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Multivariate Searchlight Classification of Structural
Magnetic Resonance Imaging in Children and
Adolescents with Autism
Lucina Q. Uddin, Vinod Menon, Christina B. Young, Srikanth Ryali, Tianwen Chen, Amirah Khouzam,
Nancy J. Minshew, and Antonio Y. Hardan

Background: Autism spectrum disorders (ASD) are neurodevelopmental disorders with a prevalence of nearly 1:100. Structural imaging
studies point to disruptions in multiple brain areas, yet the precise neuroanatomical nature of these disruptions remains unclear. Charac-
terization of brain structural differences in children with ASD is critical for development of biomarkers that may eventually be used to
improve diagnosis and monitor response to treatment.

Methods: We use voxel-based morphometry along with a novel multivariate pattern analysis approach and searchlight algorithm to
classify structural magnetic resonance imaging data acquired from 24 children and adolescents with autism and 24 age-, gender-, and
IQ-matched neurotypical participants.

Results: Despite modest voxel-based morphometry differences, multivariate pattern analysis revealed that the groups could be distin-
guished with accuracies of approximately 90% based on gray matter in the posterior cingulate cortex, medial prefrontal cortex, and bilateral
medial temporal lobes—regions within the default mode network. Abnormalities in the posterior cingulate cortex were associated with
impaired Autism Diagnostic Interview communication scores. Gray matter in additional prefrontal, lateral temporal, and subcortical
structures also discriminated between groups with accuracies between 81% and 90%. White matter in the inferior fronto-occipital and
superior longitudinal fasciculi, and the genu and splenium of the corpus callosum, achieved up to 85% classification accuracy.

Conclusions: Multiple brain regions, including those belonging to the default mode network, exhibit aberrant structural organization in
children with autism. Brain-based biomarkers derived from structural magnetic resonance imaging data may contribute to identification of

the neuroanatomical basis of symptom heterogeneity and to the development of targeted early interventions.
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R ecent reports of the prevalence of autism spectrum disorders
(ASD) in the population show that the disorder affects nearly
1 in 100 children (1,2). Diagnosis of the disorder is optimally

stablished at a young age on the basis of DSM-IV criteria and
esearch instruments that involve both direct observation and par-
nt interview (3,4). However, optimal resources and procedures are
ften not available, and many children with ASD are missed or
isdiagnosed by professionals (5,6,7,8). Defining reliable brain ab-

ormalities in children with autism has the potential to advance the
nderstanding of the neural basis of manifestations and their het-
rogeneity, and is also a critical first step toward developing brain-
ased biomarkers or endophenotypes that can be of potential use

n improving diagnosis, individualizing treatment, and monitoring
esponse to treatments.

Although ASD is known to be a neurodevelopmental disorder
ffecting social development, verbal and nonverbal communica-
ion, and motor and sensory behaviors, brain-based biomarkers
eliably distinguishing children with ASD from typically developing
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TD) children have not yet been defined. This may in part be due to
he etiologic heterogeneity of the disorder (9,10) and the fact that
ts effect on the development of multiple brain systems and cogni-
ive processes is highly complex (11). As important, the methods of
tructural magnetic resonance imaging (MRI) data analysis have not
een sufficiently sophisticated to capture these multifaceted differ-
nces.

Structural imaging studies in individuals with ASD using voxel-
ased morphometry (VBM) approaches have implicated a number
f brain regions (see Amaral et al. [12] and Verhoeven et al. [13] for

eviews). These studies have variably described abnormalities in the
uperior temporal sulcus (14) and other temporal lobe regions (15),
refrontal cortices (16,17), and subcortical areas including the basal
anglia (18), amygdala (19), and cerebellum (20) in individuals with
SD. The findings from these studies are not, however, well repli-
ated at this time (21), likely because of the small sample sizes and
he wide age and severity range of ASD within these samples. The

ost recent meta-analysis of gray matter (GM) alterations in ASD
ighlights decreases in GM in medial temporal lobe (hippocampus/
mygdala) and medial parietal cortical regions (precuneus) as dis-
inguishing features of autism (22). Many of these studies were
onducted in adults with autism rather than children, which is
roblematic for a disorder with early life onset and variable devel-
pmental trajectory (23). Furthermore, the focus on differences in
ingle brain regions does not recognize the emerging view that
utism is a disorder of multiple brain systems and that the distur-
ance lies in the interactions among these systems (24 –32).

Traditional univariate VBM analyses quantify changes in GM or
hite matter (WM) density or volume between groups in a voxel-
ise manner such that each voxel is individually compared. Multi-

ariate pattern analysis (MPA), in contrast, is a machine-learning-

ased pattern recognition technique that can be used to classify
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data by discriminating between two or more classes (or groups).
MPA, or classification methods, are increasingly being applied to
brain imaging data in an attempt to overcome the limitations inher-
ent to univariate VBM approaches (33). Briefly, a classifier is a func-
tion that takes the values of various features (e.g., brain density or
volume) in a sample and predicts which class (e.g., participant
group) that sample belongs to (34). Multivariate approaches to
analysis of MRI data can provide unique information that is over-
looked by univariate approaches. Whereas univariate analyses can
reveal which particular brain regions differ on a relevant dimen-
sion (e.g., GM volume) between participant groups, multivariate
analyses can show which set of brain voxels, in combination, can
be used to discriminate between two participant groups. Multi-
variate analyses thus allow for making inferences about patterns
of difference (35). Only two published studies to date have ap-
plied classification methods to structural brain imaging data
collected from adults with ASD. The first study employed a sup-
port vector machine (SVM) whole-brain classification approach
to discriminate adults with ASD from neurotypical adults. They
found that greater classification accuracies were achieved when
SVM was applied to GM (up to 86%) compared with WM (up to
68%), and that SVM could more readily detect differences than
traditional VBM approaches (36). Their study aimed to evaluate
the performance of a classifier designed to discriminate two
participant groups, rather than to identify precisely which brain
regions contribute to such discrimination. A second study from
this group using a multiparameter SVM classification approach
combining volumetric measurements with geometric features
of the cortical surface found that the best discrimination was
obtained from cortical thickness measures (37).

No classification studies using structural imaging data have
been published to date on children with ASD. Such studies are
particularly important for ASD, because it is a neurodevelopmental
disorder with early onset and variable course, with a clinical empha-
sis on early treatment. Thus, characterization of useful biomarkers
will necessitate investigations of children from the youngest ages
to early adulthood. There have been no published studies attempt-
ing to identify precisely which brain regions can be used to discrim-
inate groups of individuals with autism from typically developing
individuals. Here we use VBM in combination with a novel search-
light classification approach applied to structural MRI data col-
lected from a well-characterized group of children and adolescents
with autism and age-matched neurotypical participants to define
the pattern of structural brain differences between the two groups
and to identify brain regions providing the greatest information

Table 1. Participant Demographics

Measure AD

Age 13.23 � .66
VIQ 109.08 � 3.29
PIQ 100.88 � 3.19
FSIQ 105.67 � 3.28
ADI

Social 29.81 � 1.63
Communication 20.71 � 1.06
Repetitive Behaviors 10.38 � .85

ADOS
Social 9.62 � .57
Communication 5.10 � .38

df � (1,46) for all analyses.

ADI, Autism Diagnostic Interview; ADOS, Autism Diagno

disorder; FSIQ, Full-Scale IQ; PIQ, Performance IQ; TD, typically

ww.sobp.org/journal
egarding group membership. On the basis of previous work, we
ypothesized that multivoxel patterns in children with autism
ould differ in multiple frontal, temporal, and parietal regions.

everal recent studies have implicated the default mode network
DMN, anchored in the ventromedial prefrontal cortex, posterior
ingulate cortex/precuneus, lateral parietal cortices, and hip-
ocampus) (38,39) in the pathophysiology of autism (40 – 43). A
ubset of these regions (hippocampus and precuneus) have re-
ently been shown to display robust decreases of GM volume in

ndividuals with ASD (22). We therefore predicted that key nodes of
he DMN would show significant differences in multivariate pat-
erns between the two groups.

ethods and Materials

articipants
Structural imaging data for the current study were collected

rom 24 children and adolescents with autistic disorder (AD) rang-
ng from age 8 to 18 years and a matched group of 24 typical control
articipants. All participants had Full-Scale, Performance, and Ver-
al IQ scores greater than or equal to 75. All participants were
dministered the age-appropriate version of the Wechsler Intelli-
ence Scale for Children—Revised or the Wechsler Adult Intelli-
ence Scale—Revised to measure Full-Scale, Performance, and Ver-
al IQ. Details regarding participant recruitment are available in
revious publications reporting results from this data set (44 – 46).
he study was approved by the Institutional Review Board at the
niversity of Pittsburgh, where the data were collected.

The diagnosis of autism was established through expert clinical
valuation and scores in the autism range on the Autism Diagnostic

nterview—Revised (ADI-R) and the Autism Diagnostic Observation
chedule (ADOS). Specific ADOS scores were unavailable for three
articipants because of accidental loss of primary data following
onfirmation of eligibility for the study. Participants meeting diag-
ostic criteria for autism but without abnormal language develop-
ent were considered to have Asperger’s syndrome and were not

ncluded in this study.
Control participants were recruited from the community

hrough advertisements in areas socioeconomically comparable to
hose from which the parents of participants with autism were
ecruited. The participant groups did not differ significantly in age,
ull-Scale, Performance, or Verbal IQ, or gender; and each group
omprised 22 males and 2 females (Table 1).

TD F Test p Value

13.25 � .55 .001 .973
106.63 � 1.86 .422 .519
104.63 � 1.95 1.00 .322
106.00 � 1.95 .008 .931
stic Observation Schedule; AD, subjects with autistic
developing subjects; VIQ, Verbal IQ.



w
t
a
p
t
r
F
w
G
p

S

t
b
A
o
c
a
g
a
t
t
3
t
e

R

M

e
9
m
fi
r
s
s
s
t
r

(
f
l

g
t
m

M
M

r
a
y
o
A
s
s
y
o
s

L.Q. Uddin et al. BIOL PSYCHIATRY 2011;xx:xxx 3
Data Acquisition
Neuroimaging data were collected using a General Electric (Mil-

waukee, Wisconsin) 1.5-T Signa scanner. A 1.5-mm SPGR (spoiled
gradient recalled echo in steady state) coronal series (repetition
time � 35; echo time � 5; number of excitations � 1; flip angle �
45°) was collected, which was used for all the measurements re-
ported in this study.

Data Processing
Voxel-Based Morphometry. Voxel-based differences in brain

anatomy between participant groups were assessed using opti-
mized VBM (47) implemented in the VBM5 toolbox in SPM5 (Well-
come Department of Imaging Neuroscience, London, United King-
dom). Details of the VBM analysis steps are provided in Supplement
1. Between-group comparisons for GM and WM volumes were per-
formed in SPM5 using two-sample t tests on smoothed images. A
voxelwise significance threshold was used (GM: height �.01 with
family-wise error [FWE] corrections for multiple comparisons, ex-
tent 133 voxels [�.01]; WM: height �.01, with FWE corrections for
multiple comparisons, extent 133 voxels [�.01]). These extent
thresholds were determined using Monte-Carlo simulations, imple-
mented in Matlab using methods similar to the AlphaSim proce-
dure in the Analysis of Functional Neuroimages (AFNI) software
(48,49).

Multivariate Pattern Analysis. A multivariate statistical pat-
tern recognition-based method (33,50) was used to find brain re-
gions that discriminated between structural MRIs collected from
children and adolescents with autism and TD individuals. A detailed
description of this technique and the means by which it can provide
improved sensitivity to group differences over traditional univari-
ate measures is provided in Supplement 1. Inputs into the MPA
were the smoothed GM and WM maps computed from the VBM
analyses. The MPA method uses a nonlinear classifier based on
support-vector machine algorithms with radial basis function (RBF)
kernels (51). Briefly, at each voxel (vi), a 3 � 3 � 3 neighborhood
centered at vi was defined. The spatial pattern of voxels in this block
was defined by a 27-dimensional vector. Support vector machine
classification was performed using LIBSVM software (http://www.
csie.ntu.edu.tw/�cjlin/libsvm). For the nonlinear SVM classifier,
two parameters were specified, C (regularization) and � (parameter
for RBF kernel), at each searchlight position. We estimated optimal
values of C and � and the generalizability of the classifier at each
searchlight position by using a combination of grid search and
cross-validation procedures. In earlier approaches (52), linear SVM
was used, and the free parameter, C, was arbitrarily set. In the
current work, however, we optimized the free parameters (C and �)
based on the data, thereby designing an optimal classifier. In the
M-fold (here we used M � 10) cross-validation procedure, the data
were randomly divided into M-folds. M-1 folds were used for train-
ing the classifier and the remaining fold was used for testing. This
procedure was repeated M times wherein a different fold was left
out for testing each time. We estimated class labels of the test data
at each fold and computed the average classification accuracy ob-
tained at each fold, termed here as the cross-validation accuracy
(CA). The optimal parameters were found by grid searching the
parameter space and selecting the pair of values (C,�) at which the
M-fold cross-validation accuracy was maximum. To search for a
wide range of values, we varied the values of C and � from .125 to 32
in steps of 2 (.125, .25, .5, � 16, 32). The resulting 3-D map of cross-
validation accuracy at every voxel was used to detect brain regions
that discriminated between the two participant groups. Under the
null hypothesis that there is no difference between the two groups,

the CAs were assumed to follow the binomial distribution Bi(N,p) t
ith parameters N equal to the total number of participants in the
wo groups and p equal to .5 (under the null hypothesis, the prob-
bility of each group is equal) (34). The CAs were then converted to
values using the binomial distribution. The statistical maps were

hresholded as follows: classification GM— height �.001, FWE cor-
ected, extent 40 voxels (�.01); classification WM: height �.001,
WE corrected, extent 29 voxels (�.01). These extent thresholds
ere determined using Monte-Carlo simulations on the respective
M and WM masks using procedures similar to those noted in the
revious section.

upport Vector Machine Relationship with Symptom Severity
After using MPA to identify the GM and WM regions producing

he highest classification accuracies, we looked for relationships
etween symptom severity based on diagnostic criteria (ADI-R and
DOS subscale scores) and the brain regions considered key nodes
f the default mode network (DMN) (38). This was accomplished by
omputing correlation coefficients between the diagnostic criteria
nd distance from the optimal hyperplane separating the two
roups for each key region of the DMN (posterior cingulate cortex
nd medial prefrontal cortex) (36). We first identified peak voxels of
he areas of interest with high classification accuracies. At each of
hese voxels, we built a nonlinear hyperplane classification with 3 �
� 3 neighboring voxels as features. We then computed the dis-

ance of each subject from this hyperplane for each region of inter-
st.

esults

ultivariate Pattern Analysis
Several key cortical and subcortical regions showed GM differ-

nces between groups. Notably, high classification accuracies (near
0%) were detected in areas of the DMN (posterior cingulate cortex,
edial prefrontal cortex, and parahippocampal gyrus). High classi-

cation accuracies (CA � 80%) were also observed in prefrontal
egions (bilateral middle frontal gyri, right inferior frontal gyrus, left
uperior frontal gyrus), posterior parietal cortex (right angular, left
upramarginal), and lateral temporal lobe (left superior temporal
ulcus and anterior temporal). Subcortical regions including the left
halamus, left caudate, and cerebellum showed classification accu-
acies of 85% (Figure 1A, Table 2).

When examining WM differences, we found that high CAs
�80%) were obtained using data from the inferior fronto-occipital
asciculus, superior longitudinal fasciculus, and the genu and sp-
enium of the corpus callosum (Figure 1B, Table 2).

Analyses excluding the two female participants from each
roup are presented in Supplement 1. The brain areas producing

he highest CAs remained unchanged when examining only the
ale participants.

ultivariate Pattern Analysis Overlap with Voxel-based
orphometry

Additional analyses were conducted to examine whether brain
egions that showed significant classification rates differed in over-
ll volume. Differences in GM were compared using univariate anal-
sis of VBM. Figure 2 highlights the regions where MPA results
verlapped with VBM results for GM between-group differences.
reas in red (posterior cingulate cortex [PCC], supramarginal gyrus)

howed VBM differences in which children with autistic disorder
howed greater volume than typically developing children. Areas in
ellow (thalamus, superior frontal gyrus, precuneus, and lateral
ccipital cortex) showed VBM differences in which TD children
howed greater volume than children with AD. Blue areas are those

hat showed classification differences (e.g., areas in which GM could

www.sobp.org/journal
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discriminate between groups, as discussed earlier). Areas in purple
(PCC) are where the VBM AD greater than TD differences over-
lapped with the classification results, and areas in green (thalamus)
are where the VBM TD greater than AD overlapped with the classi-
fication results. As is evident, classification analyses revealed more
information regarding discriminating GM regions between groups
than did the univariate VBM analysis. Adding age as a covariate to
the VBM analysis did not change the results.

Relationship Between SVM and Symptom Severity
We were interested in testing for relationships between GM in

the DMN and autism symptom severity. Table 3 and Figure 3 show
the relation between the scores on the diagnostic instruments
(ADI-R and ADOS subscale scores) and GM in key DMN regions. This
analysis revealed that subjects with the most severe autism as in-
dexed by ADI-R communication subscale scores are better discrim-
inators between groups on the basis of GM in the PCC region than
subjects with less severe symptomatology (r � .536, p � .01). In
other words, the most severely affected subjects are located far-
thest away from the hyperplane separating the two groups in the
multivariate classification analysis. This relationship was still pres-
ent after Bonferroni corrections for multiple comparisons (for each
region of interest individually). In addition, those with the most

Figure 1. (A) Results from searchlight classification of gray matter. Regions d
temporal, default mode network, medial temporal, and subcortical areas. The
cingulate cortex (PCC) and parahippocampal gyrus (92%), medial prefronta
default mode network. (B) Results from searchlight classification of white m
fronto-occipital fasciculus (Fasc.), superior (Sup.) longitudinal fasciculus, a
accuracy; L, left.
severe autism as indexed by the social (r � .413, p � .05) and c

ww.sobp.org/journal
epetitive behavior (r � .413, p � .05) subscales of the ADI-R are
etter discriminators between groups on the basis of GM in the PCC

egion than subjects with less severe symptomatology. However,
onferroni correction renders these correlations insignificant.

iscussion

Most current theories of brain abnormalities underlying au-
ism emphasize widespread structural and functional changes
30,53,54) and disturbances in cortical connectivity among brain
egions (11,32,55). With growing evidence that the brain distur-
ance underlying autism involves multiple brain regions came the
eed for increasingly sophisticated methods for analyzing these
omplex alterations. Multivariate pattern analysis is a powerful tool
or investigating the pattern of these differences and has several
dvantages over traditional univariate VBM approaches. In particu-

ar, such analyses are more sensitive to subtle changes in multiple
rain areas that may accompany complex neuropsychiatric disor-
ers such as autism (see Bray et al. [56] for review). The interpreta-

ion of a result from an MPA analysis is that the brain regions
dentified are those in which there is information that can be
leaned from a pattern of voxels that can be used to assign a
articular individual data set to a group—in our case, autism or

inating between participants groups include prefrontal, posterior parietal,
est classification accuracies were obtained from gray matter in the posterior
ex (MPFC; 88%) and posterior parietal cortices (85%), all regions within the
r. Regions discriminating between participant groups include inferior (Inf.)

e genu and splenium of the corpus callosum (CC). CA, cross-validation
iscrim
high

l cort
atte
nd th
ontrol.
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Using an SVM searchlight classification procedure, we found
that GM in several cortical and subcortical regions discriminated
between autism and TD groups with high classification accuracies.
Some of the highest classification accuracies (near 90%) were
achieved with GM in the PCC, medial prefrontal cortex, and medial
temporal lobes, all regions that comprise the default mode network
(38). This finding is in line with the most recent meta-analysis of
structural neuroimaging studies of autism, which points to de-
creases in GM in the hippocampus and precuneus (22). Several
recent studies have supported a role for the DMN in the pathophys-
iology of autism. In adults with ASD, deactivation of the DMN during
task performance appears abnormal (40), and the network shows
reduced functional connectivity at rest (40 – 42, 57–59). Adoles-
cents with ASD likewise show weaker connectivity within the DMN
(60). Autism is associated with altered socioemotional responses,
which have been linked to DMN function (61– 62). Furthermore, an
activation likelihood estimation meta-analysis of 24 neuroimaging
studies examining social processing in ASD found that medial pre-
frontal cortex and posterior cingulate cortex, two main nodes of the
DMN, are hypoactive relative to neurotypical adults (63). Our cur-
rent results support the notion that there might be morphologic
differences within DMN nodes that contribute to the observed
functional differences at the network level.

This study found that the PCC not only produced the highest
classification accuracy, but an individual subject’s distance from the
hyperplane separating the two groups in the classification analysis
were also significantly correlated with ADI-R scores. Specifically,
children with the most elevated communication symptom score on
the ADI-R (indicating the most severe deficits) were located farthest

Table 2. Gray and White Matter Classification Peaks

Region

Size of
Cluster

(voxels)

Gray Matter
Prefrontal

Middle Frontal Gyrus 104
Inferior Frontal Gyrus 509
Superior Frontal Gyrus 370

Posterior Parietal
Supramarginal Gyrus 187
Angular Gyrus 262

Temporal
STS 224
Anterior Temporal Lobe 107

Default Mode Network
PCC 1120
MPFC 112

Medial Temporal
Hippocampus 117
Parahippocampal Gyrus 528

Subcortical
Cerebellum 77
L Thalamus 1120
L Caudate 1120

White Matter
Inf Fronto-Occipital Fasc. 58
Sup. Longitudinal Fasc. 388
Splenium, Corpus Callosum 259
Genu, Corpus Callosum 199

Inf, inferior; Fasc., fasciculus; L, left; MNI, Montreal N
posterior cingulate cortex; STS, superior temporal sulcus
away from the hyperplane separating the autism and TD groups. a
hese data indicate that our classification analyses are sensitive not
nly in distinguishing between autism and TD groups but also in

elating symptom severity with multivoxel brain measures. Previ-
us studies as well as the current study collectively suggest that
typical engagement of and connectivity within the DMN and as-
ociated networks is one possible signature of brain dysfunction in
utistic disorder and ASD (25,57,64,65). Of note, both our VBM and
PA analyses showed group differences localized to the PCC, dem-

nstrating the robustness of this result across methods.
In addition to GM differences within the DMN, we found high

lassification accuracies using GM in several prefrontal, lateral tem-
oral, and subcortical regions. The frontal and temporal lobes are
lso notable for showing abnormal increases in GM and WM be-
ween 2 and 4 years of age (see Courchesne et al. [66] for review).
he posterior STS, involved with social and speech perception, has
een identified in functional MRI studies as a key region of patho-
hysiology that may be compromised in adults with autism (67,68).
he cerebellum and caudate, which produced 85% classification
ccuracies in our analyses, have previously been shown to have
tructural abnormalities in ASD and reportedly also discriminate
etween adults with ASD and neurotypical adults (36). Caudate
olume has been reported to associate with repetitive behaviors in

ndividuals with autism (18).
We found that WM in the genu and splenium of the corpus

allosum also allowed for high classification accuracies. Previous
tudies have shown corpus callosum abnormalities in ASD (69 –72),
finding that has been interpreted as resulting from alterations in

nterhemispheric cortical connectivity. The novel finding of the cur-
ent study is that WM along the inferior fronto-occipital fasciculus

assification
curacy (%)

MNI Coordinates

x y z

83 34 34 32
88 42 28 18
88 �24 22 62

85 �52 �24 34
85 56 �46 18

79 �48 �52 10
90 �36 2 �38

92 4 �30 26
88 2 36 �12

81 36 �22 �24
92 �26 �26 �26

85 �12 �78 �36
85 �4 �4 16
85 �14 4 20

83 �26 22 10
85 36 �24 40
79 �20 �50 18
85 12 20 22

logical Institute; MPFC, medial prefrontal cortex; PCC,
, superior.
Cl
Ac
nd superior longitudinal fasciculus could also distinguish children

www.sobp.org/journal
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with autism from TD children. A recent meta-analysis of VBM stud-
ies of autism reports that individuals with ASD showed increases of
WM volume in the left inferior fronto-occipital fasciculus (73). Our
current findings suggest that these WM differences are also re-

Figure 2. Results from searchlight classification of gray matter (blue) and gr
(VBM) analyses (red and yellow). Areas where VBM of gray matter showed autis

here VBM of gray matter showed typically developing subjects greater than a

able 3. Correlations Coefficients Between Diagnostic Criteria and Distanc

Region

ADOS Social
ADOS

Communication

r p r p

Gray Matter
Default Mode Network

PCC –.173 .452 –.021 .92
MPFC �.006 .980 �.050 .83

ADI-R, Autism Diagnostic Interview—Revised; ADOS, Autism Diagnostic
cortex.

a
Significant correlations at p � .05, two-tailed.
bSignificant correlations at p � .01, two-tailed.

ww.sobp.org/journal
ected in multivariate patterns after normalizing for overall volume
ifferences.

The only published studies of classification of structural MRI data
ave been conducted in either adults or toddlers with autism. The

ifferences in gray matter revealed by univariate voxel-based morphometry
order subjects greater than typically developing subjects are in red, and areas
disorder subjects are in yellow. AD, autistic disorder; TD, typically developing.

Hyperplane

ADI-R Social
ADI-R

Communication
ADI-R Repetitive

Behavior

r p r p r p

.413 .045a .536 .007b .413 .045a

.272 .198 .116 .590 .272 .198

rvation Schedule; MPFC, medial prefrontal cortex; PCC, posterior cingulate
oup d
tic dis
e from

7
0

Obse
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current study is the first such study in children and adolescents.
Some common features of these findings have emerged across age
groups that may highlight key features of autism. Ecker and col-
leagues reported that GM data more accurately classified individu-
als than did WM data and that multivariate methods were more
sensitive to group differences than were univariate VBM methods
(36), which is what we also found in the current study. Our work,
however, is the first to identify the specific loci of GM and WM
differences in children and adolescents with autism. The previous
study used a whole-brain classification method that was not opti-
mized for finding discriminating brain regions, an advantage pro-
vided by the current searchlight classification approach. Ecker and
colleagues recently used a multiparameter classification approach (in-
cluding data from both volumetric and geometric cortical features)
to reveal distributed patterns of discriminating regions from struc-
tural GM measurements collected from adults with autism (37).
Another recent study used multivariate pattern classification to
examine male toddlers with autism and found that in the age range
examined (1– 4 years), the classification method used could not
discriminate between toddlers with autism and control subjects,
although univariate methods did show that toddlers with autism
had greater brain volume in several areas (74). Whether this was
due to heterogeneity within the autism group, choice of classifica-
tion algorithm, choice of control participants, power issues, or rep-
resents a true null finding remains an open question.

The current study has several limitations. We examined the age
range of 8 to 18 years, which spans a period of rapid and nonlinear
brain development. Unfortunately, there is at present no straight-
forward way to incorporate age covariates into the MPA analysis,
which is a shortcoming of the method. Future studies can address
this issue by substantially increasing the numbers of participants
and dividing the samples into two smaller age ranges to model
maturational changes in brain morphology more closely as they
relate to autism. Also, the searchlight classification algorithm that
we adopt is well suited for using local information to uncover pre-
cisely which brain regions provide the most information about
group membership (autism or control). However, a limitation of this
method is that it cannot identify two or more distant brain regions
that together discriminate the two population groups. Method-
ological advances in this area will be necessary to apply this tech-
nique at the whole-brain level to consider these potential relation-
ships. Lastly, although our method allows for the identification of
structural brain signatures of autism, multimodal studies incorpo-
rating functional neuroimaging are needed to address the question
of whether measures of functional connectivity, in conjunction
with morphology, can better discriminate autism from typical de-
velopment.

The elucidation of the brain basis of autism is critical to defining

Figure 3. Relationship between support vector machine and symptom se
Interview—Revised (ADI-R) Communication subscale (r � .536, p � .01) sub

osterior cingulate cortex than those with less severe symptomatology. AD
neurobiological mechanisms responsible for the disorder, account-
ng for heterogeneity across cases, monitoring its evolution, and its
esponse to intervention. One of the major impediments to prog-
ess in understanding ASD results from the fact that it is currently
iagnosed solely on the basis of behavioral characteristics (8). Find-

ngs from the current study and similar efforts integrating other
ypes of neuroimaging data may eventually lead to the identifica-
ion of robust brain-based biomarkers with the potential to aid in
arly detection and intervention in children with ASD. Discovery of
uch biomarkers may ultimately also be of potential use in identify-
ng toddlers or siblings at risk for developing autism. Although the
nitial results presented here are promising, future studies with
arger samples enabling smaller age subgroups within the child
opulation, as well as a wider range of cognitive functioning, will be

mportant in addressing issues of heterogeneity within the popula-
ion and further investigating relationships between symptomatol-
gy and brain structure.
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