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Learning-induced reorganization of number
neurons and emergence of numerical
representations in a biologically inspired
neural network

Percy K. Mistry 1 , Anthony Strock1, Ruizhe Liu1, Griffin Young1 &
Vinod Menon 1,2,3,4,5

Number sense, the ability to decipher quantity, forms the foundation for
mathematical cognition. How number sense emerges with learning is, how-
ever, not known. Here we use a biologically-inspired neural architecture
comprising cortical layers V1, V2, V3, and intraparietal sulcus (IPS) to investi-
gate how neural representations change with numerosity training. Learning
dramatically reorganized neuronal tuning properties at both the single unit
and population levels, resulting in the emergence of sharply-tuned repre-
sentations of numerosity in the IPS layer. Ablation analysis revealed that
spontaneous number neurons observed prior to learning were not critical to
formation of number representations post-learning. Crucially, multi-
dimensional scaling of population responses revealed the emergence of
absolute and relative magnitude representations of quantity, including mid-
point anchoring. These learnt representations may underlie changes
from logarithmic to cyclic and linear mental number lines that are character-
istic of number sense development in humans. Our findings elucidate
mechanisms by which learning builds novel representations supporting
number sense.

How the nervous system represents and categorizes numerical
quantity and numbers is poorly understood. Human neuroimaging
studies have shown that numerical quantity is represented by dis-
tributed patterns of neural activity1–3. In contrast, electro-
physiological recordings in non-human primate brains, and to a
limited extent in the human brain, have reported number-sensitive
neurons which respond preferentially to a specific number of
objects. For example, a neuron preferring numerosity “5” has the
highest average firing rate when five objects are presented to the
animal, and progressively lower ones for other numerosities4,5.

Precisely how numerical representations emerge in the human brain
is poorly understood, and acquiring intracranial electrophysiological
data in children during development for addressing this challenge is
largely implausible at this time. In-silico experiments with biologi-
cally inspired neural networks provide an alternative and computa-
tionally rigorous approach for examining how neuronal
representations develop with learning. Here, we use a biologically-
inspired deep neural network to investigate how neural coding of
quantity emerges with learning, at both the single unit and dis-
tributed population levels.
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In thefirst studyof its kind, Stoianov andZorki6 showed that visual
numerosity can emerge as a statistical property of images in deep
neural networks (DNN) that learn a hierarchical generative model of
sensory input. A deep belief network was trained to reconstruct an
image of 1 to 32 white rectangles on a black background. Number-
tuning neurons with monotonic responses to numerosity emerged in
the secondhidden layer of thenetwork, despite the learning goal being
number-irrelevant. Extending this work, recent studies have shown
that quantity sensitive neurons can emerge spontaneously in con-
volutional neural networks trained to categorize objects in standar-
dized LSVRC-2012 ImageNet datasets7. Although the network was not
trained on categorization of numerical quantity, units in the final
network layer were selective for numerosity. The emergence of
spontaneous number neurons (SPONs) in the absence of explicit
numerosity training was posited to underlie number sense. Subse-
quently, Kim, et al.8 showed that neurons with similar response prop-
erties can also appear in randomly intitialized networks. Contrary to
Nasr, et al.7, they proposed that visual object training was not relevant
for the initial emergenceofnumerosity. Finally, Zhang&Wu9 identified
potentialmethdological issues associated with identification of SPONs
in prior studies.

While these studies shed light onhowprecursors of number sense
might emerge in an artificial neural network, they do not directly
address how tuning of neural responses and distributed population
representations are altered by learning and development. Moreover,
numerosity tuning of neurons in these studies was assessed indirectly,
using amutistepprocess involving either a secondneuralnetwork7 or a
support vector machine8 to learn number comparison, without alter-
ing the pre-trained network and the underlying neural representations
of numerosity. Thus, it is not known whether SPONs and distributed
neural representations remain stable or whether they get reorganized
with end-to-end learning. Importantly, neither study directly probed
mapping between non-symbolic and symbolic representations of
quantity, which is one possible account of the emergence of number
sense in humans2,10.

In this study, we adopt an approach to DNN-based learning that is
developmentally informed. The acquisition of numerical skills in chil-
dren is often described by the mapping account, which suggests that
linking non-symbolic representations of quantities to abstract sym-
bolic representations is critical for the development of numerical
problem-solving abilities11–15. However, alternative theoretical views
propose that the ‘symbol-grounding’ problem for symbolic numbers
remains unresolved16,17, and that number sense and symbolic number
processing capabilities may rely on separate neural systems18. Despite
these theoretical differences, there is a consensus that children initially
learn themeaning of small numbersbymapping them tonon-symbolic
representations, while larger numbers may be acquired through

counting and arithmetic principles19,20. Brain imaging studies suggest
that stronger neural representational similarity between symbolic and
non-symbolic representations during early development is associated
with better mathematical problem-solving skills2,10 but this mapping
weakens as skills mature10. Thus, learning to map symbolic repre-
sentations of quantity with non-symbolic referents or visual primitives
provides an ideal platform for an in-silico investigation of plausible
neuronal andpopulation-levelmechanismsunderlying early numerical
skill acquisition. Our approach aligns with the view that exact numer-
ical representations are not innately predetermined but rather are
learned through enculturation21,22.

We implemented anumber-DNN (nDNN)modelwhich learned the
mapping of non-symbolic stimuli to quantity representations
(numerosity training). In an advance over previous studies, we use a
biologically more plausible architecture (Fig. 1), inspired by recent
work on visual object categorization23. nDNN has several advantages
over convolution neural network models such as AlexNet which were
primarily developed for computer vision applications24. Most impor-
tantly, biologically-inspired architectures have been shown to be clo-
sely match neural and behavioral measures observed in non-human
primates25. Our nDNN incorporated layers V1, V2, V3, and IPS which
model dorsal visual informationprocessing pathways known toplayan
essential role in numerical cognition15,26,27. We investigated how
numerosity training reorganizes neural tuning and population-level
distributed network representations. Importantly, the numerosity
training involved learning to map non-symbolic referents of quantity
to abstract symbolic representations of quantity, a skill that is taught
to children during early developmental stages2,28. Our approach
allowed us to capture the emergence of new neuronal-level and
population-level representations with training, mimicking the early
stages of numbers sense acquisition during development.

Our study has five main goals, as schematized in Fig. 2. Our first
goal was to investigate how neurons reorganize with learning and
determine whether numerosity training preserves the integrity of
SPONs, neurons that emerge as number sensitive with domain-general
image recognition prior to any numerosity training. We examined
whether SPONs emerged in the biologically inspired network, and,
crucially, quantified their reorganization with numerosity training.
Specifically, we tested the hypotheses that a majority of SPONs would
not preserve their original preferred numerosity, and that the relative
contribution of SPONs to numerosity classificationwould reduce, after
numerosity training. Testing this hypothesis would shed light on the
relation between “nativist” perspectives, which posit innate stable
neural representations, and “emergentist” perspectives, which posit
dynamic representations that evolve with learning29. It would also
reveal whether SPONs arising from non-numerosity related visual
experiences form an essential foundation for numerical cognition, and

Fig. 1 | Architecture of number deep neural network (nDNN) adapted from the
biologically-inspired CORnet-S. nDNN consists of four layers that model hier-
archy and recurrent circuit dynamics in areas V1, V2, V3, and IPS of the dorsal visual
processing stream. The architecture of nDNN is adapted from CORnet-S, a

biologically inspired network architecture for visual object categorization. The
nDNN is trained tomap non-symbolic representation of numbers to their symbolic
representation. The nDNN includes feedforward and recurrent (shown by looped
arrows within a layer in the figure) connections.
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how numerosity representation depends on neurons that are exclu-
sively selective for numerosity versus those that are sensitive to both
numerosity and other factors such as area and size (other stimulus
conditions).

The second goal of our study was to investigate how learning
changes the properties of individual neurons along the information
processing hierarchy from V1, V2, and V3 to IPS. We computed the
proportion, acuity, and distribution of number sensitive neurons
across different learning epochs. We examined whether train-
ing induced fundamental changes in key neuronal properties such as
tuning precision, stability, and selectivity of neurons, as well as infer-
red properties such as numerical distance and size effects. We tested
the hypothesis that training would result in the emergence of more
precise numerosity tuning in layer IPS of the nDNN, and compared this
to number-tuning properties previously observed in monkey and

human IPS. A significant change in properties would emphasize the
specificity of explicit numerosity training, relative to numerosity that
might arise from non-numerosity related visual experiences.

The third goal of our studywas to go beyond coding properties of
individual number sensitive neurons, and determine how numerosity
training leads to the emergence of new distributed population repre-
sentations across neurons in each layer of the visual information
processing hierarchy. To accomplish this we used representational
similarity analysis (RSA), similar to procedures used in functional brain
imaging studies30. We assessed how distributed representations of
numerical quantities emerge across the information processing hier-
archy, and tested the hypothesis that layer IPS would form distinct
patterns encoding numerical representations. We tested whether key
distributed representations and canonical observations such as
numerical distance and size effects associated with number sensitivity

Fig. 2 | Overview of the key goals and analysis steps. Goal 1 investigated how
neurons reorganize with learning and determine whether numerosity training
preserves the integrity of spontaneous number neurons (SPONs). Goal 2 examined
how learning changes the properties of individual neurons along the information
processing hierarchy from V1, V2, and V3 to IPS. We examined several neuronal
properties, including neuronal tuning, stability, selectivity, and distance effects at a
single unit level, how they change with numerosity training, and how they corre-
spond to neuronal recordings in primate IPS. Goal 3 investigated how distributed

population-level representations change with learning. Goal 4 examined latent
structure of distributed population-level neural representations, the coding prop-
erties that emerge from these representations, and how these coding properties
relate to number sense. Goal 5 identified neuronal tuning and distributed
population-level representational features that predict network accuracy. In each
goal we examined neural reorganization in each nDNN layer along the information
processing hierarchy from V1, V2, V3 to IPS. We also performed control analyses
using alternate training methods to check the robustness of the findings.
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are already present in a network trained only on object perception, or
whether additional, number-specific training is necessary for such
properties to emerge. We operationalized this by comparing the dis-
tributed representations for SPONs that retained their numerosity
across training, with those for neurons whose number sensitivity
emerged later or switched as a result of training.

The fourth goal of our studywas to examine the latent structureof
distributed population-level neural representations. We used multi-
dimensional scaling (MDS) to obtain a low-dimensional representation
of the neural representational distances between different input
numerosities. By mapping stimulus properties against these MDS
representations, we were able to identify distinct, cognitively relevant
latent dimensions of numerosity, including the reconstruction of
latent number line representations. We tested the hypothesis that
post-training, distinct latent representations would reflect both abso-
lute magnitude and relative magnitude within the stimuli space, based
on distance from anchors, or reference points, analogous to the
development of reference points on the number line identified in
human behavioral studies31.

Our final goal was to identify neuronal tuning and distributed
population-level representational features that predict network accu-
racy. This was accomplished by evaluating the early training periods
during which large changes in network accuracy were observed with
learning. We related changes in network accuracy to different network
properties including the proportion of numerosity sensitive neurons,
the ratio of spontaneous and newly formed numerosity neurons,
tuning curves, and the MDS-based representational distance, in each
network layer.

Our analysis revealed that numerosity training results in dramatic
reorganization of both neuronal properties and population-level dis-
tributed representations. Furthermore, our analysis uncovered the
formation of novel number representations, including absolute and
relative magnitude representations of quantity, which were not pre-
sent prior to numerosity training. Our findings elucidate mechanisms
by which learning builds novel representations supporting number
sense. A number of control analysis demonstrate the validity and
robustness of our findings.

Results
Changes in classification accuracy with numerosity training
We used a nDNN model, which had previously been pre-trained on
visual object recognition32, and trained it to categorize non-symbolic
representations of quantities. Images used in numerosity training
consisted of a visual array of dots ranging from 1 to 9 with variable dot
size, color, and location of dots (Fig. 1, see “Methods” section for
details). The relationship between numerosity, and total area of dots,
dot size, area of convex hull, and dot density respectively, were
balanced across conditions, leveraging recent advances in algorithms
for numerosity stimulus generation33,34. This ensured that no single
perceptual feature was consistently correlated with numerosity across
all conditions. We then assessed the accuracy of the nDNN in classi-
fying previously unseen configurations of the non-symbolic dot stimuli
for numerosities 1–9. Prior to numerosity training, numerosity classi-
fication rates were 13.1%, close to the chance level of 11%. Performance
increased to 77.0% after the first training epoch. After 5 training
epochs, performance on test examples reached 97.5%, eventually
reaching an accuracy of 99.6% after 50 epochs (Fig. 3A).

These results demonstrate that with learning, performance of the
model on non-symbolic to symbolic quantity mapping increased from
chance levels prior to numerosity training to high levels of accuracy
after just a few epochs of training.

Reorganization of neurons post numerosity training
Our next goal was to determine how numerosity training alters
numerosity tuning of SPONs in each of the four layers of the nDNN.

Number-sensitive neurons were identified in two ways – first, those
that showed a significant difference in activation across different input
numerosities, but not across different stimulus conditions (selective
numerosity neurons, identified via a 2-way ANOVA, see Methods for
details, reorganization shown in Fig. 3A–E), and second, those that
showed a significant difference in activation across different input
numerosities regardless of whether they were also sensitive to stimu-
lus conditions (all numerosity neurons, identified via a 1-way ANOVA,
see “Methods” for details, reorganization shown in Fig. 3F–J). Note that
the second classification subsumes the first.

We observed that the proportion of selective number-sensitive
neurons decreased in higher layers V3 and IPS, compared to in V1 and
V2 (Fig. 3B), whereas the number of all numerosity neurons increased
in V3 and IPS compared to V1 and V2 (Fig. 3G). Training related
increases in the number of selective number-sensitive neurons
occurred primarily in V3 and IPS (Supplementary Table S1). Impor-
tantly, however, SPONs were not stable, but underwent significant
reorganization with numerosity training, especially in layers V3 and
IPS. We conducted several additional analyses to characterize the
underlying changes.

SPONs that retain their preferred numerosity after training are
referred to as P-SPONs. SPONs as well as P-SPONs are identified both
based on selective as well as all numerosity neurons. First, we found
that only 14.5% (V1), 17.2% (V2), 6.1% (V3), and 2.9% (IPS) of the selective
SPONs retained their preferred numerosity after training (Fig. 3C and
Supplementary Table S1). The remaining selective SPONs either
dropped their selective number sensitivity (66% V1, 56% V2, 71% V3,
80% IPS), or switched their preferred numerosity (19% V1, 27% V2, 23%
V3, 17% IPS). Next, we found that only 19.7% (V1), 33.5% (V2), 25.5% (V3),
and 13.6% (IPS) of all SPONs retained their preferred numerosity after
training (Fig. 3H and Supplementary Table S2). The remaining SPONs
either dropped their selective number sensitivity (55% V1, 26% V2, 7%
V3, 0% IPS), or switched their preferred numerosity (25% V1, 41% V2,
68% V3, 86% IPS).

Selective SPONs seemmore likely to drop number sensitivity with
training, whereas overall SPONs weremore likely to switch numerosity
with training. To further analyze this, we evaluated how neurons
reorganized between selective and non-selective (jointly sensitive to
both numbers and stimulus condition) numerosity across layers
(Fig. 3K and Supplementary Table S3). Post training, the proportion of
neurons that were neither selectively nor non-selectively numerosity
sensitive reduced across layers (59% in V1, 26% in V2, 8% in V3, 0% in
IPS). The proportion of neurons switching from non-numerosity to
selectively numerosity sensitive neurons post-training also reduced
across layers (14% V1, 8% V2, 2% V3, 0.5% IPS).

Even though training was based only on numerosity, with
balanced stimuli across conditions, the proportion of non-selectively
numerosity sensitive neurons remained high post training, especially
in the higher layers (12% V1, 39% V2, 68% V3, 86% IPS). Switching
between selective and non-selective numerosity neuronswas relatively
low (8% V1, 21% V2, 25% V2, 17% IPS), but switching between which
numerosity a neuron was sensitive to, was higher (12% V1, 32% V2, 61%
V3, 84% IPS).

We then examined neurons that were not spontaneously and
selectively tuned to numerosity prior to training (non-SPONs), and
found that 73% (V1), 69% (V2), 77% (V3), and 86% (IPS) retained a lackof
selective numerosity preference (Fig. 3D). Examining the number
sensitive neurons post-training (Fig. 3E, J), we found that the New
+Switch neurons as a proportion of post-training number sensitive
neurons was high across layers when measured for both selective
(between 85% to 99%) and all (between 65% to 87%) numerosity neu-
rons, with the remaining being P-SPONs.

Finally, confusionmatrices basedon theproportion of SPONs that
were number-sensitive before and after training, to either the same or
different preferred numerosities confirmed high levels of
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reconfiguration across all numerosities. This is demonstrated by the
lack of strong diagonal elements (Supplementary Fig. S1).

These results demonstrate that training leads to significant
reconfiguration of numerosity preference across all four layers of the
network architecture, with distinct patterns of reorganization in the
lower layers V1 and V2, versus higher layers V3 and IPS.

Dynamics of training-related reorganization
Next, we examined how training-related reorganization evolves across
epochs. We examined dynamic changes in three groups of neurons, (i)
persistent SPONs (P-SPONs): SPONs that were number sensitive in the
pre-trained network and continued to be number sensitive for the
same preferred numerosity in the currently selected epoch; (ii) New
+Switch: neurons that were number-sensitive for a particular numer-
osity during the current selected epoch, were not number-sensitive for

this numerosity pre-training, and remained number-sensitive for the
samenumerosity at the end of training; and (iii) transient: neurons that
were number sensitive at a given epoch but did not meet the criteria
for being either P-SPONs or New+Switch.

We found that the proportion of P-SPONs dropped dramatically
after epoch 0 in all layers and then stabilized across subsequent
training epochs (Fig. 3L, M and Supplementary Fig. S2). The change
from pre to post numerosity training was from 27% to 4% in V1, from
29% to 5% in V2, from 13% to 1% in V3, and from 6% to 0.2% in IPS, for
selective P-SPONs. Interestingly, over 50% (Fig. 3L, right panel) of each
layers’ selective number sensitive neurons were transient number
sensitive, that is, neither P-SPONs, nor do they remain number sensi-
tive for specific numerosities after training.

These results demonstrate that training involves continuous
dynamic reorganization, and this process continues even when

Fig. 3 | Reorganization of nDNN with numerosity training. (A–E, L: numerosity
neurons identified based on being selectively sensitive to numerosity, but not con-
dition; F–J, M: numerosity neurons identified based on being sensitive to numer-
osity, regardless of whether they are also sensitive to stimulus condition).
A, FTesting accuracy of the pre-trained network and across 50 epochs of numerosity
training: full network (blue); network with persistent spontaneous (P-SPON) neurons
in IPS layer ablated (pink) does not suffer performance degradation; networkwith all
neurons in IPS layer except P-SPON ablated (green) suffers significant degradation in
performance. B, G Number sensitive neurons as a proportion of total number of
neurons in each layer, pre- and post-training. C, H Reorganization of SPONs with
numerosity training: P-SPONs (dark blue), drop number sensitivity (red), or switch
numerosity (light blue).D, I Reorganization of non-SPONs with numerosity training:
Proportion of non-SPONs that remain non-sensitive to any number (dark blue), and
that change to being number-sensitive (red). E, J Proportion of number sensitive post

training that are newly trainedor switchednumerosities (dark blue) versus those that
are P-SPONs and retain their SPON numerosity (red). K Reorganization between
numerosity neurons that are exclusively sensitive to numerosity (selective), those
that are sensitive to both numerosity and stimulus condition (non-selective), and
those that are not sensitive to numerosity. (a, b) show the distribution of these
neurons in each layer pre and post training. (c) Shows how the selective numerosity
neurons reorganize post-training, with switch indicating a switch to a different
preferred numerosity. (d) Shows a similar reorganization plot for neurons that are
non-selective numerosity neurons pre-training. (e) Shows a similar reorganization
plot for neurons that were not numerosity sensitive pre-training. L,M Proportion of
number-sensitive neurons in each layer and training epoch that are (a) P-SPONs, (b)
New+Switch, and (c) neither (transient). The contribution of New+Switch increases
as we move across higher layers and increases with training epoch. Source data are
provided as a Source Data file.
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accuracy levels are roughly stable across epochs. This pattern of
dynamic reorganization was especially higher in layers V3 and IPS,
which showed a higher proportion of newly trained and switched
neurons across training epochs.

Ablation analysis to determine role of persistent spontaneous
neurons in IPS after training
We conducted an ablation analysis by removing connections between
layer IPS and the final output layer to determine the relative impor-
tance of P-SPONs, that is, neurons which were spontaneously number
sensitive prior to number training and maintained their numerosity
preference after training. Ablating only the P-SPONs resulted in no
perceivable reduction of network performance (Fig. 3A, F, pink line),
with saturation performance accuracy reaching 99.7%. On the other
hand, ablating all neurons but keeping only the P-SPONs led to a sig-
nificant drop in performance (Fig. 3A, F, green line) to an accuracy of
only 25%.

These results demonstrate that P-SPONs in layer IPS are not cri-
tical for numerosity classification. and that their importance to the
network gradually reduces with increased numerosity training.

Changes in the precision, stability, and selectivity of number
sensitive neurons with training
Next, drawing on prior electrophysiological studies35–37, we examined
several key properties of the individual selective number sensitive
neurons and how they changed with training (Supplementary Table S4
and Fig. 4).

First, we examined tuning curves for number-sensitive neurons
and investigated how tuning properties (see “Methods” section for
details) in layers V1, V2, V3, and IPS are altered by numerosity training.
We found that the neuronal tuning curves became sharper with
numerosity training (Fig. 4A, B) and both their precision (acuity) and
level of improvement in acuity post-training, increased progressively
across layers (Fig. 4C), significantly so in the IPS layer.

Second, we measured the stability of number sensitive neurons
based on their relative tolerance for how well they preserved respon-
ses across identity preserving transformation35. Themeasure used was
Kendall’s tau (see “Methods” section for details), which measures rank
order agreement across the eight conditions, with higher relative tol-
erance indicating that the differences in condition did not alter the
relative numerosity order preference of neurons. The pre-trained
network had a low level of variability in stability across layers, but after
training, there was a significant increase in stability across the visual
information processing hierarchy (Fig. 4D). A two-way ANOVA
revealed an interaction between training epochs and nDNN layers
(F3,200125 = 7294, p < 0.0001), with a significant increase in differentia-
tion between layers after training, as stability in V1, V2, and V3 showed
minimal changes, while stability in layer IPS increased dramatically
from 0.344 to 0.914.

Third, wemeasured the selectivity of number sensitive neurons by
comparing pairwise activations of each neuron for different config-
urations of preferred and non-preferred numerosities and measuring
the proportion of comparisons where the activation of preferred
numerosity is higher (see “Methods” section for details). A neuron that
always results in higher activation for any configuration of the pre-
ferred numerosity than for any other configuration of any other
numerosity will have a maximum selectivity (of the preferred numer-
osity) of 1. The average selectivity across neurons only increases sig-
nificantly with training in the IPS layer from 0.327 to 0.733 (Fig. 4E).

Supplementary Table S5 shows the same analysis but for all
number sensitive neurons, and all key trends identified based on the
selective number neurons are also replicated for all number sensitive
neurons.

Together, these results demonstrate that precision, stability and
selectivity of neurons increased with numerosity training, particularly

in IPS. Clear differences along the information processing hierarchy
from V1 to IPS emerged only after numerosity training. Further, neu-
rons in IPS showed a wide range of values of precision, stability, and
selectivity.

Changes in numerical distance effect with training in layer IPS
Next, we examined the inferred numerical distance effect38 in layer
IPS neurons by computing the selectivity (proportion of pairwise
comparisons where preferred numerosities show higher activa-
tion) of each neuron as a function of the distance between pre-
ferred and non-preferred inputs being compared. The average
slope of the selectivity versus input distance was computed as the
numerical distance effect (NDE). NDE was low before training but
increased after training, especially in the layer IPS (Fig. 4F) from
0.006 to 0.041. In layer IPS, post-training, both selectivity
(Fig. 4Ga) and difference in neuronal activation (Fig. 4Gb)
increased significantly as the distance between input pairs
increased, although the selectivity saturated at high input dis-
tances. The average slopes in IPS layer were much higher post-
training compared to pre-training.

Similarly, we measured the numerical size effect (Supplementary
Fig. S4), separately for each distance value. The size effect computes
the same measures but as a function of input size (sum of input pairs)
instead of input distance, and shows a similar effect, with much
stronger size effects in IPS post-training, compared to the pre-trained
network.

These results demonstrate that numerical distance and size
effects that are typically observed in humans andprimates, emerged in
the nDNN, and were primarily observed in the IPS layer post
numerosity-training.

Differences between selective and non-selective numerosity
neurons in the IPS layer
While the key neuronal characteristics (tuning precision, stability,
selectivity, and NDE) are similar for selective and all numerosity
neurons, the relationship between these characteristics at a neu-
ronal level is different. We measured the correlation between
selectivity, tuning precision, stability, and NDE at a neuronal level
pre and post training, separately for selectively number sensitive
neurons, for non-selectively (or conjunctively) number sensitive
neurons, and for all number sensitive neurons in the IPS layer
(Supplementary Table S6 and Supplementary Fig. S3). The corre-
lation between tuning precision and stability, as well as between
tuning precision and NDE, reduces with training for selectively
number sensitive neurons, but increases with training for the non-
selective number sensitive neurons, and for all number sensitive
neurons in the layer.

Post-training tuning in nDNN layer IPS resembles numerosity
tuning observed in monkey and human IPS
Next, we sought to determine whether tuning properties of neurons
in each nDNN layer resembled numerosity tuning curves observed in
the monkey IPS regions39. We found highly tuned curves in layer IPS
after, but not before, numerosity training (Fig. 5). This overlap was
specific to layer IPS as no such tuning was observed in layers V1, V2,
and V3. Furthermore, the tuning properties in layer IPS are also
similar to those observed in behavioral and functional brain imaging
studies in children and adults (Fig. 6A)40. Specifically, tuning based
on selectivity (Fig. 6B), which effectively measures how often neu-
rons show a stronger activation in response to their preferred
numerosities, and that based on the actual difference in neuronal
activation in response to preferred versus non-preferred numer-
osities (Fig. 6C), both as a function of the log-ratio of each pair of
input numerosities being compared, showed similar U-curves in
neuronal tuning within the nDNN IPS layer, as the U-curves observed
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in behavioral tuning and neural tuning with the IPS of humans.
Similar patterns were not however observed for the pre-trained and
post-training tuning curves in the nDNN V1, V2, and V3 layers, or in
the pre-training curves in the IPS.

These results demonstrate that neuronal tuning in layer IPS layer
post-training resembles neuronal properties observed in the IPS in
both humans and non-human primates.

Neural representational similarity betweennumerical quantities
Our thirdmajor goal was to go beyond coding at an individual neuron
level, and examine thedistributed codingproperties across all neurons
in each layer. To do this, we conducted representational similarity
analysis (RSA) of responses across all neurons in each layer, regardless
of their individual tuning properties, similar to the approach used in
neuroimaging studies (see Methods for details). Prior to numerosity

Fig. 4 | Changes in key neuronal properties of selective number sensitive
neurons with numerosity training. A Normalized tuning curves for the pre-
trained network: The plots show the mean normalized activation values (by input
stimuli (1 to 9, on the x-axis), grouped by neurons of each preferred numerosity
(PN), for layers (a) V1, (b) V2, (c) V3, and (d) IPS.BNormalized tuning curves for the
post-trainingnetwork for layers (a) V1, (b) V2, (c) V3, and (d) IPS.CTuningprecision:
Acuity of the tuning curves as measured by the weighted average precision of the
best fitting Gaussian tuning curves for each numerosity. Training leads to
improving precision across layers, but primarily in IPS. Each dot represents the
tuning precision for a preferred numerosity from 1 to 9. D Stability: the rank cor-
relation (Kendall’s tau) or preservation of relative rank orderof numerosities across
conditions. Values >0 indicate better than chance level agreement, and values close
to 1 indicate almost perfect rank order preservation across conditions.

Improvements in stability increase as we move from V1 to IPS. E Selectivity: the
proportionof comparisonswhere neuronal responses are higher for the PN. Higher
selectivity indicates higher consistency of preference for the PN. Selectivity
improves post training only in the IPS layer. F Numerical distance effect (NDE) is
calculated as the average slope of selectivity versus input distance for each neuron,
and averaged over number sensitive neurons. Improvements in NDE are highest in
the IPS layer. The circles representmedian values, the thick bars show the IQR (50%
CI) and the thin bars show the 95%CI.D–F The circles representmedian values, the
thick bars show the IQR (50%CI) and the thin bars show the 95%CI.GNDE in the IPS
layer: (a) Average selectivity and (b) Activation difference are both shown as a
function of the numerical distance between pairwise input stimuli. The distance
effects increase sharply from pre-trained (blue) to post-training (red). Source data
are provided as a Source Data file.
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training, there was negligible differentiation in any of the layers
(Fig. 7A). After numerosity training (Fig. 7B), layer IPS showed higher
differentiation in the neural representations of inputs, characterized
by a diagonal pattern of neural representational similarity and weak
overlap across numbers. In contrast, layers V1, V2 and V3 showed very
little differentiation after training. A similar RSA pattern was observed
in the subset of New+Switch neurons, but the differentiation post-
training in the IPS layer was much more diluted in the subset of
P-SPONs (Supplementary Figs. S5 and S6).

We then investigated the averageRSAbaseddissimilarity between
representations for each unique value of distance between inputs
(Fig. 7C, D), and log-ratio between inputs (Fig. 7E, F). The average slope
of this representational dissimilarity as a function of input distance
(log-ratio) is similar to the NDE measure, but rather than calculating it
at a neuronal level, this provides a measure of the NDE (ratio-effect)
based on population level distributed encoding. We found increased
distributedNDE and log-ratio effect post numerosity training primarily
in IPS (Supplementary Table S7), with significantly larger increases
based on New+Switch compared to P-SPON neuronal groups (Fig. 7D).
Importantly, comparing the NDE at a neuronal level and distributed
level shows that distributed NDE in layer IPS post numerosity training
wasmore thandouble NDE at the single unit level (0.041 neuronal NDE
versus 0.108 distributed NDE), showing that the distributed repre-
sentations provide additional discriminative power over the neuronal
representations.

The NDE and log-ratio effects were also stronger for all numer-
osity neurons compared to only selective numerosity neurons
(Fig. 7De, Fe versus 7Dc, 7Fc).

These results demonstrate the importance of newly trained and
numerosity-switching neurons, rather than P-SPONs, to differentiat-
ing between numbers at a population level, and also highlight the
importance of all number neurons including those that are not
selectively sensitive to numerosity. Results further reveal that train-
ing changes distributed representations primarily in layer IPS, and

that distributed population level encoding increases NDE beyond
neuronal measures.

Latent structure of distributed neural representations
Our fourth goal was to determine the latent structure of distributed
neural representations. We used multidimensional scaling (MDS)
which allowed us to uncover low-dimensional representations under-
lying numerosity. Specifically, MDS allowed us to reduce the original
dimensionality fromapproximately 200k (V1), 100k (V2), 50k (V3), and
25k (IPS), reflecting thenumber of neurons in each layer, to a very small
number of dimensions. MDS eigenvalues and derived goodness of fit41

revealed that 2 dimensions provide robust representations (g ranges
from 0.70 to 0.97 across layers for 2 dimensions; see Methods, Sup-
plementary Table S8). Thus, MDS reduced the average representation
of each input stimuli (1–9) from the number of neurons in each layer to
a latent two-dimensional space.

MDS revealed that prior to numerosity training, all layers showed
minimal differentiation between numbers (Fig. 8A). After training, a
clear two-dimensional structure emerged in layer IPS. Lowdimensional
representations were less differentiated in layers V1, V2, and V3. Ana-
lysis of different sub-populations of neurons revealed that effects were
driven by New+Switch number-sensitive neurons (Fig. 8B), rather than
P-SPONs.

Together, these results demonstrate that numerosity training
results in the emergence of a two-dimensional latent representational
structure in layer IPS.

Coding properties of the latent two-dimensional
representations
A closer examination of the latent structure of representations
obtained viaMDS revealed two distinct codes for absolute and relative
magnitude. We examined the covariance (Fig. 8C–G) between each
latent dimension, and two key properties of numerosity coding:
magnitude (1–9), and distance from mid-point of the stimuli set. The

Fig. 5 | Correspondence between selective numerosity tuning curves in layer
IPS of nDNN model and IPS subdivision of parietal cortex in monkeys.
A Normalized tuning curve for numerosity in monkey IPS adapted from
Viswanathan & Nieder39. All rights reserved. © PNAS 2013. Error bars indicate
SEM. B Normalized tuning curves in our nDNN model (Fig. 4A, B) averaged
across all numerosities showing tuning curves up to a distance of 4 units
from the preferred numerosity, compared to tuning curves in monkeys.

Numerosity tuning curves in layer IPS of the nDNN were similar to the those
reported in the IPS of monkeys. Layer IPS units showed high-levels of simi-
larity only after training. V1, V2, and V3 units did not show similarity with
neuronal recordings either prior to after training. The normalized tuning
curve (black) for numerosity in monkey IPS adapted from Viswanathan and
Nieder39. All rights reserved. © PNAS 2013. Error bars indicate SEM. Source
data are provided as a Source Data file.
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first is an absolute measure of the non-symbolic to symbolic mapping,
while the second is a relative measure characterizing the structure of
the stimuli set with a salient reference or anchor point42. Specifically,
the relativemagnitude refers to a representationof the structure of the
stimulus space with respect to the mid-point, and a representation of
numbers within this space based on distance from this anchor.

Thefirst latent dimension (Dimension 1) showedahigh covariance
with the absolute magnitude of numerosity, and this increased sig-
nificantly with numerosity training. Dimension 1 did not show strong
covariance with the distance of numerosities from the mid-point
anchor in any layer. The second latent dimension (Dimension 2)
showed a strong covariance with distance from the mid-point anchor,
but not the absolute magnitude. These effects were observed only
after training and in layer IPS. Further,while new and switchedneurons
showed similar effects to the whole layer, the covariance patterns for
P-SPONs were similar but relatively muted.

We further probed the two latent dimensions of numerosity in
layer IPSbymeasuring responses as a function of numericalmagnitude
(Fig. 9A), and distance from mid-point of the stimuli space (Fig. 9B).
This analysis revealed that representations along Dimension 1
increased linearly withmagnitude, but not with distance from themid-

point. In contrast, representations along Dimension 2 increased
monotonically with distance frommid-point, but not with magnitude.
Changes in both dimensions were driven by New+Switch neurons
rather than P-SPONs. We performed additional control analysis to
further validate our finding of mid-point anchoring associated with
MDS Dimension 2. We computed distance with respect to all potential
anchors ranging from 1 to 9. Only the use of the mid-point 5 as an
anchor resulted in a linear monotonic increase in this dimensions that
is symmetrical for increasing distances in both directions. Using other
values (1–4 or 6–9) as anchors does not produce this profile (Supple-
mentary Fig. S7). Supplementary analysis also shows that recursion
within the network amplifies the MDS representations and resulting
covariance patterns of the latent dimensions (Supplementary Fig. S8).

Together, these results provide further evidence for distinct
coding mechanisms for magnitude and distance, and highlight the
emergence of an anchor at 5, the midpoint of the training input set.

Emergence of a latent number line representation in layer IPS of
the nDNN
Next, for each MDS dimension, we examined the similarity of
representations across numbers. We calculated the similarity of

Fig. 6 | Neural tuning in nDNN as a function of log-ratio numerosity. A (A)
Behavioral tuning for number discrimination and (B) inferred neural tuning in the IPS,
as a function of the log-ratio of input numerosities, for adults and children. Tuning
curves demonstrate a U-shaped curve with slightly higher tapering (steeper rise away
from log-ratio 1) for adults compared to children. Adapted from Kersey & Cantlon40.
BNeuronal tuning based on selectivity as a function of log-ratio of input numerosities

being compared shows a similar sharpU-curve in the layer (d) IPS of our nDNNmodel,
but not in the earlier layers (a) V1, (b) V2, and (c) V3 (blue: pre-trained; red: post-
training). C Neuronal tuning based on difference in activation as a function of
log-ratio of input numerosities being compared shows a similar sharpU-shaped curve
in layer (d) IPS of our nDNNmodel but not in the earlier layers (a) V1, (b) V2, and (c) V3
(blue: pre-trained; red: post-training). Source data are provided as a Source Data file.
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Fig. 7 | Neural Representation Similarity of distributed population-level
response and relation to Numerical Distance Effect. A, B Neural representation
similarity (NRS) calculated based on pairwise similarity between the mean activa-
tion across neurons in each layer (a) V1, (b) V2, (c) V3, and (d) IPS, for each value of
the input stimuli. This shows us how well differentiated each input stimuli are,
compared to other input values, in terms of their neuronal representations, pre-
training (A) and post-training (B). The influence of training in the whole layer level
RSA can be seen strongly in IPS, to a progressively smaller extent in V3 and negli-
gible in V2 and V1. C, D The NRS is condensed to map the dissimilarity (1- average
NRS) averaged as a functionof eachunique value of differencebetween inputs, that
is, directly measure the numerical distance effect between representations of
numerosities at a distributed level. A robust representation should show a sharply
increasing linear trend in the average similarity with increasing input difference.
The condensed RSA as a function of input difference is calculated for (a) the whole

layer, (b) P-SPONs based on selective numerosity neurons, (c) New+Switch based
on selective numerosity neurons, (d) P-SPONs based on all numerosity neurons,
and (e) New+Switch based on all numerosity neurons. Pre-training (C), these linear
trends have a very small slope. This slope increases with numerosity training (D),
with significantly larger increases aswemove from lower to higher layers, especially
in IPS. E, F TheNRS is condensed tomap the dissimilarity (1- averageNRS) averaged
as a function of each unique value of log-ratio between inputs, that is, directly
measure the ratio effect between representations of numerosities at a distributed
level. This is shown for (a) the whole layer, (b) P-SPONs based on selective
numerosity neurons, (c) New+Switch based on selective numerosity neurons, (d)
P-SPONs based on all numerosity neurons, and (e) New+Switch based on all
numerosity neurons. A robust representation should show a sharply increasing
linear trend in the average similarity with increasing log-ratio. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-39548-5

Nature Communications |         (2023) 14:3843 10



MDS representations of each number (1–9) with all other numer-
osities. High relative similarity of a number on a particular dimen-
sion implies higher propensity to confuse the number with other
values, and thus has the ability to influence the variability and errors
in response to numerical values. Our analysis revealed three key
findings (Fig. 9C). First, similarities along both Dimensions 1 and 2
reduced with training, thus increasing the precision with which

each input can be identified. Second, the “flatness” in MDS Dimen-
sion 1 similarity observed prior to training was eliminated after
training, and is characterized by the formation of an inverted
U-shape. Third, similarity inMDSDimension 2 was characterized by
an inverted “W” shape, with the end points and mid-point showing
lower similarity, thus establishing three reference points (1, 5, and
9) that are more differentiated.
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The MDS dimensions can serve as a proxy for a latent “number
line” emerging in the nDNN, based on distance between consecutive
numbers in the MDS space. This is normalized and plotted in Fig. 9D,
and shows that for pre-trained neurons, the latent number line map-
ped on both MDS dimensions is a logarithmic or non-cyclic power law
shaped function31,42, but post-training, this changes to close to linear
on the first MDS dimension, and to a one-cycle function (i.e. with a
middle reference point31,42) on the second MDS dimension.

These results demonstrate that numerosity training creates a
latent number line representation in layer IPS, with a shift from loga-
rithmic or power law shaped to single-referencepoint cyclic, and linear
number line structures with learning, similar to that observed during
human development.

Latent distributed representations show lower representational
drift over learning
Neuronal representational drift43,44 was measured as one minus the
rank correlation coefficient (numerosity order preservation) across
consecutive epochs for each neuron (see “Methods” section for
details). A similar drift was measured at a distributed representation
level by measuring one minus the coefficient based on the first two
latent MDS dimensions for each layer. These measures were averaged
across the first 10 training epochs (Supplementary Fig. S9) and show a
reduction in drift across the visual processing hierarchy fromV1 to IPS
at the neuronal level (0.35 V1, 0.31 V2, 0.23 V3, 0.10 IPS). Importantly,
the average representational drift measured at a distributed latent
MDS level (0.20 V1, 0.01 V2, 0.03 V3, 0.02 IPS) is much lower than that
measured at the neuronal level. A two-way ANOVA reveals a significant
main effect of level of representation - neuronal versus latent MDS
(F1,7 = 17.2, p =0.0255).

These results demonstrate that while changes in neuronal char-
acteristics with numerosity training are stronger in the higher (V3 and
IPS) layers, the neuronal representational drift is higher in the earlier
layers (V1 and V2). Further, the representational drift in population
level encoding is much lower than that at the neuronal level.

Relationship between classification accuracy and network
dynamics
Our fifth goal was to determine the link between dynamic changes in
neural representations of the network during training and its beha-
vioral performance. Network accuracy during numerosity training
increased from 77% (after epoch 1) to 98.9% at epoch 10, after which it
reached an asymptote, slowly reaching 99.7% by epoch 50. To capture
neural and population-level features associated with significant shifts
in accuracy, we analyzed the first 10 epochs and measured the rela-
tionship between network accuracy and network features, including
the weighted average tuning precision of tuning curves, proportion of
selective number sensitive neurons as a percentage of total layer
neurons, the proportion of selective New+Switch neurons as a

percentage of number sensitive neurons, and the average inter-stimuli
representational distance along the first two dimensions of the MDS
representation. These features are calculated for each of the four lay-
ers V1, V2, V3, and IPS, across these 10 epochs. Accuracywas correlated
only with characteristics of layer IPS. Specifically, accuracy was posi-
tively correlated with MDS distance between numerosities (r =0.81,
p =0.0042), and precision of the fitted Gaussian tuning curves for
number sensitive neurons (r =0.83, p = 0.0027), of the IPS layer.
Accuracy was also related to the proportion of New+Switch number
sensitive neurons (r =0.80, p = 0.0052) when including all number
sensitive neurons, regardless of whether they were also sensitive to
stimulus condition, but accuracy was not correlated with the similar
New+ Switch proportion of purely selective number sensitive neurons.

These results demonstrate the importance of the IPS layer, the
role of New+Switch neurons (as opposed to P-SPONs) and the rele-
vance of all numerosity neurons (as opposed to selective numerosity
neurons) in improving network performance.

Control analyses
We conducted three control analyses, measuring key aspects of reor-
ganization, neuronal properties, and distributed population level
properties to evaluate the robustnessof ourfindings. First, since the 50
epochs of training results in high accuracies (over 99%), we conduct
the analyses after just 1 epochof training, where the resulting accuracy
at 77% is closer to human levels of accuracy45,46. Secondly, to evaluate
whether the specifics of the nDNN training algorithm affect these
measures, we implement the same models with two variants of the
learning algorithm (RMS propagation and stochastic gradient des-
cent). The control analyses are detailed in the supplementary infor-
mation (Supplementary Tables S9 and S10) and show that the key
results relating to tuning properties of neurons and neuronal reorga-
nization hold in all four control cases. Figure 10 compares the dis-
tributed representations and properties of these control analyses and
shows that the NRS and MDS representations, and their derived
properties remain stable across the control analyses.

Discussion
We used a neurobiologically inspired nDNN architecture with hier-
archically organized layers V1, V2, V3, and IPS, and recurrent connec-
tions (Fig. 1), to investigate how tuning of individual neurons and
distributed population responses are reorganized by learning. We
trained the nDNN to learn mappings between non-symbolic and sym-
bolic representation of quantity, allowing us to probe how sponta-
neously tuned neurons change with numerosity training across the
visual information processing hierarchy. Our magnitude-symbol
mapping task constitutes a key advance over previous modeling
work in this area. Our analysis revealed that training-related increase in
performance was accompanied by extensive reorganization of neu-
ronal response characteristics both at the level of individual neurons

Fig. 8 | Multidimensional scaling of population-level responses reveals latent
two-dimensional representations of absolute and relative magnitude.
A, B Multidimensional scaling (MDS) reveals a low-dimensional representation of
each input stimuli (1–9) in a two-dimensional space. The two-dimensional repre-
sentations of each input at each epoch were obtained from multiple groups of
neurons, using (a) the whole layer, (b) P-SPONs based on selective numerosity
neurons, (c) New+Switch based on selective numerosity neurons, (d) P-SPONs
based on all numerosity neurons, and (e) New+Switch based on all numerosity
neurons, for A pre-trained and B post-training networks. The two-dimensional
representations are color coded by layer (V1: light blue, V2: green, V3: red, IPS: dark
blue). The MDS reveals the emergence of a clear two-dimensional arch structure in
V3 and especially in IPS, post numerosity training. This structure is not present for
the pre-trained network. This representation also shows that whilst whole layer
representations depend on SPONs pre-training (compare Aa and Ad), they shift to
newly trained and switched neurons post training (compare Ba and Be), as well as

the fact that they depend not just on the selective numerosity neurons (b, c) but
on all numerosity neurons including those sensitive to both numerosity and
condition (d, e). C–G The two dimensions obtained from the MDS using (C) all
neurons, (D) P-SPONs based on selective numerosity neurons, (E) New+Switch
based on selective numerosity neurons, (F) P-SPONs based on all numerosity
neurons, and (G) New+Switch based on all numerosity neurons, are evaluated for
covariance with key input stimulus properties. These include the stimulus mag-
nitude (perceptual property), and distance of the input from the mid-point of the
stimuli space (cognitive property). Across these sets the pre-training covariances
are low, but post-training covariance between (a) dimension 1 and magnitude,
and between (d) dimension 2 and distance from mid-point of the stimuli space,
increase post-training in the IPS layer, especially in (A) and (G). The covariance
between (b) dimension 2 and magnitude, and (c) dimension 1 and distance from
mid-point remain low post-training. Source data are provided as a Source
Data file.
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Fig. 9 | Multidimensional scaling of population-level responses reveals mag-
nitude andmidpoint anchoring in layer IPS of the nDNN. A The plots show each
MDS dimension as a function of the input stimuli magnitude, pre (blue) and post
(red) training. The first dimension encodes a unimodal monotonic representation
of the input stimulimagnitude.BTheplots showeachMDSdimension as a function
of the distance from mid-point of the stimuli space, pre (blue) and post (red)
training. The second-dimension codes for the distance of the input from the mid-
point, with the response profile showing that representation increases faster as the
distance frommid-point increases. For both (a) and (b), the dimensions are shown
for (a, f) the whole layer, (b, g) P-SPONs based on selective numerosity neurons, (c,
h) New+Switch based on selective numerosity neurons, (d, i) P-SPONs based on all
numerosity neurons, and (e, j) New+Switch based on all numerosity neurons, with
a–e showing dimension 1, and f–j showing dimension 2.C For each of the twoMDS
representational dimensions in layer IPS, the distance between each pair of input

values is calculated, and the average distance of each input from all other values is
converted into a relative similarity measure. High relative similarity of an input
value implies higher propensity to confuse the input with other input values, and
thus influence the output variability and errors. Training reduces the similarity
between inputs, but also changes the shape of the similarity curves. It reduces the
average similarity of the end-points (dimension 1), and reduces the similarity of the
mid-point of the stimuli space (dimension 2). D The MDS dimensions for each
numerosity can be translated to measure the “distance” between consecutive
numerosities and create a latent “number line” in each MDS dimension. This is
normalized and shown in the plots, for the pre-trained and post-training MDS
representations. The pre-trained number lines show a logarithmic shape. The post-
training number lines have a near-linear profile in the first dimension, and cyclic
profile with a mid-point anchor (reference point) in the second dimension. Source
data are provided as a Source Data file.
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Fig. 10 | Control Analyses. The key distributed properties including A NRS
representation, B NRS based distance effect, C NRS based log-ratio effect, D MDS
representations, E covariance between MDS dimension 1 and magnitude, and
F covariance between MDS dimension 2 and mid-point anchor. These properties
are all replicated for the three control analyses conducted, and inA–F the subplots
show (a) Main: primary analysis based on accuracy reaching 99%+ levels; (b) Epoch

1: control for limited single epoch training where accuracy increases to 77%, similar
to human accuracy levels; (c) RMS prop; control for change in training method
from Adam optimizer to RMS propagation; and (d) SGD: control for change in
training method from Adam optimizer to stochastic gradient descent. Source data
are provided as a Source Data file.
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and at the population level, with increasing levels of network reorga-
nization from layer V1 to IPS. Multidimensional scaling (MDS) of
population level responses revealed two distinct low-dimensional
representations that capture absolute and relative numerical magni-
tude, formation of reference points such as mid-point anchoring in
numerical estimation, and emergence of changing number line
representations31,42. Dynamic learning-related changes in neuronal
tuning anddistributed representations predicted accuracy ofmapping
between non-symbolic and symbolic numerosity, further highlighting
how network reorganization contributes to learning. Our findings
elucidate mechanisms by which learning builds novel representations
supporting number sense.

The first goal of our study was to investigate how numerosity
training changes neural representation of quantity. We showed that
numerosity training resulted in significant reorganization and reduced
the importance of spontaneous number-sensitive neurons. Previous
studies have shown thatmonotonically coded numerosity information
can emerge spontaneously from statistical properties of images in
networks trained only on object recognition and in randomly initi-
alized networks6–8,29. Crucially though, prior studies have not exam-
ined the emergence of number sense utilizing a domain-specific
developmental paradigm similar to what children typically experience
in which they learn mappings between non-symbolic and symbolic
representations of quantity15. In a recent fMRI study, Schwartz and
colleagues showed that neural representational similarity between
symbolic and non-symbolic quantities predicted arithmetic skills in
childhood2. Specifically, neural representational similarity in dis-
tributed brain regions, including parietal and frontal cortices and the
hippocampus, was positively correlated with arithmetic skills. Thus,
learning to map cross-format representations is a crucial develop-
mental process. We trained the network to learn such mappings
between non-symbolic and symbolic representations of quantity. This
allowed us to explicitly measure the influence that domain-specific
training, typical during development, has on neuronal representations
of numerosity, and the role of spontaneous number sensitive neurons
in developing cognitively meaningful representations that go beyond
statistical features learned from early domain-general or naturalistic
visual image processing.

We found that performance levels, which were at chance levels
(~13%) prior to numerosity training, increased to accuracy levels over
99% within 50 epochs of training. Although the pre-trained network
contains number sensitive neurons, it lacks the capability to correctly
map non-symbolic inputs to symbolic numbers, without explicit
training. This underlies the need for explicit learning, similar to
developmental studies where the relationship between representa-
tions of symbolic and non-symbolic evolves over developmental
stages and associated numerosity learning2. Our analysis uncovershow
explicit learning influences the underlying representations of quantity
at both the neuronal and population levels.

In an advance over previous studies, our training paradigm was
implemented in a biologically inspired architecture which allowed us
to probe training-induced changes in the properties of number
sensitive neurons across V1, V2, V3, and IPS, along the dorsal visual
processing hierarchy. Similar to previous studies7, our analysis
revealed that the pre-trained nDNN also contained spontaneous
number neurons (SPONs) based only on object recognition prior to
any non-numerosity training. SPONs were found across all four lay-
ers, and purely number selective SPONs decreased across layers from
27% in V1 to 6% in IPS, whereas any number selective SPONs,
regardless of whether they were also sensitive to other conditions,
increased from 47% in layer V1 to 97% in IPS (Fig. 3B, G). Extending
previous work, we found that domain-specific numerosity training
results in significant changes to neuronal and distributed properties
of the network, with massive reorganization of neurons, especially in
the IPS layer.

We then examined the degree to which numerosity training
altered the responseproperties of these SPONs in each layer. Crucially,
after training, we observed a significant reorganization of neuronal
response properties across all four layers characterized by the fol-
lowing features. First, only 3–17% of selectively number sensitive
SPONs (14–33% of all SPONs) across each layer were tuned to the same
numerosity after training (P-SPONs). Second, after training, P-SPONs
constituted only 23% of selectively number sensitive neurons in layer
V1 and 13% in IPS (14% and 1% based on all number sensitive neurons).
Third, the early layers V1 and V2 displayed a large proportion of SPONs
that were no longer tuned to any numerosity, as well as new number-
sensitive neurons, after training. Fourth, layers V3 and IPS demon-
strated a high proportion of neurons which switched preferred
numerosities (Fig. 3C, H, K). Thus, the prevalence of SPONs that
retained their numerosity preference after training was low across
layers, and this proportion was lowest in layer IPS. Finally, ablation
analysis revealed P-SPONs were irrelevant for network performance
after training, while ablation of all neurons other than P-SPONs resul-
ted in significant reduction of performance (Fig. 3A).

Together, these results suggest that SPONs are easily disrupted by
even minimal training and that training reconfigures the numerosity
related response properties of neurons in all network layers. Results
also provide evidence for a fast network reorganization in parallel with
development of increasingly high levels of accuracy in categorization
of non-symbolic quantity. More generally, our findings suggest that
spontaneous neurons arising from non-numerosity related visual
experiences do not form an essential foundation for numerical
cognition.

The second goal of our study was to investigate precisely how
learning changes the tuning of neurons that code for numerosity. We
showed that numerosity training increased acuity and stability of
neuronal tuning. Our analysis revealed multiple features of learning
dynamics. Notably, training resulted in improved neuronal tuning
acuity primarily and most significantly in layer IPS. Studies of numer-
osity encoding in primate electrophysiological recordings have shown
an approximate reduction of firing rate to 25% of peak firing for
numerosities at a distance of 3 (Fig. 5A) from the preferred
numerosity4,39. Numerosity neurons in layer IPS of our trained model
showed comparable tuning curves (Fig. 5B). In contrast, in all other
layers, tuning curveswereflatter andbarely dropped tobelow50% that
of the preferred numerosity (Fig. 4A, B).

Prior to training, nDNN tuning curves in the IPS layer showed low
precision, averaging a standard deviation of 9.1 across numerosities,
which is similar to that observed with AlexNet8 for numerosities 1–9.
Post-training, the acuity of tuning curves in the IPS improved sig-
nificantly, with a standard deviation of 2.47, which is similar to the
range observed in the parietal cortex of monkeys for the numerosities
1–1047. Acuity of the tuning curves in the nDNN IPS layer post numer-
osity training thus improved, bridging the discrepancy observed
between AlexNet neurons and numerosity representations in monkey
neurons. Notably, neural tuning curves in layer IPS of the nDNNmatch
the tuning curves observed in the IPS of monkeys39 (Fig. 5). These
results were specific to layer IPS of the nDNN but not layers V1 to V3
(Fig. 6), highlighting a close correspondence between our biologically-
inspired model and neuronal recordings.

Wemeasuredneuronal stability by assessing the relative tolerance
of neurons to identity preserving transformations, including total dot
area, convex hull area, and dot size. The relative tolerance measures
how well each neuron maintains rank order preference for different
numerosities, even when orthogonal perceptual properties of the
numerosity are manipulated. This analysis builds on findings from
neurophysiological studies demonstrating that “each neuron’s rank-
order object preference under identity-preserving image transforma-
tions” is crucial for recognition, and that this response property is
typically observed in neurons in higher visual areas, but not in early

Article https://doi.org/10.1038/s41467-023-39548-5

Nature Communications |         (2023) 14:3843 15



visual areas such as V136,48. Using a similar metric, we found that
training increased stability from 0.34 to 0.91 in nDNN layer IPS. In
contrast, prior to numerosity training, stability was low in all layers
with values ranging from0.19 to0.34 (Fig. 4D). Thus, training increases
stability and generalizability, specifically in layer IPS across manipula-
tions of dot area, convex hull area, and dot size. Additionally, layer IPS
layer showed the lowest representational drift with learning (Supple-
mentary Fig. S9), a finding consistent with electrophysiological
recordings in monkey IPS49.

Together, these results demonstrate that numerosity training
increases acuity and stability of neuronal tuning, in a manner con-
sistent with neurophysiological observations, with a unique role for
layer IPS post-training.

The third goal of our studywas to go beyond coding properties of
individual number sensitive neurons and determine how numerosity
training alters distributed neural representations across neurons in
each layer. We used representational similarity analysis (RSA) to cap-
ture similarity between patterns of neuronal activation for numerical
stimuli taken pairwise. RSA revealed broadly tuned and overlapping
representations between numerosity pairs (e.g., 2 vs 6 dots) in all four
layers prior to training. With training, distinct representations
emerged in layer IPS with low pairwise correlations between numer-
osity pairs (Fig. 7B). Together, these results demonstrate sharpening of
neural dissimilarity between distinct numerical inputs.

To further characterize learning-related changes in population-
level representations, we examined the numerical distance effect and
the ratio effect at a distributed population level. Our analysis revealed
a linear increase in representational dissimilarity with increasing
numerical distance (Fig. 7C, D), and approximately linear increasewith
increasing log-ratio of numbers (Fig. 7E, F), consistent with the emer-
gence of robust number differentiation. The slopes of these linear
profile were low prior to training, reflecting weak differentiation
between numbers. The slopes increased progressively from V1 to IPS
with training, and post-training differentiation was most prominent in
layer IPS. Further analysis of neuronal subtypes revealed that improved
differentiation in layer IPS representations were strongly driven by
New+Switch neurons. Together, these profiles mimic effects con-
sistently observed in behavioral studies, where the accuracy of non-
symbolic number comparison increases, and reaction time decreases,
as the distance between them (distance effect) or the ratio between
them (ratio effect) increases. Further, the numerical distance effect
observed at a distributed population level was higher than that
observed at a neuronal level based on change in selectivity with input
distance. Our findings are consistent with reports of distributed neural
representations of visual numerosity in the IPS independent of the
precise location of their receptive fields50.

Our findings suggest that behavioral distance and ratio effects are
most strongly associated with plasticity of population-level neural
activity in layer IPS and highlight the distributed and emergent nature
of numerosity representations.

The fourth goal of our studywas to investigate the latent structure
of population level encoding of numerosity. To accomplish this, we
used MDS to capture a low-dimensional representation of each layer
for each of the input stimuli. MDS models the representational simi-
larities between pairs of stimuli, such that each stimulus is a point in an
n-dimensional space, with the distance in this n-dimensional space
representing representational similarity between stimuli. Here, n is the
number of neurons in each layer. MDS has been extensively used in
psychology to represent cognitive maps and relations between stimuli
and categories51–56.

MDS revealed a clear two-dimensional latent low-dimensional
“horseshoe” representation in layer IPS that after training (Fig. 8B).
Remarkably, the two-dimensional latent structure identified by MDS
consisted of numerosity magnitude on one dimension, and distance
from an anchor – the mid-point of stimulus space – on the second

dimension (Figs. 8C and 9B). These results suggest the formation of
two distinct dimensions that encode a cognitively meaningful struc-
ture of numerical representations. Crucially, the two dimensions were
poorly differentiated prior to numerosity training. Further analysis of
neuronal subtypes revealed that improved differentiation in layer IPS
representations was strongly driven by newly trained and switching
neurons (Fig. 8B). Crucially, both the magnitude and mid-point
anchoring dimensions are significantly strengthened with numer-
osity training in layer IPS (Fig. 9). Only the use of the mid-point 5 as an
anchor resulted in a linear monotonic increase in this dimension, that
is symmetrical for increasing and decreasing distances from the
anchor point (Supplementary Fig. S7).

Additional analyses revealed that neural similarity in the latent
MDS space between each numerosity and all other numerosities
reduced significantly after training in layer IPS (Fig. 9C). While the
precision of distributed latent representations improves with training,
it is not uniform for all numerosities. Notably, training improved the
precision for end-points 1 and 9 via improved differentiation in both
dimensions. In contrast, the precision of the mid-point anchor was
stronger under dimension 2, but weaker under dimension 1. This result
suggests that the salient characteristics of stimuli that contribute to
fidelity of population representations, and therefore numerosity
identification, may vary depending on where they lie within the overall
structure of trained numerical stimuli.

Because MDS encodes ordered structure of stimuli space, one
interpretationof the latent representations is that it forms the basis for
a mental number line. Crucially, MDS dimensions can be decoded to
reveal the distance between consecutive input numerosities in latent
representational space (Fig. 9D). MDS representations also clearly
reveal how the latent number line structure evolves with numerosity
training. Importantly, decoding the latent dimensions allowed us to
construct a number line for each dimension (Fig. 9D). Our analyses
revealed that prior to training, the latent number linemapped on both
MDS dimensions is a logarithmic or non-cyclic power law shaped
function31. However, after training, this profile changes to a linear one
on the first MDS dimension, and to a one-cycle function with a middle
referencepoint, in the secondMDSdimension.Notably this profile is in
line with developmental changes seen in children who move from
logarithmic to one-cycle to linear mental number lines31,42,57–59.

Together, these results point to the emergence of an internal
structure for numerosity in layer IPS beyond just the observed mag-
nitude representations. Our findings suggest that constructing num-
bers involves a sense of absolute magnitude as well as relative
magnitude60,61, and provides a new mechanistic quantitative model of
how a two-dimensional structure emerges with learning. This inter-
pretation is consistentwith studies of visual object perception inwhich
layer IPS has been shown to capture untangled manifolds of the input
representations62. Further, our results reveal that creation of this
internal structure is dependent on the New+Switch neurons, rather
than P-SPONs.

Our study has important implications for understanding the
development of cognitively meaningful number sense and learning of
numerosity representations in children. Semantically meaningful
number sense develops with domain-specific training when the net-
work learns mappings between non-symbolic and symbolic repre-
sentations of quantity2,15,29. Our findings suggest that numerosity
representations are primarily encoded in newly trained and switching
neurons, rather than P-SPONs, leading to new cognitive representa-
tions. Furthermore, we found that distributed and cognitive mean-
ingful representations emerge primarily in higher layers of the visual
processing hierarchy, rather than lower perceptual layers V1 and V2.
This reflects cognitive constructed representations in the higher lay-
ers, and represents a possible candidatemechanism for how individual
differences in number sense might develop in children without dif-
ferences in perceptual capabilities. These findings are in line with the
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theoretical views which posit that the development of numerical
representations involves mapping numerical symbols onto non-
symbolic quantities2,12. Crucially, our findings demonstrate that this
mapping does not depend on the robustness of pre-existing number
sensitive neurons.

Developmentally, one of themost important findings of our study
was the emergence of latent population-level representations which
not only code for absolute magnitude, but also for a relative magni-
tude characterized by the creation of mid-point anchors (Figs. 8B, C
and 9B).

Our findings demonstrate that midpoint anchoring is related to a
one cycle number line that emerges during development from early
logarithmic or power law shaped number line representations. Our
pre-trained network showed a logarithmic or power law function
shaped number line, similar to those seen in infants and younger
children31. With numerosity training we observed the emergence of a
one cycle number line similar to what is often observed in children
prior to a final shift to linear-like number line representations. Fol-
lowing numerosity training, the latent dimensions of distributed
population-level coding captured both one-cycle and linear latent
number representations, revealing a mechanism by which this shift
might occur developmentally with learning.

Behavioral studies in children have demonstrated a positive
correlation between age and accuracy in numerical estimation, which
is linked to the number of reference points utilized by the child63 and
an understanding of the structure of the number line42,64. A child with
limited comprehension of the numerical range in question may only
use the lower endpoint value, treating the task as an open-ended
magnitude judgment rather than a proportion judgment65. This
approach produces estimates well described by an unbounded
power function. In contrast, a child who appropriately references
both the lower and upper endpoint values on the number line would
generate a pattern of over- and underestimation predicted by a one-
cycle version of the proportional model, with lower errors at the two
endpoints. When a child infers a third reference point at the mid-
point of the line, a cyclical pattern of over- and underestimation
corresponding to two-cycles arises, with lower errors at all three
reference points42,66. Across each developmental progression, there
is a notable increase in overall accuracy, leading to a developmental
shift from a logarithmic or power law shaped function to cyclic to
linear estimation42,65,67.

Our model uncovered a similar structure characterized by the
emergence of mid-point anchors which contribute to increased accu-
racy with learning. Crucially, we found that accuracy was strongly
related to the distance between numerosities in the two-dimensional
MDS representations. These distances were much stronger when New
+Switch neurons were considered rather than P-SPONs, and when any
form of sensitivity to numerosity was considered rather than neurons
that were selectively sensitive to numerosity (Fig. 9). On the other
hand, purely numerosity selective neurons and P-SPONs showed the
same MDS patterns, indicating that they may be sufficient for learning
linearity, but active reorganization of number selectivity, and joint
selectivity betweennumbers andorthogonal features,maybe required
to improve accuracy, thus providing a potential mechanistic distinc-
tion between these two aspects.

The results presented here also raise important questions for
future studies on learning of numerosity representations. First, pro-
gressive training of numbers from small to large, and unsupervised
learning of numerosity, can provide further insight into the formation
of number sensitive neurons. Second, further studies are needed to
determine the mechanisms at the neural and connectivity levels, by
which convolution neural networks develop numerosity tuning.
Finally, further studies are needed to investigate the effects of count-
ing and arithmetic principles on the development of number sense19,20

in DNN models.

To summarize, we implemented in-silico experiments in a biolo-
gically inspired nDNN network architecture comprising V1, V2, V3, and
IPS layers which model the visual dorsal stream15,26,27. We used it to
investigate the dynamic evolution of numerosity with an explicit
numerosity training paradigm designed to probe mapping between
non-symbolic and symbolic representations of quantity, mimicking
learning processes experienced by children. We found that learning
completely reorganizes neuronal and population level representations
of quantity. Moreover, spontaneous numerosity neurons that emerge
from domain general object recognition training were not critical to
the formation of subsequent number representations. Multiple neu-
ronal characteristics, including preferred numerosities, number sen-
sitivity, tuning acuity, stability, selectivity, and numerical distance
effects, as well as distributed population-level neural representational
similarity were significantly altered with numerosity training, espe-
cially in higher layers V3 and IPS. Multidimensional scaling revealed
distinct latent distributed neuronal representations, capturing both
absolute and relative aspects of numerosity, including mid-point
anchoring. These learnt representations underlie logarithmic to cyclic
and linearmental number lines that are characteristic of number sense
development in humans. More generally, our findings suggest that
spontaneous neurons arising from non-numerosity related visual
experiences do not form an essential foundation for numerical cog-
nition. Domain-specific training alters neuronal response character-
istics and builds new latent representations that support the
development of number sense. These results provide strong evidence
against the localist view which posits that number representations are
maintained by a group of number selective neurons and argue for a
more distributed representation of numerical quantity.

Methods
Experimental design
The current study examined the change in neuronal and population
level properties that occurred with developmentally relevant numer-
osity training within a biologically inspired deep learning network that
was pre-trained on visual object recognition. The objectives were to
investigate the resulting reorganization of the network, assess the
relevance of number neurons that emerge spontaneously based on
domain general object recognition training to the subsequent devel-
opment of number sense, investigate the changes in properties of
individual neurons as well as changes in distributed population
representations, examine the latent structure of distributed
population-level neural representations, and identify neuronal tuning
and distributed population-level representational features that predict
network accuracy. The numerosity training paradigm was based on
developmentally relevant numerosity mapping of non-symbolic to
symbolic quantities. Details of the model architecture and training
stimuli and procedures are described in the respective sub-
sections below.

nDNN model
Our nDNNmodel consisted of four layers corresponding to V1, V2, V3,
and IPS (Fig. 1), key nodes in dorsal visual information processing
pathways important for numerical cognition15,26,27. Model parameters
and architecture were adapted from CORnet-S, a biologically plausible
model of the visual pathway32, designed to maximize Brain-Score25. In
the nDNN, V1 and V2 (with recurrent connections) form part of both
dorsal and ventral pathways, while V3 and IPS incorporate recurrent
connections that allow for flexibility in network tuning23,32,68,69. Thus,
without loss of generalization, the model parameters offer the most
biologically plausible model yet of the dorsal visual pathway. A key
goal of the study was to therefore determine whether layer IPS in our
nDNN model resembles neuronal tuning properties and functional
brain imaging responses observed in humans and non-human pri-
mates. Unless otherwise mentioned, all analysis was carried out on the
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last recursive step of each layer. See Supplementary Methods for
details of the architecture. To train the network, first, we initialized it
such that it was pre-trained on ImageNet, and then we used the
ADAM70 optimizer to solve a numerosity task for 50 epochs with
default PyTorch parameters (i.e. learning rate 0.001, β1 = 0:9,
β2 =0:999, and ϵ= 10�8). For control analyses (Fig. 10), wealternatively
used two other optimizers: Stochastic Gradient Descent (SGD) with
learning rate 0.001, the Root Mean Squared Propagation (RMSprop)
with learning rate 0.001 and default PyTorch parameters (i.e.,α =0:99,
ϵ= 10�8). We based the pre-trained model on the author imple-
mentation of CORNet-S in the PyTorch framework, and their pre-
trained weights provided in https://github.com/dicarlolab/CORnet.

Numerosity task and stimuli
In this study, the numerosity task involved associating an image con-
taining dots (the stimulus) to the number of dots it contains, produ-
cing a symbolic classificationof the number of dots (Fig. 1). We created
a visual image dataset containing non-symbolic enumeration data of 1
to 9 randomly colored dots (the same color is used for all dots across
an image) on randomly colored backgrounds. We sampled the images
tomatch the input size of network, that is, all images have 3 RGB color
channels and are of size 224 × 224. All the images were sampled with a
target total areaTA and a target convexhull areaCHA in eight different
conditions: 2 size conditions × 2 total area conditions × 2 convex hull
area conditions. These conditions were balanced for correlations
between total dot area and dot size versus numerosity, as well as
between convex hull area and dot density versus numerosity, with a
factorial design (see Supplementary Methods for details) based on
recent advances proposed in human behavioral studies33,34. Within
each condition, the configurations are parameterized (see Supple-
mentary Methods for details), so that in total, the training dataset
contains 8 conditions × 50 parameter sets × 9 numerosities × 10 sam-
ples = 36000 images, and the test dataset contains 8 conditions × 50
parameter sets × 9 numerosities × 2 samples = 7200 images. A set of
sample stimuli for numerosities 3, 6, and 9 across the eight different
conditions are shown in Supplementary Fig. S10. The resulting pat-
terns of correlations across conditions are summarized in Supple-
mentary Table S11.

Ablation analysis procedures
We performed the ablation analysis at each epoch on two subsets of
IPS neurons: (i) ablating P-SPONs identified at each epoch, and (ii)
ablating all neurons except the P-SPONs identified at each epoch.
Ablation was implemented by removing the connection between a
particular neuron and the neurons it connects to in the next layer.

Statistical analysis
The current study used the following analytical approaches: (i) iden-
tification and classification of number sensitive neurons; (ii) identifi-
cation of SPONs and P-SPONS; (iii) measuring neuronal properties
including tuning precision, stability, selectivity, numerical distance
effect andnumerical size effect; (iv) representational similarity analysis
at a population level; (v) multidimensional scaling of population level
representations; and (vi)measurement of representational drift. These
aspects are described in their respective sub-sections below.

Identification and classification of number sensitive neurons
The neurons in each layer and epoch of training were classified into
whether they were number sensitive, similar to those used in previous
studies7,8. First, we ran a one-way ANOVA analysis, to determine if the
activation of a neuron differed significantly between different input
numerosities. All neurons that demonstrated a significant (p <0.01)
main effect of numerosity in their activation levels were classified as
number sensitive, with their preferred numerosity being the input
value that provided the highest average activation levels. Next, we ran

a two-way ANOVA analysis, to determine if the activation of a neuron
differed significantly between different input numerosities, but not
between stimulus conditions (there were 8 different conditions, with
variations in aspects such as total dot area, convex hull area, or whe-
ther dots sizes are fixed or randomized). All neurons that demon-
strated a significant (p <0.01) main effect of numerosity but not
condition in their activation levels were classified as selectively num-
ber sensitive, with their preferred numerosity being the input value
that provided the highest average activation levels. Neurons classified
as number sensitive by the first method subsumed those identified by
the second method. Exclusively non-selective numerosity neurons
were those identified by the first method but not the second method.
See Supplementary Table S3 for related analyses.

Identification of SPONs and P-SPONs
SPONs were neurons which the respective ANOVA analysis identified
as being number sensitive in the pre-trained network, prior to any
numerosity training. P-SPONs for a particular epoch were identified
basedonwhether a SPONneuron after a particular numerosity training
epoch was still classified as number sensitive (based on the same
ANOVA method) with the same preferred numerosity as it had while
pre-trained. Thus P-SPONs post-training were identified by the ANOVA
analysis both in the pre-trained network and post-training (after 50
epochs) network, with the same preferred numerosity in both.

Measuring neuronal properties
Tuning curve precision. To determine the tuning properties of
number sensitive neurons, we performed the following steps: First,
we grouped number sensitive neurons by preferred numerosity (PN).
We then measured the average activation across these neurons for
each input stimuli value to obtain an average activation curve for
each PN group. The average activation curves were normalized by
dividing by the maximum activation value, so that the activation for
PN was equated to 1, and activation for all other inputs were less than
1. The resulting normalized activation curves for each PN were fit to a
Gaussian kernel with mean value equal to the PN, and standard
deviation estimated as an optimization problem. The standard
deviation was converted to a precision measure (precision = inverse
of variance).

Stability. The measure of stability of each individual neuron was their
relative tolerance for how well they preserved responses across iden-
tity preserving transformations35. To calculate this, we calculated the
average activation curve (average activation for each input value) of
each neuron separately under the eight different stimuli-type condi-
tions. Thus, for each neuron, we obtained eight different activation
profiles, each corresponding to the same set of input identities
(numerosities), but under different identity preserving transforma-
tions – here, these transformations were balanced manipulations of
the dot size, total dot area, and convex hull area. Stable neuronswould
have similar activation profiles under these eight different conditions.
Tomeasure stability, we usedKendall’s tau,whichmeasures rankorder
agreement (or the rank correlation coefficient) across conditions. High
values of tau indicate that the relative rank ordering of input numer-
osities is similar across the conditions, and vice versa. Li et al.36 showed
that rank order preservations under transformations were a crucial
neuronal property to support accurate recognition. The variability in
neuronal responses across these eight conditions are shown in Sup-
plementary Fig. S11.

Selectivity. Number sensitive neurons have a preferred numerosity.
An ideal number sensitive neuron should always have a higher acti-
vation for any physical representation of the preferred numerosity
than for any other numerosity. However, this is not always the case.
While preferred numerosities on an average have high activation
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values, some samples of the preferred numerosities elicit lower acti-
vation compared to some samples of other numerosities. Sincewehad
800 samples of each input numerosities in the testing set, we could
perform 64k pairwise comparisons (800 × 800) of the preferred
numerosity against eachother input value. Selectivity is theproportion
of such pairwise comparisons where the number sensitive neuron
showed higher activation for the preferred numerosity. An ideal
number sensitive neuron would have a maximum selectivity of 1.

Neuronal numerical distance effect. Numerical distance effects
(NDE) refer to the fact that discriminating between numerosities
becomes easier as the distance between (input distance) them grows.
At a behavioral level, this means increasing accuracy with increasing
input distance. At a neuronal level, this might imply increasing selec-
tivity, or largerdifferences inneuronal activation,with increasing input
distance. To compute this, the pairwise selectivity, and pairwise
comparison of activation was grouped by the distance between pre-
ferred numerosity and the comparative input numerosity being con-
sidered. This results in a measure of selectivity and differential
activation as a function of input distance (which can take values from 1
to 8). The average slope of the selectivity versus input distance is
reported as the NDE. A neuron with higher NDE thus demonstrates a
steeper slope of selectivity versus distance, and can be conceptualized
as encoding some degree of cognitive content, specifically, the
ordinality of numerosity, and access to a mental number line38. Higher
NDE implies a lower potential for making errors as input distance
increases.

Neuronal numerical size effects. Numerical size effects refer to the
fact that discriminating between numerosities with the same input
distance becomes more difficult as the size of the numerosities
increases (e.g., discriminating between 2 and 3 is easier than dis-
criminatingbetween8and9, bothhaving the same input distanceof 1).
Supplementary Fig. S4 shows the neuronal numerical size effect for
each input distance value. The pre-trained network shows minimal
numerical size effects, but the numerosity trained network shows
strong size effects, with reducing accuracy as numerical size (sum of
the inputs) increases.

Representational similarity analysis between input stimuli
Representational similarity analysis (RSA) identifies the similarity
between different input numerosities, measured as a similarity of the
distributed representations across a selected group of neurons. To
do this, the mean activation value of each neuron is calculated for
each input stimuli value from 1–9. Next, for each layer and for epochs
0 (pre-training) and 50 (post-training), the mean activations are
normalized by dividing by the highest activation value of any neuron
for any input within that layer and epoch. This allows for a mean-
ingful comparison across layers and training epochs. Any neurons
which are not activated at all for any input are dropped from the
analysis (since they represent zero values across all numerosities,
they would incorrectly inflate similarity). We then calculated the
Euclidean distance between each pair of input stimuli across each of
the following groups of neurons: (a) P-SPONs, (b) New+Switch neu-
rons, and (c) all neurons in the layer. These distances are calculated
for each layer pre and post training. The distances are then converted
to normalized similarity values (1–distance/(maximum distance)),
which yields a representational similarity matrix across pairs of input
stimuli, where the maximum distance is the highest distance across
all layers and epochs. The normalized distance (distance / maximum
distance) between pairs of input stimuli from the RSA analysis are
also grouped by difference between input values so as to obtain
another measure of the numerical distance effect, measured on a
distributed population level encoding, rather than the neuronal level
NDE measured previously.

Multidimensional scaling analysis of distributed neural
representations
Multidimensional scaling (MDS) is a method for dimension reduc-
tion. In each layer with n neurons (n is approximately 200k for V1,
100k for V2, 50k for V3, and 25k for IPS), the distributed repre-
sentations of each numerosity are n-dimensional. MDS allows us to
effectively reduce the dimensionality of representation of each
numerosity, such that the pairwise distances between input
numerosities in n-dimensional space is approximately retained in
the reduced dimensionality space. Classical multidimensional
scaling was used to reduce the n-dimensional representations to
two dimensions. MDS eigenvalues and derived goodness of fit41

were used to evaluate the adequacy of the MDS algorithm. See
Supplementary Methods for details.

Measuring representational drift
Neuronal representational drift43,44 was measured as one minus the
rank correlation coefficient (numerosity order preservation) across
consecutive epochs for each neuron. Thus, a high drift indicated that
the relative ordering of neuronal activation across input numerosities
had changed significantly (when measured for each individual neuron
and averaged over all neurons), and a low drift indicated rank order
preservation between input numerosities. A similar measure of drift
was also computed at a distributed representation level by measuring
one minus the rank correlation coefficient based on first two latent
MDS dimensions for each layer. Both these measures were applied
pairwise on consecutive epochs from 1 to 10, and averaged across
these epochs. Epochs 1–10 were included since accuracy levels satu-
rate after about 10 epochs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data used in figures are provided with this paper. Data is gen-
erated from the neural network modeling based on adaptation of the
CORNet-S model within the PyTorch framework (Python: 3.9.12;
PyTorch: torch==1.12.1, torchaudio==0.12.1, torchmetrics==0.10.0,
torchvision==0.13.1, pytorch-lightning==1.8.0.post1). Links to third-
party images and model: Original ImageNet stimuli are found at
https://image-net.org/download.php. The pre-trained Cornet network
is found at https://s3.amazonaws.com/cornet-models/cornet_s-
1d3f7974.pth. The key output data for the pre-trained and post-
training epochs are stored at https://doi.org/10.5281/zenodo.7976286.
Note that data for every training epoch is too large to be stored on this
platform, and any specific additional data may be available from the
authors on reasonable request. Note that most of the analysis in the
paper relies on the pre-trained andpost-training epochs forwhichdata
has been shared. Source data are provided with this paper.

Code availability
Code to produce the number stimuli images as well as to run the
models is available under the repository for this manuscript at https://
github.com/scsnl/Mistry_Strock_NatureComm_2023. Data analysis was
conducted using MATLAB 9.9 R2020b. Data analysis scripts will be
made available via GitHub upon publication at https://github.com/
scsnl/Mistry_Strock_NatureComm_2023.
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