-dimensional arrangement of the neurons along the sX-

axes. The STN and GPe are three-dimensional structures and

evidence from experimental studies suggests non-homogeneous

synaptic connectivity along different directions. For instance, STN

axons form band-like terminal fields in the globus pallidus that are

aligned with those of striatal axons (Hazrati and Parent, 1992). This

would likely impact spatio-temporal characteristics of cortically

evoked responses and the orientation of functional channels.

Furthermore, the somatotopic organization of STN and GPe nuclei

are more complex. For instance it includes multiple body maps

for inputs from the primary motor cortex and the supplementary

motor area, respectively (Nambu, 2011). Some experimental

evidence also suggests that within regions that represent a
certain body part neurons encoding similar motor features are

sometimes spread out across a larger area instead of clustering
together (DeLong et al., 1985). Further studies are required
to understand how these factors impact the spatio-temporal
response patterns evoked by cortical stimulation studied in the
present paper.

As explained above, the functional channels used in this study

are related to the impact, specifically spatial range and coverage

of electrical stimuli on parts of brain circuits (see Figure 2).

These functional channels are not meant to be building blocks
of a neural code as, e.g., activity sequences corresponding to
sub-second behavioral motifs (Markowitz et al., 2018). However,

disease-related changes as reflected by the width of these

functional channels may impact behaviorally relevant activity

sequences. Accordingly, functional channels may help elucidate

neuronal information processing under physiological as well as

pathological conditions.

In a future study, we want to address how characteristic

measures, such as the width of functional channels, can be

harnessed to calibratemultisite deep brain stimulation, for instance,

coordinated reset stimulation (Tass, 2003; Tass et al., 2012;

Adamchic et al., 2014; Wang et al., 2016, 2022; Bore et al.,

2022), random reset stimulation (Kromer and Tass, 2020; Khaledi-

Nasab et al., 2021a), and other multisite stimulation protocols

(Khaledi-Nasab et al., 2021b, 2022; Weerasinghe et al., 2021;

Kromer and Tass, 2022) for improving desynchronizing effects,

especially in the presence of reorganized somatotopic maps. In

computational studies, the desynchronization effect of coordinated

reset stimulation was more pronounced when individual stimuli

were delivered to segregated neuronal subpopulations (Popovych

and Tass, 2012; Lysyansky et al., 2013; Ebert et al., 2014; Zeitler

and Tass, 2015) suggesting that effective stimulation requires

appropriate spacing of stimulation sites, e.g., minimal distances

between the latter. This is in accordances with results from

preclinical studies on coordinated reset deep brain stimulation

in the MPTP monkey model, where weaker stimulation led to

more pronounced long-lasting effects (Tass et al., 2012), and

findings obtained in a clinical study on acoustic coordinated

reset stimulation in tinnitus patients, where larger gaps between

stimulus frequencies were correlated with better acute reduction of

tinnitus loudness and annoyance after 16 min of sound treatment

(Tass et al., 2019; Munjal et al., 2021). Future computational and

pre-clinical studies might use the functional channel width, as

introduced here, to determine optimal stimulation site spacing.
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