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Much of our enjoyment of music comes from its balance of
predictability and surprise. Musical pitch fluctuations follow a 1/f
power law that precisely achieves this balance. Musical rhythms,
especially those of Western classical music, are considered highly
regular and predictable, and this predictability has been hypothe-
sized to underlie rhythm’s contribution to our enjoyment of music.
Are musical rhythms indeed entirely predictable and how do they
vary with genre and composer? To answer this question, we ana-
lyzed the rhythm spectra of 1,788 movements from 558 composi-
tions of Western classical music. We found that an overwhelming
majority of rhythms obeyed a 1/f β power law across 16 subgenres
and 40 composers, with β ranging from ∼0.5–1. Notably, classical
composers, whose compositions are known to exhibit nearly iden-
tical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra:
Beethoven’s rhythms were among the most predictable, and
Mozart’s among the least. Our finding of the ubiquity of 1/f
rhythm spectra in compositions spanning nearly four centuries
demonstrates that, as with musical pitch, musical rhythms also
exhibit a balance of predictability and surprise that could contrib-
ute in a fundamental way to our aesthetic experience of music.
Although music compositions are intended to be performed, the
fact that the notated rhythms follow a 1/f spectrum indicates that
such structure is no mere artifact of performance or perception,
but rather, exists within the written composition before the music
is performed. Furthermore, composers systematically manipulate
(consciously or otherwise) the predictability in 1/f rhythms to give
their compositions unique identities.

musical structure | 1/f distributions | fractal mathematics |
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Musical behaviors—singing, dancing, and playing instru-
ments—date back to Neanderthals (1), and have been

a part of every human culture as far back as we know (2, 3).
People experience great enjoyment and pleasure from music (4–
6), and music theorists have argued that this enjoyment stems in
part from the structural features of music, such as the generation
and violation of expectations (5, 7–11). Mathematics has often
been used to characterize, model, and understand music, from
Schenkerian analysis (12, 13) to neural topography (14) and
geometric models of tonality (15, 16). One particular mathe-
matical relation that has received attention in music is the 1/f
distribution, which Mandelbrot (17) termed “fractal.”
1/f distributions have been found to be a key feature of

a number of natural and sensory phenomena. In analyzing the
frequency of several natural disasters, including earthquakes,
landslides, floods, and terrestrial meteor impacts, Hsü (18) found
an inverse log-log linear (fractal) relation between the frequency
and the intensity of the events:

f ¼ c=MD [1]

where f is the temporal frequency, M is a parameter indexing
the intensity of the events, c is a constant of proportionality, and
D is the fractal dimension. The well-known Richardson Effect

(19, 20), which began the modern study of fractals, states that
measurements of natural phenomena are characterized by 1/f
noise. 1/f fluctuations are also a prominent feature of human
cognition. Neurons in primary visual cortex were found to ex-
hibit higher gain, and the spike responses exhibit higher coding
efficiency and information transmission rates for 1/f signals
(21), and the fluctuations of voltage across the resting mem-
brane of myelinated nerve fibers show a 1/f spectrum (22); these
findings suggest that human sensory and neural systems evolved
to encode certain regularities in the physical world (23, 24), in
this case, those that manifest self-similarity.
The spectral power of such signals decays exponentially with

frequency (f) as [1/f]β (where β is the spectral exponent). Al-
though large values of β (>2) indicate greater long-range cor-
relations, and hence, highly predictable signals, very small βs
(<0.5) indicate highly unpredictable signals: An extreme exam-
ple is white noise (β = 0), the structure of which is entirely
unpredictable (25). On the other hand, musical pitch and
loudness fluctuations are known to have an intermediate range
of β values (1 < β < 2), and this range has been suggested to
indicate a level of predictability that is optimal to our musical
experience (26, 27).
In contrast, musical rhythms, note onsets, and durations in

Western classical music are considered highly regular and pre-
dictable, so much so that the term “rhythmic” has come to be
synonymous with “recurring,” “regular,” or “periodic.” Because
music has a beat and is based on repetition, it has been said that
“what” the next musical event will be is not always easy to guess,
but “when” it is likely to happen can be easily predicted (11). In
fact, this comforting predictability has been suggested to underlie
rhythm’s fundamental contribution to the aesthetic experience of
music (7, 28, 29).
It has been previously suggested that music can be charac-

terized by a fractal geometry (30–32), obeying a 1/f power law.
This suggestion was demonstrated for the amplitude (26, 27) and
pitch structure (33, 34) of music. Here we show that the tem-
poral/rhythmic properties of music across a wide range of com-
positions also obey the 1/f law, or fractal relation.
We analyzed the spectral structure of musical rhythms

(indexed by note onsets, and using a multitaper spectral analysis)
to investigate whether these are indeed as regular and predict-
able as commonly claimed. Whereas previous researchers have
studied only a handful of compositions by Bach, Mozart, and
European folk songs (26, 27, 33, 34), we sought to increase the
generalizability and importance of such findings by leveraging
the power of a large database of notated musical compositions,
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spanning three centuries and dozens of composers and styles. To
that end, we analyzed the scores of 1,788 musical movements
from 558 compositions (independent sections of larger compo-
sitions of Western classical music). Here, we demonstrate that
just like musical pitch and loudness, musical rhythms also obey
a 1/f power law with β ranging from ∼0.5–1. Furthermore, we
show that composers, even from the same musical era, exhibit
systematically different slopes (βs) in their 1/f rhythm spectra: the
resulting differences in rhythmic predictability would permit
them to uniquely identify their compositions, and to distinguish
their works from those of their contemporaries.

Results
To create a representation for musical rhythms in time, we used
a raster representation: note onsets were represented as pulses
(“spikes”) of a point process, and durations as the intervals be-
tween successive pulses. The power spectrum S(f) of the rhythm
rasters was then computed for each piece using the multitaper
method for point processes (35), commonly used for spectral
estimation of spike trains in neurobiology datasets (Materials
and Methods).
Previous observations on the relationship between the corre-

lation structure of signals and the slopes of their 1/f spectra have
been limited to continuous-time signals (such as pitch and
loudness fluctuations) (25–27, 36). Hence, we first verified the
validity of these observations for rasterized rhythms with 1/f
spectra. We generated simulated 1/f rhythm sequences with
different values of the spectral exponent, β (see Materials and
Methods for details). Simulated rhythm sequences with small
values of β (~0, characteristic of white noise) lacked both short
and long range correlations, and hence, were essentially un-
predictable (Fig. 1 A and B). Sequences with intermediate values
of β (~1) showed an interesting balance of short and long range
correlations, and a level of predictability that was intermediate
between the two more extreme cases described here (Fig. 1 C
and D). Sequences with large values of β (~2) varied gradually
over time, showed correlations over long timescales, and hence,
were highly predictable over these timescales (Fig. 1 E and F).
Next, we analyzed the spectral structure of musical rhythms of

1,788 movements from 558 Western classical music composi-
tions. Selections spanned 16 genres and 44 composers (Table
S1). Discarding pitch information, we extracted from each voice
in each selection their rhythmic content (onsets and durations of
notes and rests) that was encoded with the raster representation
described above (Fig. 2A). The rhythm spectrum for an example
piece (Beethoven’s Quartet No. 1) (Fig. 2A) illustrates our
central finding: Rhythm spectral power decreased exponentially
with frequency as 1/f. In the log-domain, this meant that power
decayed linearly with frequency (β = 0.85) (Fig. 2B). One might
argue that any sequence of musical rhythms displays 1/f structure
and that our experiment lacks a control condition. To address
this argument, we conducted additional analyses in which each
stimulus served as its own control, disrupting the temporal
structure of the rhythm at all frequencies (Materials and Meth-
ods) by shuffling the note onsets globally, across the piece, but
keeping note durations intact (37, 38). The spectrum of the
resulting “shuffled” piece was flat and resembled white noise
(β = 0.02) (Fig. 2C), indicating that the 1/f rhythm spectrum
reflects the global structure of correlations across the entire
piece, and that this structure is a consequence of the specific
ordering of the rhythms, not their mere presence in the piece at
random locations. The population of all 1,788 selections ana-
lyzed showed similar trends: The pooled distribution of βs was
significantly different from its null (shuffled) distribution (Fig.
2C), and the median β (0.78, SD = 0.35) was not significantly
different from 1. This finding demonstrates that, across compo-
sitions analyzed, 1/f spectra ubiquitously characterized the
structure of musical rhythms. Converging results were obtained

by two independent analysis approaches, Hurst analysis, and
detrended fluctuation analysis (SI Materials and Methods).
Classical instrumental genres, such as quartets and sonatas

(Fig. 3 A and B), and a variety of other folk, dance, and sung
music spanning nearly four centuries of compositions all dem-
onstrated 1/f spectra (Figs. S1 and S2 and Table S1). β-Dis-
tributions for these genres were significantly different from their
respective null (shuffled) counterparts (P < 0.01, Wilcoxon
signed rank test, Holm-Bonferroni correction for multiple com-
parisons) (Fig. 3 C and D and Table S1). We then analyzed how
β-distributions varied across different genres of music (Materials
and Methods). Symphonies and quartets had the largest β-values,
indicating the most predictable rhythms (Fig. 3E and Fig. S1).
On the other hand, folk and modern styles, such as mazurka and

Fig. 1. The 1/f power law in simulated rhythm spectra. (A) (Upper) Repre-
sentative rhythm sequence the spectra of which obey a power law of the
form [1/f]β for β = 0.0 generated from Eq. 1. (Scale bar, 10 samples.) (Lower)
Rhythm rasters (n = 50 realizations, vertical axis) for β = 0.0 (horizontal axis is
time). (Scale bar, 1 s). The complete lack of correlations at all timescales is
characteristic of white noise. (B) Spectrum of the rhythm rasters from A.
Logarithm of spectral power is plotted against logarithm of frequency. Light
gray lines represent rhythm spectrum for the individual rasters (n = 100).
Dark gray points represent the average spectrum. Black line represents the
linear fit to the spectrum in the frequency range of 0.01 to 1 Hz (delineated
by dotted vertical gray lines). Dashed black line represents extrapolation of
the linear fit to other frequencies. (C) Rhythm sequence and rasters as in A,
but for β = 1.0. Variations in the rhythm and range of correlations are in-
termediate between that of A and E. (D) Spectrum of rasters from C. Other
conventions are as in B. (E) Rhythm sequence and rasters as in A, but for β =
2.0. Both sequence and rasters show slow variations (horizontal axis) and
long-range correlations. (F) Spectrum of rasters from E. Other conventions
are as in B. Scale bars from A also apply to panels C and E. Spectra in panels
B, D, and F are displaced arbitrarily along the y axis for clarity of pre-
sentation.
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ragtime, had among the smallest β-values, indicating the least-
predictable rhythms (Fig. 3E and Fig. S1).
The β-values for compositions grouped by composer revealed

a surprising trend: β-distributions varied widely across composers
regardless of period or style (Fig. 4 and Table S2). Beethoven,
Haydn, and Mozart demonstrated different 1/f rhythm spectra.
Beethoven’s rhythms exhibited the largest βs (and thus the most
predictability), Mozart’s βs were among the smallest (with the
least predictability), whereas those of Haydn were intermediate
between those of Mozart and Beethoven, and significantly dif-
ferent from either (Fig. 4 A, B, and E) [Tukey–Kramer honestly
significantly different (HSD), P < 0.05; see Materials and Meth-
ods]. Monteverdi and Joplin (Table S2) exhibited nearly identi-
cal, overlapping rhythm β-distributions (Tukey–Kramer HSD,
P > 0.05) (Fig. 4 C–E). Figs. 3E and 4E display 95% confidence
intervals (CI); nonoverlapping CIs are significant at P < 0.05.

Discussion
Most listeners find music pleasing when it creates an optimal
balance of predictability and surprise (7–9, 28, 29). Whereas such
a balance was previously attributed exclusively to 1/f structure in
musical pitch and amplitude (26, 27, 33, 34), the present results
demonstrate that musical rhythms also exhibit 1/f spectral
structure. The 1/f structure allows us to quantify the range of
predictability, self-similarity, or fractal-like structure within
which listeners find aesthetic pleasure. Critically, compositions
across four centuries and several subgenres of Western classical
music all demonstrated 1/f structure in their rhythm spectra.

A previous study analyzing classical compositions from the
18th to 20th centuries reported nearly identical 1/f pitch struc-
ture among composers, with a very narrow range of spectral
exponents (1.79 ≤ β ≤ 1.97) (8). The 1/f pitch structure could not
systematically delineate one composer’s work from another. In
contrast, our findings demonstrate that 1/f rhythm spectral
exponents varied widely and systematically among composers
(0.48 ≤ β ≤ 1.05). Even composers belonging to the same musical
era (1750–1820, the Classical era), such as Beethoven, Haydn,
and Mozart, demonstrated distinctive 1/f rhythm spectra. Con-
versely, Monteverdi and Joplin, composers of entirely different
musical eras and composing nearly three centuries apart,
exhibited similar rhythm spectra. These results suggest a hereto-
fore underappreciated importance of rhythm and hint at its
even greater role than pitch in conveying the distinctive style
of composers.
Human perception is known to be sensitive to 1/f structure in

the environment (21, 22, 25, 36, 39, 40), and electrophysiological
studies have suggested a preference of sensory neural coding for
1/f signals (21, 39, 41). How does this relate to music? The bal-
ance of expectations both realized and violated in pleasurable
music requires a certain amount of instability in the temporal
structure, and such dynamical instability may best be modeled by
a power law for temporal fluctuation (42).
Cognitive psychologists (43) have noted that human perfor-

mance in a variety of tasks, including the production of rhythmic
sequences by finger tapping (44), fluctuates over time according
to 1/f. Here, we reveal that this same structure characterizes the
stage of human cognition before action: the written composition
of temporal intervals that will become action plans only at a later
date when performed by musicians. Thus, 1/f is not merely an
artifact of performance, but exists in the written scores them-
selves. Perhaps composers can’t help but produce 1/f rhythm
spectra, perhaps musical conventions require this. From a psy-
chological standpoint, the finding suggests that composers have
internalized some of the regularities of the physical world as it
interacts with biological systems (including the mind) to recreate
self-similarity in works of musical art (cf. 24).
Our finding of 1/f rhythm structure in nearly four centuries of

musical compositions may therefore be rooted in a fundamental
propensity of our sensory and motor systems to both perceive
and produce 1/f structure (44, 45).
Finally, an important methodological contribution of our study

is the development of raster representations borrowed from the
neuroscience literature, combined with a multitaper spectral
analysis (SI Materials and Methods) to rigorously examine rhythm
structure in music. Although pitch and loudness are musical
attributes that can be represented as a continuous signal having
a specific value at each instant of time (36), musical rhythms are
essentially sequences of note durations (intervals of time) that,
by definition, cannot be represented as a continuous signal with
a specific value at each point in time. Representation of rhythmic
structure as point processes allows us to examine spectral and
temporal dynamics with unprecedented mathematical precision
and rigor. The methods developed in our study are likely to
useful for addressing many other important questions involving
rhythmicity in music and speech across cultures.

Materials and Methods
Analysis of Musical Scores. All musical scores were drawn from the Humdrum
Kern database (46). Voices (instruments) and durations were extracted with
custom scripts using the Humdrum Toolkit (47). Musical movements, which
are self-contained sections of larger compositions, were treated as in-
dependent units (pieces). Onsets for each voice of each piece were converted
into a time-aligned raster representation, providing a marker of interonset
intervals (interevent durations). Onsets from different voices were merged
(as shown in Fig. 2A). Rhythm spectra were then computed with the multi-
taper approach using the Chronux toolbox (35, 48). The multitaper approach
(35) minimizes the variance (and spectral leakage) of the spectral estimate

Fig. 2. Musical rhythm spectra obey a 1/f power law. (A) Rasterized rhythm
representation (Lower) showing note onsets extracted from Beethoven’s
Quartet Op. 18. No. 1 (score, Upper). The representation shown is schematic:
actual durations were extracted from the Humdrum kern format (Materials
and Methods). (B) (Left) The spectrum of the rhythm raster from A has
power that decays linearly (in a log-scale) with frequency as 1/f (gray dots).
The slope of the spectrum (spectral exponent or β) is 0.8. Colored segments
show the sequence of durations (internote intervals). Black line represents
the linear fit to the spectrum in the frequency range of 0.01 to 1 Hz (de-
lineated by dotted vertical gray lines). Dashed line represents extrapolation
of the linear fit to other frequencies. (Right) The spectrum of a sequence
with the note onsets shuffled randomly, keeping durations intact. The
shuffled spectrum is flat (β = 0.0). Other conventions are as shown (Left). (C)
Distribution of rhythm spectral exponents pooled across genres (black)
obtained by linear fits to individual pieces across the population of 1,788
pieces analyzed. Gray: spectral exponent distribution for the corresponding
shuffled rhythms. Inverted triangles represent the distribution median.
Dashed vertical line: β = 0.
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by premultiplying the data with spectrally concentrated orthogonal (Sle-
pian) tapers (35, 49, 50): here, for estimating rhythm spectra, we used three
tapers and a sampling rate of 10 Hz (which is well above the Nyquist rate for
our temporal frequencies of interest; see next section) (51, 52). Only
movements with more than 200 notes were included in the analysis to
permit robust spectral estimation (36). We fit straight lines to model the
variation in rhythm spectral power over two orders of magnitude of fre-
quency (between 0.01 and 1 Hz) (36) using robust regression. (There are
obvious limits of the 1/f linear fit: at one end it is limited by note durations,
and at the other end it is limited by the length of the pieces/scores we an-
alyzed.) To generate an empirical null distribution for statistical comparison,

and as a control to verify and validate our spectral estimation on rhythm
rasters, note onsets were shuffled randomly and rasterized: as expected,
shuffled onset rasters showed flat spectra (characteristic of white noise) (Fig.
2 B and C). (If the mere inclusion of notes of specific durations in a musical
piece, but not their order, were responsible for 1/f, the random arrange-
ments of notes would still yield this power distribution; thus the shuffled
version of the pieces forms a suitable null hypothesis.)

Spectral exponents for pieces were compared with their shuffled
counterparts using theWilcoxon signed rank test (last column, Table S1). To
compare exponent distributions across genres and composers, we per-
formed a one-way ANOVA and tested for significant differences between

Fig. 3. The 1/f rhythm spectra are ubiquitous across genres. (A) Rhythm spectra for quartets. Average spectra (dark blue points) and linear fit (dark blue) to
average spectrum in the frequency range of 0.01 to 1 Hz. Faded blue lines represent spectra of individual pieces. Gray data represent spectra of shuffled
rhythms. Other conventions are as in Fig. 2B. (B) Distribution of rhythm spectral exponents obtained by linear fits to individual pieces (blue), and for the
corresponding shuffled rhythms (gray). Inverted triangle represents median exponents. Dashed vertical line: β = 0. (C) Rhythm spectra for sonatas (red) and
corresponding shuffled rhythms (gray). Other conventions are as in A. (D) Distribution of rhythm spectral exponents for sonatas (red) and corresponding
shuffled rhythms (gray). Other conventions are as in B. (E) Distribution of rhythm spectral exponents for musical genres ordered from largest mean exponent
to smallest. Larger exponents indicate correlations over longer timescales, and hence more predictable rhythms (vertical gray arrow). Circles are mean
exponents, and error bars are 95% CI. Disjoint intervals indicate significantly different mean exponents (Tukey–Kramer HSD).

Fig. 4. Composers exhibit distinct 1/f rhythm spectra. (A) Average rhythm spectra for Beethoven (dark green), Haydn (violet), and Mozart (olive green):
contemporary composers belonging to the Classical era (1750–1820). Other conventions are as in Fig. 3A. (B) Distribution of rhythm spectral exponents for
compositions of Beethoven, Haydn, and Mozart. Color conventions are as in A. Other conventions are as in Fig. 3B. (C) Average rhythm spectra for Monteverdi
(blue) and Joplin (green): composers separated by nearly three centuries of compositions. Other conventions are as in Fig. 3A. (D) Distribution of spectral
exponents for compositions of Monteverdi and Joplin. Color conventions are as in C. Other conventions are as in Fig. 3B. (E) Distribution of spectral exponents
for composers ordered from largest mean exponent to smallest. Spectral exponents of Haydn, for example (dotted vertical lines, 95% CI), are significantly
different from those of Beethoven and Mozart (P < 0.05, Tukey–Kramer HSD). Other conventions are as in Fig. 3E.
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exponent means based on the Tukey–Kramer HSD criterion. Statistical
analyses were performed in Matlab. We repeated the spectral analysis for
each voice extracted separately, normalizing all pieces to the same total
duration, as well as including pieces of all lengths (< 200 notes), and ob-
served results similar to those reported here. Plots of the power spectra
for individual composers and genres, as well as additional details on
the compositions used in this study, can be found in SI Appendix 1 and SI
Appendix 2.

Generation of Simulated 1/f Rhythms. To generate duration sequences that
obey a power law of the form [1/f]β we modeled the internote intervals, or
durations, (τ) as a multiplicative stochastic point process (53):

τkþ1 ¼ τk þ γτ 2μ− 1
k þ στ μ

k εk [2]

In this formula, γ is a relaxation factor, ε represents a normally distributed,
zero-mean, unit-variance, white-noise process, and σ represents a scaling
factor for the SD of the white noise. The relaxation factor (γ) was varied to
generate duration sequences with different spectral exponents (β). Other
parameters were set to fixed values (μ = 0.0, σ = 0.05). Larger values of the

relaxation factor led to sequences with longer (persistent) history effects:
such sequences showed correlations over longer time windows (Fig. 1A), and
exhibited 1/f spectra with larger βs (Fig. 1B). Duration sequences with β = 2.0
were generated with γ = 0.025, whereas sequences with β = 1.0 were gen-
erated with γ = 0.0. Sequences with β = 0.0 (white noise) were generated
with γ = 0.0, but without the first term on the right hand side of Eq. 1, thus
eliminating all history effects. Rhythm rasters were then derived from the
duration sequences by placing “ticks” on the time axis such that successive
ticks in time were separated by successive values in the duration sequence.
All simulations were performed in Matlab.
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