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A multi-demand operating system
underlying diverse cognitive tasks

Weidong Cai 1,2 , Jalil Taghia3 & Vinod Menon 1,2,4

The existence of a multiple-demand cortical systemwith an adaptive, domain-
general, role in cognition has been proposed, but the underlying dynamic
mechanisms and their links to cognitive control abilities are poorly under-
stood. Here we use a probabilistic generative Bayesian model of brain circuit
dynamics to determine dynamic brain states across multiple cognitive
domains, independent datasets, and participant groups, including task fMRI
data fromHumanConnectomeProject, DualMechanismsofCognitiveControl
study and a neurodevelopment study. We discover a shared brain state across
seven distinct cognitive tasks and found that the dynamics of this shared brain
state predicted cognitive control abilities in each task. Our findings reveal the
flexible engagement of dynamic brain processes across multiple cognitive
domains and participant groups, and uncover the generative mechanisms
underlying the functioning of a domain-general cognitive operating system.
Our computational framework opens promising avenues for probing neuro-
cognitive function and dysfunction.

The human brain is a flexible, yet stable, system that allows rapid and
adaptive allocation of cognitive resources to meet moment-by-
moment changes in task demands1–7. A converging body of evidence
now points to a core set of distributed brain areas that are consistently
engaged during diverse cognitive tasks8–15. This commonality naturally
raises the critical and challenging questionof how the samebrain areas
might underlie cognition across multiple task domains16. Addressing
this question has the potential to uncover mechanisms underlying a
multiple-demand, domain-general, functional system underlying cog-
nition and identify transdiagnostic features of cognitive dysfunction in
psychiatric and neurological disorders17. Here we use a state space
hidden Markov model (HMM) to address this challenge. We identify
common brain states that are dynamically engaged across seven dif-
ferent cognitive paradigms, across multiple participant cohorts, and
demonstrate their behavioral relevance.

Surprisingly, a wide range of cognitive tasks have been found to
elicit a common pattern of frontal and parietal network activity18,
leading to the proposal that a common multiple-demand system may
play an adaptive, domain-general, role to achieve task goals16. Evidence
for the involvement of a network of frontal-parietal cortical regions

that are commonly activated across tasks has emerged from a wide
range of electrophysiological and fMRI studies19,20. However, the
shared mechanisms by which such a multiple-demand system con-
tributes to cognition across a broad range of tasks is not known as
previous studies haveprimarily focusedon identification of brain areas
commonly activated across tasks and have lacked the quantitative
rigor needed to link dynamic brain circuits across tasks. Crucially,
activation of common brain areas does not necessarily imply engage-
ment of a shared underlying mechanism by which the putative
multiple-demand system operates across cognitive domains. An
alternative hypothesis is that despite engagement of similar brain
regions no common generative mechanisms are engaged across tasks.
Identification of a common generative mechanism would provide
strong evidence for a domain-general cognitive operating system.

Uncovering general dynamical mechanisms that contribute to
multiple cognitive tasks independently in a quantitatively rigorous
manner is challenging becauseof the lackof computationalmodels for
characterizing shared processes across tasks that vary along multiple
cognitive dimensions and behavioral contingencies, as well as data
acquisition protocols and participant cohorts. A critical issue here is
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that uncovering the operation of such a multiple-demand system
requires analysis of latent dynamical processes that underlie different
cognitive tasks.

State space models that capture dynamic changes in coactivation
patterns across brain regions involved in cognitive control offer a
powerful tool in this regard. Latent spacemodels are nowbeingwidely
explored as promising tools for analyzing rich patterns of electro-
physiological activity across diverse neural systems and behaviors, as
they do not depend on known relationships between neural activity
and external experimental variables21,22. Latent state models char-
acterize patterns of covariation across a neuronal population to reveal
its internal state22. These models have proven useful for visualizing
population-level neural activity, relating activity to behavior, and
interrogating the dynamic mechanisms that mediate population-level
computations22–26. Moreover, comparisons of large-scale neural activ-
ity across participants and different experimental tasks is challenging
without models and rigorous computational methods for linking
neural processes across two or more datasets. State space algorithms
that probe a shared space where they can be directly compared, have
proven tobe valuable for comparing high-dimensional neural activities
across times, subsets of neurons, and individuals27. Our models are
tailored to achieve similar goals with human fMRI data.

Analogous to recent neurophysiological investigations, we use a
latent space HMM which models covariation in fMRI activity with a
Bayesian switching dynamical systems state space (BSDS) algorithm28.
Specifically, brain states are characterized by a unique pattern of
time-varying activation and functional connectivity linking regions of
interest28. Importantly, these brain states do not occur at random,
they are temporally correlated in aMarkovian sense—the brain state at
a given time depends on the state in the previous time instance. Dif-
ferent from conventional approaches based on external experimental
variables, at each time point, a brain state i occurs with a probability
p(i) that fluctuates over time, and a transition probability A(i,j) of
transitioning from state i to state j. BSDS implements an unsupervised
learning algorithm to determine brain states, their probability of
occurrence at each time point, transition probability, and the mean
activation and functional connectivity.Moreover, unlike conventional
methods, BSDS does not directly compute time-varying activation
and functional connectivity using arbitrary moving windows or
impose temporal boundary associated with predefined task condi-
tions. Instead, BSDS learns latent representations and states in a
unified framework by optimization of single objective functionwithin
a Bayesian framework. Our generative model thus allowed us to
infer time-varying activation and functional connectivity associated
with each brain state with minimal assumptions. Importantly, the
generative model implemented by BSDS provides posterior prob-
ability distributions of model parameters from one cognitive task
which can be used as priors for estimating model parameters from
other tasks, thereby facilitating analysis of a domain-general func-
tional multiple-demand systems across cognitive domains and parti-
cipant cohorts.

The overarching aim of our study was to characterize shared
latent brain mechanisms associated with a multiple-demand cognitive
operating system across a wide range of cognitive tasks, and deter-
mine their association with individual differences in cognitive control
abilities. To accomplish this, we characterized the Markovian proper-
ties of shared brain states by examining the probability of brain state
occurrence, their transition probabilities, and associated activation
and connectivity features in seven widely used cognitive task para-
digms. We identified brain states in each task and examined their
correspondence with brain states in a task canonical n-back working
memory reference task28. Using the n-back working memory as a
reference task, we asked whether task-optimal latent brain states that
occur during the high cognitive load condition in the n-back task are
also engaged during each of the other seven cognitive tasks. Our

choice of theworkingmemory taskwasmotivatedbothby the fact that
it is widely used to probe cognitive function and dysfunction29,30, and
by our identification of optimal and non-optimal brain states asso-
ciated with cognitive performance and decision-making28. Whether a
latent brain state in an independent task matches an optimal working
memory task brain state was determined by how close they were in
their latent space parameters (Fig. 1).

Our first major goal was to characterize brain states in an inde-
pendent set of four cognitive control tasks acquired as part of the Dual
Mechanism of Cognitive Control (DMCC) study31. The DMCC study
includes the AX continuous performance task (AxCPT), cued task
switching task (CuedTS), Sternberg working memory task (Sternberg)
and Stroop interference task (Stroop). All four cognitive tasks have
beenwidely used to examine different aspects of cognitive control32–34.
We hypothesized that our approach would uncover a common brain
state across the four cognitive control tasks, thereby elucidating a
shared circuit mechanism underlying the multiple-demand system in
an adult cohort.

Crucially, we investigated whether brain states identified by our
model in each of the four cognitive control tasks are behaviorally
relevant. We assessed brain-behavior relations in relation to occur-
rence rates of brain states engaged during task performance. We then
investigated whether the occurrence of the shared brain states across
cognitive task domains was preferentially linked to task performance.
Extending our previous finding that the inability to engage such a state
was associated with poor performance in the working memory task28,
we hypothesized that occurrence of the shared brain state underlying
themultiple-demand systemwould be behaviorally relevant across the
four cognitive control tasks.

Our thirdmajor goalwas to investigate whether occurrence of the
shared brain state is also developmentally relevant, and whether its
occurrence could predict attention deficits characteristic of childhood
Attention Deficit/Hyperactivity Disorder (ADHD), a neurodevelop-
mental disorder characterized by prominent deficits in cognitive
control35,36.We examinedwhether the same generativemodel could be
used to investigate latent brain states in typically developing children
and children with ADHD performing a stop-signal task (SST), a stan-
dard paradigm for probing impulsivity and response inhibition37. We
hypothesized that difficulty in engaging the shared latent brain state
would predict cognitive control deficits and severity of inattention
symptoms in children.

Finally, to investigate the broader application of our model
beyond canonical cognitive control and working memory tasks, we
investigated a relational processing (RP) fMRI task from the HCP38.
Because the RP and n-back working memory tasks were performed in
the same individuals, this allowed us to determine whether individuals
have similar brain state features across tasks. We hypothesized that
individuals would show similar latent brain state features across cog-
nitive tasks, reflecting intra-individual stability of features in the
multiple-demand cognitive system.

Our study builds on previous research using a putative multiple-
demand system identified using a large sample from the Human
Connectome Project (HCP)28. Replicability is a major challenge in
neuroscience and a key goal here is to investigate the same brain
regions, encompassing key nodes of the salience, default-mode, and
lateral frontoparietal networks, which are consistently activated across
various cognitive tasks30,39,40. Using reference generative models
associated with a canonical working memory task, we then examine
whether latent brain states from the reference task also play a role in
the underlying cognitive processes of diverse tasks. We uncover a
shared optimal dynamic brain state underlying a broad range of cog-
nitive domains, tasks, across multiple participant cohorts and data
acquisition protocols. Findings provide critical insights into the
dynamical circuit mechanisms by which a common multiple-demand
system contributes to a wide range of cognitive functions.
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Results
Our analysis strategy and data analysis pipeline are shown in Fig. 1 and
Supplementary Fig. 1 (see also Methods for additional details). We
leveraged a total of seven different experiments across a wide range of
cognitive domains (Supplementary Table S1). An important feature of
all fMRI datasets was that they were acquired at high temporal

resolution, with sub-2-second sampling rates ranging from 0.49 to
1.2 s. This allowed us to capture rich temporal dynamics in fMRI data in
each task anddetermine sharedunderlying latent structures and relate
them to cognitive task performance.

In a previous study using an n-backworkingmemory taskwith 122
participants from the HCP, we uncovered an optimal brain state for

Article https://doi.org/10.1038/s41467-024-46511-5

Nature Communications |         (2024) 15:2185 3



high load cognitive control (SHWM) which occurs preferentially during
the 2-back, high-load, workingmemory task condition, over during the
low-load and fixation task conditions28. We chose this task because the
n-back task, and in particular the 2-back condition, requires sustained
engagement of attention and cognitive control resources for achieving
good task performance. We therefore used n-back task states as a
template for analysis of shared latent states across tasks. The latent
brain state was defined by unique patterns of activity and functional
connectivity between key nodes of the salience, central executive, and
default mode networks (SN, CEN and DMN, respectively), three large-
scale cingulo-opercular and frontoparietal neurocognitive networks
whose dynamic interactions play an essential role in cognition28,41–43.
The ROIs included bilateral anterior insula (AI), middle frontal gyrus
(MFG), frontal eye field (FEF), intraparietal sulcus (IPS) and dorsome-
dial prefrontal cortex (DMPFC), ventromedial prefrontal cortex
(VMPFC) and posterior cingulate cortex (PCC).

State SHWM was determined to be an “optimal latent brain state”
because (1) it hadhigher occupancy rate in the 2-back, compared to the
0-back, task condition, where occupancy rate refers to a measure for
how often a latent brain state occurs during a period of time, (2) it had
higher occupancy rate than other latent brain states in the 2-back task
condition, and (3) its occupancy rate predicted behavioral
performance28. Based on these observations, we used the SHWM as a
reference state (Supplementary Fig. S2) and identified brain states in
each of the other six cognitive tasks whose spatiotemporal features
bestmatched SHWM. In other words, in each of the other six tasks X, we
identified state SHX which wasmatched to SHWM, the optimal state for
the 2-back working memory task. Importantly, we then determined
whether the likelihood of engaging such “matched optimal” states
predicted cognitive control abilities, including individual differences
in task-specific measures of cognitive task performance and clinical
symptoms associated with cognitive control deficits.

DMCC tasks: AxCPT
We conducted a parallel set of analyses on four different cognitive
control tasks from the DMCC study, including the AxCPT, CuedTS,
Sternberg, and Stroop tasks31.

The AxCPT is widely used to investigate cognitive control
mechanisms associated with proactive and reactive control32. In this
task, participants are presented with the letters A or B followed by
letters X or Y (or not “X”), comprising AX, AY, BX, and BY pairs. They
are asked to respond to the probe (“X”) only if it followed the con-
textual cue (“A”). Participants were tomake another response to other
cue–probe sequences (“A” then “Y,” “B” then “X,” or “B” then “Y”), each
occurring with much lower probability than the target pair (“AX”).
Analysis of behavioral performance revealed that RTs were sig-
nificantly longer in the AY than AX trials (t49 = 17.44, p <0.001, Cohen’s
d = 4.933, two-tailed paired t-test; Supplementary Table S2) and in the
BX than BY trials (t49 = 8.02, Cohen’s d = 2.268, p < 0.001, two-tailed
paired t-test; SupplementaryTable S2). Longer RT inAY and shorter RT
in BX are associated with better proactive and reactive control,
respectively44,45.

BSDS uncovered six latent brain states in the AxCPT task (Sup-
plementary Fig. S3a). Next, we used two different algorithms to
determine the correspondence between states in the AxCPT and n-

back tasks. State temporal closeness measures the similarity of two
latent brain states’ temporal profiles (i.e., posterior probability of brain
states along time) in the same dataset (see details in methods),
whereas state space closeness measures the similarity of two latent
brain states’ space feature profiles (i.e., mean and covariance). High
temporal correlation and high space closeness indicates better
matching of states. Both algorithms identified a single unique state
SHAxCPT with the highest state-space closeness (c = 1.2, p =0.005) and
the highest temporal closeness (r =0.83, p =0.004, Pearson’s correla-
tion) with SHWM (Fig. 2). Detailed results from statistical analysis of
state matching procedures across tasks are described in Supplemen-
tary Information (Supplementary Results and Supplementary
Table S13). These results identify SHAxCPT as a brain state matching
SHWM, the task-optimal reference engaged during working memory.

CCA We used CCA to investigate multivariate relations between
brain states and behavioral measures on the AxCPT. We found a sig-
nificant canonical correlation between occupancy rates of brain states
and behavioral performance (r = 0.51, p <0.001, Pearson’s correlation,
Fig. 3a). The occupancy rate of SHAxCPT had the highest positive weight
in the brain component and, correspondingly, AY RT had the highest
positive weights and BX RT had the most negative weight in the
behavioral component, suggesting that increased occupancy rate of
SHAxCPT is associated with better task performance (Fig. 3a, Supple-
mentary Table S3). Predictive modeling using CCA showed that pre-
dicted canonical brain state measures and predicted canonical
behavioral measures were significantly correlated (r =0.31, p = 0.02,
Pearson’s correlation).

Univariate analysis We then examined the relation between
SHAxCPT and a single index of cognitive control in the AxCPT task. We
used a normalizedmeasure of the difference between RTs to “AY” and
“BX” trials, a composite measure of proactive and reactive cognitive
control processes associated with the AxCPT task44,45. We found that
the occupancy rate of SHAxCPT was significantly correlated with
proactive cognitive control (r = 0.34, p = 0.02, Pearson’s correlation,
Fig. 3e). No other state had statistically significant and positive con-
tribution to cognitive control (Supplementary Table S10). This result
demonstrates that greater engagement of SHAxCPT is associated with
better cognitive control.

DMCC tasks: CuedTS
TheCuedTSparadigm iswidely used to investigate cognitive control in
response to changing task rules46,47. Participants performed a letter-
digit task in which they were cued to respond to either the letter or
number in target stimuli which consisted of a letter-digit pair (e.g., “D
3”, or “1 A”). Based on the cue, participants had to either categorize the
letter as a vowel or consonant, or categorize the digit as even or odd
depending on the cue. In incongruent trials, the two stimuli activated
competing cue-dependent responses (e.g., “A 3”) whereas in con-
gruent trials, the response was cue-independent (e.g., “A 2”). Analysis
of behavioral data revealed that RT on congruent trials was sig-
nificantly shorter than on incongruent trials (t49= 3.2, p =0.002,
Cohen’s d = 0.533, two-tailed paired t-test; Supplementary Table S2).
Shorter RTs in incongruent trials and lower RT differences between
congruent and incongruent trials are associated with better cognitive
control ability in this task46,48.

Fig. 1 | Overview of data analysis strategy and pipeline. We applied a Bayesian
switching dynamic systems (BSDS) to time series extracted from brain regions
constituting a multiple-demand system involved in cognitive control. We investi-
gated latent brain states across seven different cognitive tasks and four different
datasets. First, to demonstrate a shared latent brain state across cognitive domains,
wematched task-specific latent brain states with the task-optimal latent brain state
SHWM associated with high-load working memory task condition. Two different
state matching algorithms demonstrated convergent results. Second, the rela-
tionship between the shared latent brain state and cognitive performance in each

task was investigated using both multivariate canonical correlation and univariate
correlation analysis. Third, we examined the shared latent brain state and its rela-
tion to clinical measures of inattention in a developmental cohort. Fourth, we
evaluated similarity of latent brain states within individuals across cognitive tasks.
WMn-backworkingmemory task,AxCPTAx continuousperformance task,CuedTS
Cued task switching task, Stern Sternberg working memory task, Stroop Stroop
interference task, SST Stop-signal task, RP Relation processing task. The regression
estimate is presented with 95% confidence interval (shaded area).
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BSDS uncovered six latent brain states in the CuedTS (Supple-
mentary Fig. S3b). Using the two different state matching algorithms,
we again identified a single unique SHCuedTS with the highest state
space closeness (c =0.88, p =0.03) and the highest state temporal
closeness (r =0.72, p =0.02, Pearson’s correlation) with SHWM (Fig. 2).
Detailed results from statistical analysis of state matching procedures
across tasks are described in Supplementary Information (Supple-
mentary Results and Supplementary Table S13). These results identify
SHCuedTS as a brain state matching SHWM, the task-optimal state
engaged during working memory.

CCA We first used CCA to investigate multivariate relations
between brain state and behavioral measures in the CuedTS task. We
found a significant canonical correlation between occupancy rate of
brain states and behavioral performance (r =0.59, p <0.001, Pearson’s
correlation, Fig. 3b). The occupancy rate of SHCuedTS had the highest
positive weight in the brain component and, correspondingly, incon-
gruent RT had negative weights, suggesting that the increased occu-
pancy rate of SHCuedTS is associated with better task performance
(Fig. 3b, Supplementary Table S3). Predictive CCA showed that the
predicted canonical brain state measures and predicted canonical
behavioral measures were significantly correlated (r =0.35, p =0.01,
Pearson’s correlation).

Univariate analysis We then examined the relation between
SHCuedTS and a single index of cognitive control. We used RT differ-
ences between congruent and incongruent trials to measure the task-
rule congruency effect46,48, in which larger values indicate higher levels
of cognitive control.We found that the occupancy rate of SHCuedTS was
marginally significantly correlated with cognitive control (r =0.28,
p =0.05, Pearson’s correlation, Fig. 3f). No other state had a statistically
significant and positive contribution to cognitive control

(Supplementary Table S10). This result demonstrates that greater
engagement of SHCuedTS is associated with better conflict resolution.

DMCC tasks: Sternberg
The Sternberg task is widely used for probing maintenance and
manipulation of information in working memory49–51. In this task,
participants determine whether a probe matches a list of stimuli pre-
sented previously. High and low load conditions differ in the number
of stimuli that need to bemaintained in workingmemory. Participants
showed significantly lower cognitive control in the high, compared to
the low, load condition (t49 = 2.69, p =0.01, Cohen’s d = 0.761, two-
tailed paired t-test; Supplementary Table S2). Higher accuracy and
shorter RT on high load trials are associated with better working
memory capacity49–51.

BSDS uncovered four latent brain states in the Sternberg task
(Supplementary Fig. S3c). Using two different state matching algo-
rithms, we identified a single unique SHStern with the highest state
space closeness (c =0.86, p =0.04) and the highest state temporal
closeness (r = 0.7, p =0.03, Pearson’s correlation) with SHWM (Fig. 2).
Detailed results from statistical analysis of state matching procedures
across tasks are described in Supplementary Information (Supple-
mentary Results and Supplementary Table S13). These results identify
SHStern as a brain statematching SHWM, the task-optimal state engaged
during working memory.

CCA We first used CCA to investigate multivariate relations
between brain state and behavioral measures in the Sternberg task.We
found a significant canonical correlation between occupancy rates of
brain states and behavioral performancemeasures (r = 0.65, p <0.001,
Pearson’s correlation, Fig. 3c). The occupancy rate of SHStern had the
high positive weights in the brain component, suggesting increased

Fig. 2 | Shared latent brain state across four different dual mode of cognitive
control (DMCC) tasks. BSDS uncovered 6 dynamic brain states in the AxCPT
(N = 50). SHAxCPT showed (a) the highest state space closeness (c = 1.2) and (b)
highest state temporal closeness (r =0.83) with SHWM. BSDS uncovered 6 dynamic
brain states in the CuedTS task. SHCuedTS showed (a) the highest state space clo-
seness (c = 0.88) and (b) the highest state temporal closeness (r =0.72) with SHWM.
BSDS uncovered 4 dynamic brain states in the Sternberg working memory task.

SHStern showed (a) the highest state space closeness (c =0.86) and (b) highest state
temporal closeness (r =0.7) with SHWM. BSDS uncovered 5 dynamic brain state in
the Stroop task. SHStroop showed (a) the highest state space closeness (c = 1) and (b)
the highest state temporal closeness (r =0.82) with SHWM. SHWM refers to the high-
load dynamic brain state in the n-back working memory task. In each task, the best
matched four latent states are illustrated here. Color bars are the scales for state
space closeness and state temporal closeness.
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occupancy rate of SHStern is associated with better performance
(Fig. 3c, Supplementary Table S3). Predictive CCA showed that the
predicted canonical brain state measures and predicted canonical
behavioral measures were significantly correlated (r =0.41, p =0.004,
Pearson’s correlation).

Univariate analysis We then examined the relation between
SHStern and a single index of cognitive control in the Sternberg task.We
used an efficiency score (Accuracy/RT) to assess working memory
function and create a standardized index of cognitive control49–51. We
found that the occupancy rate of SHStern was correlated with cognitive
control (r =0.35, p = 0.01, Pearson’s correlation, Fig. 3g). No other state
had a statistically significant and positive contribution to cognitive
control (Supplementary Table S10). This result demonstrates that
greater engagement of SHStern is associated with better cognitive
control in maintaining task-relevant information in working memory.

DMCC tasks: Stroop
The Stroop is a classic paradigm used to investigate inhibitory control
and response conflict34. This task requires participants to speak out the
font color inwhich aword is presented. The task involves congruent and
incongruent trials, in which the word and the font color of the word are
either the same or different, respectively. Analysis of behavioral data
revealed that RTs were significantly lower in the incongruent, compared
to congruent, trials reflecting greater cognitive control demands in the
incongruent condition (t49 = 13.76, p<0.001, Cohen’s d= 3.892, two-
tailed paired t-test; Supplementary Table S2). Shorter RTs in incon-
gruent trials and lower RT differences between congruent and incon-
gruent trials are associated with better cognitive control in this task.

BSDS uncovered five latent brain states in the Stroop task (Sup-
plementary Fig. S3d). Using two different state matching algorithms,
we identified a single unique SHStroop with the highest state space
closeness (c = 1, p =0.005) and the highest state temporal closeness

(r =0.82, p =0.008, Pearson’s correlation) with SHWM (Fig. 2). Detailed
results from statistical analysis of state matching procedures across
tasks are described in Supplementary Information (Supplementary
Results and Supplementary Table S13). These results identify SHStroop

as a brain state matching SHWM, the task-optimal state engaged during
working memory.

CCA We first used CCA to investigate multivariate relations
between brain state and behavioral measures in the Stroop task. We
found a significant canonical correlation between occupancy of brain
states and behavioral performance measures (r = 0.59, p <0.001,
Pearson’s correlation, Fig. 3d). Importantly, occupancy rate of SHStroop

had high positive weight in the brain component and, correspond-
ingly, Incongruent RT had negative weight, suggesting increased
occupancy rate of SHStroop associated with faster response in incon-
gruent trials (Fig. 3d, SupplementaryTable S3). Predictive CCA showed
that the predicted canonical brain state measures and predicted
canonical behavioral measures were significantly correlated (r =0.41,
p =0.004, Pearson’s correlation).

Univariate analysis We then examined the relation between
SHStroop and a single index of cognitive control in the Stroop task.
Cognitive control was indexed using the difference in RT between
congruent and incongruent trials as it is widely used to quantify indi-
viduals’ ability to resolve conflict and identify its neural basis34,52,53. We
found that the occupancy rate of SHStroop was significantly correlated
with cognitive control (r =0.33, p =0.02, Pearson’s correlation, Fig. 3h).
No other state had a statistically significant and positive contribution
to cognitive control (Supplementary Table S10). This result demon-
strates greater engagement of SHStroop is associated with better cog-
nitive control during the Stroop.

Together, these results demonstrate that latent brain states that
are well matched to a shared SHWM state in the 2-back working mem-
ory task, can be identified in four different cognitive control tasks in

Fig. 3 | Latent brain states are associatedwith task performance in all four dual
mode of cognitive control (DMCC) tasks. Multivariate CCA revealed significant
correlations between occupancy rates of latent brain states and behavioral vari-
ables in all the DMCC tasks, including (a) AxCPT, (b) CuedTS, (c) Sternberg and (d)
Stroop (N = 50). In each task, the component in which linear combination of
behavioral variables that best represents general cognitive control was selected to
investigate the relationshipbetween latent brain state andbehavioral performance.
Weights of canonical components in each task are presented next to the axes and
summarized in Supplementary Table S3. Univariate Pearson’s correlation revealed
significant correlation between occupancy rate of the multiple-demand brain state

(e.g., SHAxCPT) and cognitive control index in all the DMCC tasks, including (e)
AxCPT, (f) CuedTS, (g) Sternberg task, and (h) Stroop. SHAxCPT, SHCuedTS, SHStern

and SHStroop refers to the dynamic brain state that matches to SHWM in the AxCPT,
CuedTS, Sternberg and Stroop tasks, respectively. AxCPT Ax Continuous perfor-
mance task, CuedTS Cued task switching task, ACC Accuracy, RT Reaction time, LL
Low load, HL High load, Con Congruent; Incon Incongruent, OR Occupancy rate.
The regression estimate is presented with 95% confidence interval (shaded area).
Source data are provided as a Source data file. P values were not adjusted for
multiple comparisons.
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the DMCC and that their temporal properties are related to cognitive
control in each task (summarized in Supplementary Table S8).

Stop-signal task (SST)
We used Stop-signal task (SST) data from a cohort of 45 typically
developing children and childrenwith ADHD (9–12 years old) acquired
at Stanford University. The SST is widely used to probe inhibitory
control and its underlying neural mechanism8,54–56. Participants were
asked tomakemotor responses to frequent Go signals. Occasionally, a
Go signal was followed by a Stop signal, which required participants to
withhold the prepotent Go response. Participants achieved a high
accuracy on Go trials (94 ± 5%) and near 50% accuracy on Stop trials
(51 ± 6%) (Supplementary Table S4). Importantly, the stop-signal
reaction time (SSRT) estimated from the Race model quantifies one’s
stopping speed37,57. Shorter SSRTs are associatedwith better inhibitory
control.

BSDS uncovered four latent brain states in the SST (Supplemen-
tary Fig. S4). Using two different state matching algorithms, we again
identified a single unique SHSST with the highest state space closeness
(c = 1.4, p = 0.005) and the highest state temporal closeness (r =0.77,
p =0.008, Pearson’s correlation) with the SHWM (Fig. 4). Detailed
results from statistical analysis of state matching procedures across
tasks are described in Supplementary Information (Supplementary
Results and Supplementary TableS13). These results identify SHSST as a
brain state matching SHWM, the task-optimal state engaged during
working memory.

CCAWefirst usedCCA to investigatemultivariate relations between
brain state and behavioral measures in the SST. We found a significant
canonical correlation between occupancy rates of brain states and
behavioral performance measures (r=0.61, p<0.001, Pearson’s corre-
lation, Fig. 5a). The occupancy rate of SHSST had high positive weight in
the brain component and, correspondingly, Stop Accuracy had high
positive weight, suggesting increased occupancy rate of SHSST is asso-
ciated with better performance (Fig. 5a, Supplementary Table S5). Pre-
dictive CCA showed that the predicted canonical brain state measures
and predicted canonical behavioral measures were significantly corre-
lated (r=0.43, p=0.004, Pearson’s correlation).

Univariate analysisWe then examined the relation between SHSST

and a single index of cognitive control in the SST. Cognitive control on
the SST was indexed using the SSRT37,57. To facilitate comparison with
all other tasks in this study, we used 1/SSRT so that larger values
indicate better cognitive control. The occupancy rate of SHSST was
significantly correlated with this index of cognitive control (r =0.34,
p =0.02, Pearson’s correlation) (Fig. 5b). No other state had a statisti-
cally significant and positive contribution to cognitive control (Sup-
plementary Table S10). This result demonstrates that greater
engagement of SHSST is associated with faster stopping.

To investigate links with clinically relevant measures associated
with ADHD, we investigated the relationship between the posterior
probability of the matched state SHSST and severity of inattention
symptoms. We found that the posterior probability of SHSST was sig-
nificantly correlated with the inattention score (r =0.38, p =0.01,
Pearson’s correlation, Fig. 5c). No other state had a statistically sig-
nificant and positive contribution to the inattention score (Supple-
mentary Table S11). This result demonstrates that greater engagement
of SHSST is associated with less severe inattention symptoms.

Leave one ROI out analysis reveals key role of MFG across
cognitive tasks
To quantify the impact of each brain region on the similarity between
SHWM and SHX, where X represents all other tasks, we conducted a
leave one ROI out analysis. Specifically, we computed the change
(delta) in the Kullback–Leibler divergence across model parameters
between states SHWM and SHX before and after removing each brain
region’s latent state features. 1/delta was used to quantify the effect of

the virtual lesion on state similarity. We found that the MFG, encom-
passing the dorsolateral prefrontal cortex, has the highest impact on
state similarity across the AxCPT, CuedTS, Sternberg, Stroop, and SST
tasks (Supplementary Fig. S5). This result suggests that the MFG is a
critical brain region underlying the shared high-load brain state across
multiple cognitive tasks.

Relational processing (RP) task from the human connectome
project
Finally, we investigated the relational processing (RP) task to further
characterize generalizability beyond the standard cognitive control
and working memory tasks investigated above. BSDS was used to
identify latent brain states in two different sessions (Sessions 1 and 2),
each lasting 3min, and to determine replicability of our findings. In the

Fig. 4 | Shared latent brain states in the stop signal task (SST). aBSDSuncovered
4 dynamic brain states (N = 45). SHSST showed the highest state space closeness
(r = 1.4). b SHSST also showed the highest state temporal closeness (c = 0.77) with
SHWM. SHWM refers to the high-load dynamic brain state in the n-back working
memory task. SHSST refers to the dynamic brain state that matches to SHWM in the
SST. Color bars are the scales for state space closeness and state temporal
closeness.
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relational task condition, participants were asked to judge whether
two pairs of objects differed along the same dimension. In the control
condition, participants were asked to decide whether an object mat-
ched top objects on a pre-specified dimension. We used an efficiency
score (Accuracy/RT) to quantify performance and standardize it to
generate a composite measure of cognitive control (see Methods for
details). In both sessions 1 and 2, participants showed lower perfor-
mance during relational processing than the matching control task
(session 1: t89 = 16.71, p <0.001, Cohen’s d = 3.523, two-tailed paired t-
test; session 2: t89 = 14.8, p < 0.001, Cohen’s d = 3.121, two-tailed paired
t-test; Supplementary Table S6), suggesting that the relation proces-
sing task is more cognitively demanding.

In Session 1 of the RP task, BSDS uncovered four latent brain
states (Supplementary Fig. S6). State matching analysis identified
a single unique SHRP1 with the highest state space closeness
(c = 13, p = 0.005) and the highest state temporal closeness
(r = 0.97, p = 0.004, Pearson’s correlation) with SHWM in Session 1
(Fig. 6). These findings were replicated in Session 2 data. Again,
BSDS revealed four latent brain states, with a single unique mat-
ched state SHRP2 that had the highest state space closeness
(c = 7.73, p = 0.005) and the highest state temporal closeness
(r = 0.95, p = 0.004, Pearson’s correlation) with SHWM (Fig. 6).
Detailed results from statistical analysis of state matching pro-
cedures across tasks are described in Supplementary Information
(Supplementary Results and Supplementary Table S13). These
results identify SHRP1 and SHRP2 as brain states matching SHWM,
the task-optimal state engaged during working memory.

CCA We first examined multivariate patterns of the canonical
component that best represents general cognitive control and the
pattern of the canonical component in the latent brain state.We found
a significant canonical correlation between latent brain states and
behavioral performance (session 1: r =0.35, p <0.001, Pearson’s cor-
relation, Fig. 7a, session 1: r =0.44, p <0.001, Pearson’s correlation,
Fig. 7b). Importantly, the occupancy rate of SHRP had high positive
weights in thebrain component in both sessions and, correspondingly,
accuracy had positive weights, suggesting increased occupancy rate of
SHRP is associatedwith better task performance (Fig. 7, Supplementary
Table S7). Predictive CCA showed that the predicted canonical brain
state measures and predicted canonical behavioral measures in Ses-
sion 2, but not Session 1, were significantly correlated (r = 0.31,
p =0.004, Pearson’s correlation).

Univariate analysis We then examined the relation between SHRP

and a single indexof cognitive control in the relational processing task.
Cognitive control on the task was indexed using task efficiency
(Accuracy/RT). In Session 1, we found that the occupancy rate of SHRP1

was significantly correlated with cognitive control (r =0.28, p = 0.009,
Pearson’s correlation). This findingwas replicated in Session 2 (r =0.32,
p =0.002, Pearson’s correlation). No other state had a statistically
significant and positive contribution to cognitive control (Supple-
mentary Table S10). These results demonstrate that greater engage-
ment of SHRP is associated with better cognitive performance in the
relational processing task, and furthermore, that this relation is
reproducible.

Shared brain state for cognition within individuals
Taking advantage of the HCP within-subjects design in which, the
relational processing (RP) and the n-back working memory tasks were
both performed by the same individuals, we then determined whether
the temporal properties of the shared optimal brain state was reliable
across participants. Specifically, we examined the relation between the
occupancy rates associated with latent states SHRP and SHWM. We
found a significant correlation in both Session 1 (r =0.43, p <0.001,
Pearson’s correlation; Supplementary Fig. S7a) and Session 2 (r =0.24,
p =0.02, Pearson’s correlation; Supplementary Fig. S7b).

These results provide evidence for similarities in intra-individual
latent state across distinct cognitive tasks.

Model-based brain states vs. conventional activation and con-
nectivity analyses
We conducted additional analyses examining the similarity of activa-
tion/deactivation and connectivity profiles determined by our BSDS
brain-state model, and contrasted this with similarity measures from
conventional general linear regression analyses (Supplementary Meth-
ods and Supplementary Fig. S8). In each of the seven cognitive tasks, we
found that our BSDS model performed better at capturing common
brain states across tasks than conventional general linear model-based
activation and connectivity profiles (Supplementary Fig. S9).

Robustness of state matching with respect to sample size in the
n-back task
To examine the robustness of our findings with respect to the sample
size used in generating the reference optimal latent brain state SHWM,

Fig. 5 | Latent brain states are associated with task performance and inatten-
tion symptoms in the stop signal task (SST). a Multivariate CCA revealed sig-
nificant canonical correlations between occupancy rates of latent brain states and
behavioral variables in SST (N = 45). The component in which linear combination of
behavioral variables that best represents general cognitive control was selected to
investigate the relationshipbetween latent brain state andbehavioral performance.
Weights of canonical components in each task was summarized in Supplementary
Table S5. b Univariate Pearson’s correlation analysis revealed that OR of SHSST is

significantly correlated with cognitive control index in the SST. c OR of SHSST is
significantly correlated with inattention scores from the SWAN. SHSST refers to the
dynamic brain state that matches to SHWM in the SST. ACC Accuracy, RT Reaction
Time, USUnsuccessful Stopping, SSD Stop Signal Delay, SSRT Stop Signal Reaction
Time, SWAN Strengths and Weaknesses of ADHD-symptoms and Normal-behavior
rating scale, OR Occupancy rate. The regression estimate is presented with 95%
confidence interval (shaded area). Source data are provided as a Source data file.
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we leveraged a larger sample (N = 415 participants) from the HCP n-
back working memory task and repeated that analysis to identify the
optimal latent brain state SHWM415 in the larger sample. In each cog-
nitive task, we found that the state that best matched to SHWM415 was
the same state that matched SHWM (Supplementary Results and Sup-
plementary Figs. S10–S13).

Robustness of state matching with respect to reference tasks
Toexamine the robustnessof ourfindingswith respect to the choice of
the reference tasks, we examined state matching using the HCP rela-
tional processing and SST tasks as reference tasks. In each cognitive
task, we found that the state best matched to the optimal brain state
was the same state that matched SHWM (Supplementary Results and
Supplementary Figs. S14–S17).

Robustness of the main findings with respect to ROI selection
Toexamine the robustness of our findingswith respect to the selection
of ROIs, we used NeuroSynth to create a new set of ROIs based on
meta-analysis of working memory and repeated the analyses to iden-
tify the optimal latent brain state in the HCP n-back task and labeled
the optimal state as SHMETA. We then used BSDS and state-matching
algorithms to determine the optimal brain state which matched
SHMETA in each cognitive task and determined whether the matched

brain state was behaviorally significant. We found that, in each cogni-
tive task, the state that best matched SHMETA predicted task perfor-
mance (Supplementary Results and Supplementary Figs. S18–S24).

Discussion
We used a probabilistic dynamical systems model to investigate
fundamental circuit mechanisms underlying the functioning of a
multiple-demand system across multiple cognitive domains. Our
computational modeling revealed a shared dynamic latent brain state
engaged across diverse experiments and four data cohorts that have
been widely used to investigate human cognition. Importantly,
despite significant differences in experimental paradigms, data
acquisition protocols, and participant cohorts, the temporal proper-
ties of brain states predicted cognitive task performance in each of
the tasks. Moreover, the occurrence rates of the shared latent state
also predicted behavioral performance. Furthermore, weak engage-
ment of the shared brain state was related to inattention symptoms,
suggesting that our generative model is also relevant for investiga-
tions of psychopathology. Together, our findings uncover a general
dynamic brain state that is preferentially engaged during cognition,
and demonstrates that functional circuits associated with the
multiple-demand system can adaptively contribute to a wide range of
cognitive functions16.

Fig. 6 | Shared latent brain states in the Relational Processing (RP) task. BSDS
uncovered4dynamic brain states inboth Sessions 1 and2 (N = 90). SHRP1 has (a) the
highest state space closeness (c = 13) and (b) the highest state temporal closeness
(r =0.97) with SHWM in Session 1. SHRP2 has (a) the highest state space closeness
(c = 7.7) and (b) the highest state temporal closeness (r =0.95)with SHWM in Session

2. SHWM refers to the high-load dynamic brain state in the n-back task. SHRP1 and
SHRP2 refers to the dynamicbrain states thatmatches to SHWM in the Relational task
sessions 1 and 2, respectively. Color bars are the scales for state space closeness and
state temporal closeness.
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The first major goal of our study was to determine whether a
shared brain state is engaged across a broad range of cognitive tasks
within a common multiple-demand system. Meta-analyses of func-
tional neuroimaging studies involving diverse cognitive tasks have
reported the involvement of a common set of brain regions including
insular, prefrontal, parietal and cingulate cortices30,39,58,59. A funda-
mental yet unaddressed question is whether common brain states are
engaged across cognitive task domains. This question is especially
challenging because cognitive tasks differ along many dimensions,
they activate similar brain areas—identifying commonly activatedbrain
areas does little to capture the underlying functional circuitry involved
in these tasks. We used a machine learning algorithm to address this
challenge.

A key aspectof our BSDSmodel is the identificationof brain states
based on joint modeling of activation and co-activation patterns28.
Such models have the advantage that they do not depend on known
relationships between neural activity and external experimental
variables21,22. Our state space models jointly capture time-varying
changes in activation and connectivity patterns across brain regions
involved in cognitive control and, moreover, provide a rigorous
computational approach for linking neural processes across two or
more datasets. A key point to note here is that brain states inferred by
our model reflect factors which can be explicitly modeled, such as
experimentally-defined task conditions, as well as unobserved mental
processes, such as a momentary lapse in attention, changes in moti-
vation, alertness and fatigue which influence brain states60–64.

Crucially, generative model parameters derived by BSDS allowed
us to map brain states across cognitive tasks and use state space
dynamic measures for capturing shared features. In a previous study,
we discovered an optimal brain state SHWM associated with high-load
cognitive demands during working memory28 and this served as a
reference state for the present study. Crucially, we found that, in each
of the seven other cognitive tasks, there was a shared brain state that
had a highly similar profile as SHWM, the optimal state in the working
memory task.

Notably, correspondence between brain states across cognitive
tasks was examined using two different analytic measures which yiel-
ded convergent findings (Fig. 1). The first approach was based on KL-
divergenceofmultivariate latent variables independentlyderived from
each task. In this formalism, alignment of brain states is captured by
low KL-divergence between model parameters, including regional
activation and inter-regional functional connectivity. Low KL-
divergence reflects similar multivariate patterns of latent variables,
indicating a strong match in brain states identified from the working
memory task on the onehand, andeachof theother tasks on theother.

A second, and much more challenging approach, was based on
using generative aspects of the BSDS model. In this approach, model
parameters associated with the reference state SHWM, the optimal n-
back working memory task, were used as priors to estimate the pos-
terior probabilities of SHWM in each of the seven other cognitive tasks.
Alignment of latent brain states was captured by a high correlation
between temporal evolution of the brain states derived by applying

Fig. 7 | Latent brain states are associated with task performance in the Rela-
tional Processing (RP) task.Multivariate CCA revealed significant correlations
between occupancy rates of latent brain states and behavioral variables in the HCP
RP task session 1 (a) and 2 (b) (N = 90). In each task, the component in which linear
combinations of behavioral variables that best represents general cognitive control
was selected to investigate the relationship between latent brain state and beha-
vioral performance.Weights of canonical components in each task are summarized
in Supplementary Table S7. Univariate Pearson’s correlation analysis revealed that

OR of SHSST is significantly correlated with cognitive control index in the HCP RP
session 1 (c) and 2 (d). SHRP1 and SHRP2 refers to the dynamic brain states that
matches to SHWM in the Relational task session 1 and 2, respectively. HCP Human
Connectome Project, RP Relational Processing, MC Matching Control, ACC Accu-
racy, RT Reaction Time, OR Occupancy rate. The regression estimate is presented
with 95% confidence interval (shaded area). Source data are provided as a Source
data file. P values were not adjusted for multiple comparisons.
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BSDS independently or usingmodel parameters associated with SHWM

from the working memory task. Remarkably, in each task, we found
that brain states with high temporal correlation preciselymatched the
states derived using KL-divergence: the brain state that had the lowest
KL-divergence also showed the highest temporal correlation. It is fur-
ther noteworthy that our approach was able to detect a shared latent
state in cognitive tasks that used block fMRI designs, but also in the
case of five tasks that used fast event-related fMRI designs where the
temporal evolution of brain states is much more complex and cannot
be accurately estimated by conventional approaches.

In each of the seven cognitive tasks, BSDS captured common
brain states better than conventional general linear models (Supple-
mentary Fig. S9). While this common brain state is characterized by a
high level of similarity in co-activation and functional connectivity
patterns, each task has its own unique fingerprint. Identification of the
commonbrain state across different cognitive tasks demonstrates that
similar brain circuity is engaged when cognitive demands are high,
regardless of the details of task context. Contrarily, when cognitive
control is not needed, the multivariate pattern of activation and con-
nectivity deviates from that in the shared high cognitive-load brain
state. Moreover, these brain states fluctuate over time and are char-
acterized by distinct task- and state-specific state transition
probabilities.

The second major goal of our study was to investigate the beha-
vioral relevance of brain states in each of the seven cognitive tasks.We
tested the hypothesis that engagement of the shared latent state
would be associated with better cognitive performance, and further
isolate task-optimal brain states from non-optimal or task-irrelevant
brain states. We examined the relationship between occurrence of
latent brain state and behavioral performance using both multivariate
and univariate approaches. Canonical correlation analysis revealed
multivariate relations between brain states and behavioral measures in
each of the seven cognitive tasks. Thus, the temporal pattern of
dynamic fluctuations of brain states is highly behaviorally relevant.

Additionally, temporal properties of the shared brain state pre-
dicted performance in each of the seven tasks, highlighting the beha-
vioral relevance of the shared brain state identified in the present
study. Specifically, in each task, the occupancy rate of the shared brain
state that matched SHWM, the optimal state in the n-back working
memory task28, was significantly correlated with behavioral measures
associated with cognitive control capacity specific to each task.

Each of the four DMCC tasks taps into a different aspect of cog-
nitive control. The AxCPT is a widely used paradigm for probing dual
mechanismsof proactive and reactive control32.We assessed proactive
and reactive control by contrasting the “AY” and “BX” task conditions,
as longer RT in “AY” is associated with implementation of proactive
control and shorter RT in “BX” is associated with good reactive
control44,45. A larger difference between “AY” and “BX” indicates
greater proactive and reactive control. CCA revealed an association
betweenbrain state andbehavioralmeasures.AlignedwithCCAweight
patterns, univariate analysis revealed that higher occupancy of the
shared latent state SHAxCPT was correlated with greater proactive and
reactive control. Our findings suggest that optimal engagement of the
shared latent state facilitates implementation of dual control
processes.

The CuedTS allows investigation of cognitive control associated
with response based on previously cued task rules46,48. This task has
long been recognized as a critical paradigm to assess a core compo-
nent of cognitive control—the ability to dynamically update task
representations and configure attention and action systems for pro-
cessing the upcoming target31. Incongruent trial conditions require
participants to make cue-dependent decisions, whereas in congruent
trials a response can be made independent of the cue. Good perfor-
mance on incongruent trials relies on actively maintaining task-
relevant stimulus-response association and inhibiting task-irrelevant

stimulus-response association. CCA revealed the association between
the high positive weight of SHCuedTS and the positive weight of
Incongruent Accuracy and negative weight of Incongruent RT. Aligned
with CCA weight patterns, higher occupancy rate of the shared latent
state SHCuedTS was associated with greater cognitive control index (or
reduced congruency effect). Our findings suggest that engagement of
the shared latent brain state facilitates task preparation.

The Sternbergworkingmemory task is a delayedmatch to sample
paradigm, in which participants are presented with a set of stimuli to
be remembered and then asked to judge whether a probe matches
stimuli presented during the encoding phase49,51. The high load con-
dition is particularly cognitively challenging because it requires parti-
cipants to encode and maintain in memory a long list of stimuli (up to
eight words). A composite measure based on both accuracy and
reaction time during the high load condition was used to index cog-
nitive control. CCA revealed an association between brain state and
behavioral measures. Aligned with CCA weight patterns, we found a
positive correlation between occupancy rate of the shared latent brain
state SHStern and cognitive control, suggesting that the ability to
engage SHStern predicts individual differences in cognitive control
ability.

Finally, the Stroop task is a classic probe of conflict resolution and
response inhibition52. CCA revealed an association between brain state
and behavioral measures. Aligned with CCA weight patterns, occu-
pancy rates of the shared brain state SHStroop were associated with the
Stroop effect, suggesting that engagement of this state facilitates
resolution of stimulus-response conflict.

In the SST, participants are required to withhold prepotent
responses when presented with an infrequent stop signal. We applied
the Race Model37 to compute SSRT, which provides a neurophysiolo-
gically validated estimate of stopping speed65. SSRT is a canonical
measure of inhibitory control, and a core component of cognitive
control. CCA revealed an association between brain state and beha-
vioral measures. Aligned with CCA weight patterns, we found that the
occupancy rate of SHSST was correlated with SSRT, suggesting that the
ability to engage SHSST predicts individual differences in inhibitory
control ability.

In the RP task, participants are required to first identify the
dimensions along which stimuli differ in top and bottom rows of sti-
muli, and then determine whether the dimensions are the sameor not.
In comparison to the baseline matching control condition, in which
participants determine which stimulus matches the target in a defined
condition, the RP task requires extraction of abstract information from
concrete external stimuli andmaintenance of novel representations in
working memory for decision-making based on task rules retrieved
from long-term memory66. This task requires high-order cognitive
control processes associated with establishing and switching task sets.
CCA again revealed a multivariate relation between brain states and
behavioral measures, and this relationship was further replicatd by
univariate analysis. Critically, these findings were also replicated in
across two different sessions, demonstrating the robustness and
reproducibility of a task-optimal brain state during relational
processing.

Our findings demonstrate that engagement of a shared task-
general dynamic brain state predicts cognitive performance across
diverse cognitive tasks. While each task differs in the specific cognitive
processes engaged over time, they all require access to a core set of
neural resources to meet increased cognitive challenges30,58,67. Our
findings contribute to the understanding of the functioning of a
multiple-demand system thatwas proposed based on a common set of
brain regions activated during various cognitive tasks16. The existence
of a common underlying latent process governing this system was
previously unknown. Our findings shed light on this critical issue and
reveal a common brain state that is activated across diverse cognitive
control tasks, and its dynamic properties predict task performance
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regardless of task context. More generally, isolating task-optimal brain
states from non-optimal or task-irrelevant brain states associated with
cognitive performance provides information about dynamic neuro-
cognitive processes engaged by a shared multiple-demand fronto-
parietal cortical system.

The third major goal of our study was to investigate general-
izability of the multiple-demand system and shared brain states to a
developmental cohort. We further sought to determine relevance to
inattention symptoms associated with ADHD, a pre-
valent neurodevelopmental disorder characterized by deficits in cog-
nitive control35,36,68–70. Brain imaging studies have linked the disorder
with abnormalities in activation and connectivity of frontoparietal
cortical regions71–77. However, it is not known whether brain state
models associated with a multiple-demand frontoparietal system
derived fromhealthy adults are generalizable to children, andwhether
the temporal properties of a shared task-related brain state also pre-
dict cognitive deficits and clinical symptomsassociatedwithADHD. To
address this, we used a stop signal task, a classic behavioral paradigm
that has been widely used to investigate inhibitory control37, to
investigate individual differences in children’s inhibitory control
ability78, as well as inattention, a hallmark of cognitive deficits in chil-
dren with ADHD79.

Our analysis revealed three key findings. First, our computational
model showed that brain states are generalizable from adults to chil-
dren. Our prior researchon the developmentalmaturation of response
inhibition in the stop signal task demonstrated that the extent towhich
children engage an adult-like template of multivariate brain activation
patterns predicts their behavioral performance8. Building on these
findings, we show here that the shared latent brain state present in
adults across a wide range of cognitive control tasks is also present in
childrenduring the stop signal task. This suggests that children engage
a shared dynamic process, not just similar brain activation patterns8.
Second, we found a significant relation between SSRT, the model-
based estimation of stopping speed, and the occupancy rate of SHSST,
suggesting that weaker engagement of the shared latent state is rela-
ted toweaker inhibitory control in children. Third, we found that lower
occurrence of the task-optimal shared state was also related to the
clinical symptoms of inattention. The identification of a shared latent
brain state between children and adults provides a valuable template
and analytic model for probing aberrant brain circuit dynamics
underlying cognitive control and attentional deficits within the fra-
mework of a core multiple-demand system.

Each brain state is characterized by a distinct pattern of multi-
variate activity and inter-regional connectivity28. To determine the
unique contributions of each brain region to thematched latent states
from each task, we conducted a leave-one-ROI-out analyses and
examined multivariate features of each brain region in relation to its
impact on the similarity between SHWM and SH from each task. Strik-
ingly, multivariate features from the dorsolateral prefrontal cortex, in
left and rightMFG, exhibited the greatest similarity between SHWMand
SH in other cognitive control tasks. The dorsolateral prefrontal cortex
is a crucial region underlying executive control functions in both
human13,16,39,80 and non-human primates81–83. Furthermore, meta-
analytic research of neuroimaging studies has found that the dorso-
lateral prefrontal cortex is a commonly activated region in a variety of
different cognitive and attentional control tasks30,39,58,84, and is thought
to be a subserve domain-general cognitive functions. Here, our find-
ings reveal a central role for the dorsolateral prefrontal cortex in
operation of the multiple-demand system not only during working
memory, but also in the shared state engaged during a wide range of
tasks that require cognitive control.

Although the relational processing (RP) task encompasses more
complex cognitive operations beyond those employed by the cano-
nical cognitive control task, BSDS still identified a shared latent state
that matches the optimal latent brain state in the n-back working

memory task. Given that SHWM is a task-general dynamic brain state
underlying cognition, an interesting question is whether engaging
SHWM during cognitive and attentional control tasks represents an
individual’s unique latent dynamic neurobiological profile. To probe
this question, we examined the occupancy rate of SHWM during the
n-back working memory task, and the occupancy rate of SHRP during
the relational processing task, from the same group of participants.
Indeed, there was significant positive correlation between SHwm and
SHRP across participants. This suggests that an individual who is more
likely to engage SHWM during a working memory task is also more
likely to engage this shared brain state during other cognitive and
attentional control tasks. Furthermore, by replicating this finding in
two sessions of the RP task, we demonstrated the robustness of this
finding. These results reveal a shared latent brain state across cognitive
tasks within an individual, and suggest the potential for identifying
individualized measures arising from dynamic brain processes across
multiple cognitive tasks.

While our study presents critical insights into the dynamics of
cognitive control and attention across seven different tasks, there are
limitationswarrant consideration and suggest avenues for futurework.
First, the task fMRI data primarily came from the Human Connectome
and the Dual Mechanisms of Cognitive Control projects, general-
izability to other datasets and populations needs to be examined.
Second, our choice of Automatic Relevance Determination priors for
high-dimensional variable selection was motivated by computational
tractability and prior validation28 and by their broader use in the
modern machine learning literature85–87. Nevertheless, it is important
to acknowledge that the selection of priors and model inference in
Bayesian modeling remains an area of active debate within the field.
Alternative approaches, such as spike-and-slab priors87,88, may offer
valuable insights and should be considered in future investigations.
Third, ourmethodology was rigorously validated in previous research,
including simulations and optogenetic stimulation, underscoring its
reliability28. However, the neuroscience community has yet to reach a
consensus regarding ideal biophysically realistic models for validating
causal circuit dynamics. Future investigations should further validate
state space models, such as ours, against a broader spectrum of
biophysically-realistic simulations, extending beyond the scope of
those explored in our prior work28.

Human cognition relies on dynamic brain mechanisms for
implementing adaptive cognitive functions. Our study reveals latent
brain mechanisms underlying the operation of a multiple-demand
system across a wide range of cognitive task domains, and help shed
light on a major unsolved problem in cognitive neuroscience. Our
findings provide critical insights into dynamic brain mechanisms
underlying human cognition, and our generative hidden Markov
model-based computational framework opens promising avenues for
probing neurocognitive function, as well as their disruptions in psy-
chiatric and neurological disorders.

Methods
Ethics statement
Data acquisition for the Dual Mechanisms of Cognitive Control
(DMCC) was approved by the Institutional Review Board of The
Washington University in St. Louis. Data acquisition for the stop-signal
task (SST) was approved by the Institutional Review Board of Stanford
University. Data acquisition for the HumanConnectome Project (HCP)
was approved by the Institutional Review Board of The Washington
University in St. Louis. Informed consent was obtained from all the
participants or their legal guardians.

Bayesian switching dynamical systems (BSDS) model
Bayesian switching dynamical systems (BSDS) is a powerful state-space
generative model for uncovering latent brain state dynamics that may
not necessarily be time-locked to experimental task conditions28,41,89,90.
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BSDS identifies brain states and their dynamic spatiotemporal prop-
erties in an optimal latent subspace. These properties allowed us to
identify shared brain states across multiple cognitive tasks. In each
task, the initial value for the number of possible latent brain states was
set as 15. BSDS uses an Automatic Relevance Determination algorithm
which regularizes the solution space and effectively prunes away
redundant or superfluous features28,91 Details of the method are
described in our previous study28 and in the Supplementary Method.

BSDS analysis with priors
BSDS can be used tomodel latent brain states in new data using priors
frommodel parameters frompreviously trained data. The BSDSmodel
contains two sets of latent variables: global and local. Global latent
variables are not a function of data instance (all variables in Equations
1–2 that are not a function of time). Local latent variables in BSDS on
the other hand are a function of time and data sample. The main
difference between these two variables is that the global variables can
be transferred from one data to another. The local variables, however,
need to be learned again for new data.

When using an existing BSDS model to fit the new data and esti-
mate posterior probability of the states (latent state variables) in the
new data, the global variables are directly transformed from the
existing BSDS model and the local variables are learned using the new
data given the global variables. In practice, only a single iteration of
BSDS would suffice to learn the local latent variables for the new data.

BSDS state matching
We developed two metrics to determine how well brain states are mat-
ched across tasks: state space closeness and state temporal closeness.

State space closeness Each brain state was defined by multivariate
features in optimized latent space, activation level and covariance. Let
S1WM to S4WM denote dynamic brain states obtained by applying BSDS
to the HCP n-back task. We showed identified state S1WM which
dominated the 2-back high-load (SH) condition and predicted perfor-
mance and decision-making process in the 2-back trials28. To simplify
state names, without loss of generalization, we relabel S1WM as SHWM.
Now let S1AxCPT to SNAxCPT denote dynamic brain states obtained by
applying BSDS to the AxCPT task. Each brain state is represented by a
Gaussian distribution with mean and covariance associated with mul-
tivariate features in the latent brain state. The state space closeness
(denoted as c) is computed by one divided by the Kullback–Leibler
divergence (KLD) between two states’ Gaussian distributions. Higher
closeness or smaller KLD indicates that the two states aremore similar
in their multivariate features. If S1AxCPT has the highest state space
closeness with SHWM among all the states obtained in the AxCPT task,
S1AxCPT is considered a state matching SHWM and relabeled as SHAxCPT.

State temporal closeness Given the latent state model, ROI time-
series can, in turn, be represented as posterior probability time cour-
ses of estimated brain states. To confirm that SHAxCPT is a state
matching SHWM,we further examinedwhether SHWM and SHAxCPT have
similar temporal evolutions if two different latent state models are fit
to the same data. Let S1AxCPT to SNAxCPT denote dynamic brain states
obtained by applying BSDS to the AxCPT task. BSDS estimates tem-
poral posterior probability (TPP) of each brain state at each time point
in the AxCPT task. TPP(S1AxCPT)AxCPT to TPP(SNAxCPT)AxCPT denote
temporal posterior probability of S1AxCPT to SNAxCPT in the AxCPT task.

We then applied global model parameters associated with SHWM,
S2WM, S3WM, and S4WM from the HCP WM task to the AxCPT task to
compute temporal posterior probability of latent brain state of the
HCPWM task in the AxCPT task. Let TPP(SHWM)AxCPT denote temporal
posterior probability of SHWM in the HCP AxCPT task. State temporal
closeness (denoted as r) is measured by the Pearson’s correlation
between eachpair of temporal posterior probabilities in the TPPs from
two task. We hypothesize that, if SHAxCPT and SHWM have the highest

state space closeness, TPP(SHAxCPT)AxCPT and TPP(SHWM)AxCPT should
have the highest state temporal closeness.

This process was repeated for each of the seven cognitive tasks to
identify states that best matched SHWM in each task.

Statistical significance of space closeness We used permutation
testing in which space closeness was computed across two randomly
drawn states from the n-back working memory task and the cognitive
control task (e.g., AxCPT). The two states were selected from the same
or different tasks, which is a random process. This permutation was
repeated 100 times to generate a distribution of space closeness from
which the significance (p value) of the space closeness between SHWM

and SH of another task, e.g., SHAxCPT, was computed. The permutation
was performed only 100 times because of the limited number for
random combination of states and preclude inflation of p values.

Statistical significance of temporal closeness We used the same
permutation procedure as described above to compute temporal
closeness between two randomly selected brain states. The permuta-
tion was repeated from 100 times to generate a distribution of tem-
poral closeness from which the p value of the temporal closeness
between SHWM and SH of another task, e.g., SHAxCPT, are computed.

Temporal and spatial metrics of dynamic brain states
Measures extracted from BSDS include occupancy rate and temporal
evolution of latent brain state, and mean and covariance of states.

Leave one ROI out analysis on state space closeness
To evaluate the critical contribution of each brain region to the simi-
larity of brain states between tasks, we conducted a leave one ROI out
analysis. Each time, we removed all the features from one ROI in the
state space in SHWM and SHX from another task X (e.g., SHAxCPT) and
computed the change (delta) of the KLDbefore and after removing the
ROI. Then, the impact of the lesion on the state similarity was quanti-
fied using 1/delta. We repeated the procedure for all the ROIs in each
task. The larger with 1/delta value, the greater contribution the ROI has
on the similarity between brain states. Statistical significance estima-
tion is described in Supplementary Methods.

Human fMRI datasets: HCP dataset
N-back working memory task We used the high-load dynamic brain
state from theHCPN-back task identified fromour previous study38, as
the reference state for all other cognitive tasks in the present study.
The same sample (122 individuals) from the previous studywas used in
the current study.

Relational processing (RP) task We selected 90 individuals from
the 122 who had also participated in the n-back study38. The following
criteria were used: (1) complete behavioral and brain imaging data in
two different acquisition sessions; (2) range of head motion in any
translational and rotational direction less than 1 voxel; (3) average
scan-to-scan head motion less than 0.25mm.

Task details are described in Supplementary Methods and Sup-
plementary Fig. 1.

Human fMRI datasets: DMCC dataset
We used the Dual Mechanism of Cognitive Control (DMCC) dataset31

which contains four different task paradigms for probing cognitive
control: (1) AX continued performance task (AxCPT), (2) Cued task
switching task (CuedTS), (3) Sternberg working memory task (Stern-
berg) and (4) Stroop interference task (Stroop). We used data from 50
individuals (19–42 years old, 31 F/19M) out of a total of 89 participants
in the DMCC dataset based on the following criteria: (1) complete
behavioral and brain imaging data; (2) range of head motion in any
translational and rotational direction was less than 1 voxel in all the
tasks; (3) average scan-to-scan head motion was less than 0.25mm in
all the tasks.
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Task details are described in Supplementary Methods and Sup-
plementary Fig. 1. Additional details can be found in online descrip-
tions of the DMCC31,92.

Human fMRI datasets: Stanford dataset
Stop-signal task (SST) Forty-five children with ADHD or TD children
(9–12 years old, 22 F/23M) completed the SST task during MRI scan-
ning. Task details are described in Supplementary Methods and Sup-
plementary Fig. 1.

Clinical symptoms of Inattention were assessed using the
Strengths and Weaknesses of ADHD-symptoms and Normal-behavior
(SWAN) rating scale93.

Task performance statistical test
Details are described in Supplementary Methods.

fMRI acquisition
DMCC Functional scans were acquired on a 3 T Siemens Prisma with a
32-channel head coil, without in-plane acceleration (iPat = none).
CMRR multiband sequences were used, TR = 1200ms, TE= 33ms, flip
angle = 45°, in-plan resolution = 2.4mm and multiband factor = 4.

SST fMRI data were acquired on a 3 T GE Signa scanner using a 32
channel head coil at the Richard M Lucas Center for Imaging at Stan-
ford. Functional images of 42 axial slices were acquired using the
multiband gradient-echo planar imaging with the following para-
meters: TR= 490ms; TE = 30ms; flip angle = 45°, in-plane resolu-
tion = 3mm and multiband factor = 6.

HCP fMRI data were acquired using a multiband, gradient-echo
planar imagingwith the followingparameters: TR= 720ms, TE = 33.1ms,
flip angle = 52°; in-plane resolution= 2mm and multiband factor = 8.

fMRI preprocessing
For the four DMCC tasks and the HCP n-back and RP tasks, we down-
loaded minimally preprocessed fMRI data. DMCC data was pre-
processed using fMRIPrep pipeline31, including head motion correction,
correction of susceptibility-derived distortion, slice-timing correction,
registration and normalization. HCP data was preprocessed using
fMRIVolume pipeline94, including correction of gradient-nonlinearity-
induceddistortion, realignment formotion correction, registration, and
normalization in 2mmMNI space. Details of the preprocessing steps in
DMCC and HCP datasets are described in previous studies31,94. We
applied spatial smoothing with a Gaussian kernel of 6mm FWHM in the
minimally preprocessed DMCC and HCP data to improve signal-to-
noise ratio as well as anatomical correspondence between individuals28.

For the SST, fMRI data were preprocessed using SPM12, including
realignment, slice-timing correction, co-registration, normalization
and smoothing8.

The same smoothing parameters were used in the HCP, DMCC
and SST datasets.

Region of interest (ROI) and time series
Load-dependent ROIs were determined using the HCP n-back task on
the contrast of interest: 2-back versus 0-back, including 9 load-positive
(2-back > 0-back) ROIs: bilateral anterior insula (AI), bilateral middle
frontal gyrus (MFG), bilateral frontal eye field (FEF), bilateral intra-
parietal sulcus (IPS) anddorsomedial prefrontal cortex (DMPFC), and2
load-negative (2-back <0-back) ROIs: ventromedial prefrontal cortex
(VMPFC) and posterior cingulate cortex (PCC)28 (Supplementary
Fig. S2a). Each ROI was a 6-mm radius sphere centered at the corre-
sponding peak voxel. See Supplementary Table S12 for MNI coordi-
nates of the ROIs.

Time series of the 1st eigenvalue was extracted using Marsbar
(https://marsbar-toolbox.github.io/) from each ROI per subject in each
dataset. A multiple linear regression approach with 6 realignment
parameters (3 translations and 3 rotations) was applied to time series

to reduce head-motion-related artifacts and resulting time series was
further linearly detrended and normalized.

Relation between brain states and behavioral performance
To characterize the relation between brain states and behavioral per-
formance in different tasks, we first used multivariate canonical cor-
relation analysis (CCA) to investigate multivariate relations between
brain state and cognitive performance measures in each task95,96. The
robustness of the CCAmodel was also tested using a predictive model
with leave-one-out cross validation. Details of the CCA variable setting
and prediction analyses are described in Supplementary Methods. We
then used Pearson’s correlation (two-tailed) to investigate the link
between the occupancy rate of the shared multiple-demand state and
task-specific measures of cognitive control abilities (Supplementary
Table S9).

Relation between brain states and clinical symptoms
To characterize the relation between the shared multiple-demand
brain state and attentional deficits, we used Pearson’s correlation (two-
tailed) to examine the relation between occupancy rate of SHSST and
the severity of inattention symptoms in children assessed using the
SWAN rating scale.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All original data reported in this study are publicly available on
Zenodo: https://zenodo.org/records/10702914. Source data are pro-
vided with this paper.

Code availability
Functional MRI data preprocessing and statistical analyses were per-
formed on the SPM12 and FSL 6, and Matlab 2020. BSDS and State
Matching Code can be accessed at Github (https://github.com/scsnl/
Cai_Multiple_Demand_System_2023) and Zenodo (https://doi.org/10.
5281/zenodo.10660076)97.
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