Highly Compact and Scalable 100 ps CTR + 3D Positioning TOF-PET Detector Sub-Unit

Shirin Pourashraf (shirinp1@stanford.edu)

Stanford University, Molecular Imaging Program (<u>MIL Lab</u>), Radiology Department, California, United States of America

24th Jan. 2024

Goal: Scale-Up Side-Readout Modules of 100 ps CTR TOF-PET

- S. Pourashraf, et al, IEEE TRPMS, 2023
- S. Pourashraf, et al, IEEE TRPMS, 2022
- S. Pourashraf, et al, Physics in Medicine and Biology, 2021

Electronic of Side-Readout Detector Layer Unit

Our 24:1 Timing Multiplexing Approach

Adapted DynTOT Block in our TOF-PET

Using Dynamic TOT:

- To get excellent energy resolution
 - Rejection of a higher fraction of scatter events
 - Reconstructing higher quality images
- Extract information from Compton scatter events within the detector blocks
 - Improve contrast of reconstructed PET images

 Shaping block needed to extend the DynTOT pulses for being compatible with 625 ps resolution FPGA-based multiphase counter (MPCNT) used to directly measure the energy

AIPS

olecular Imaging

Program at Stanford

In detector

Energy Linearization & Wide Photon Detection Dynamic Range

• Using 2x4 array of 3x3x10 mm³ fast LGSO crystal coated with BaSO₄ reflector

 Ability of resolving 59 keV energy means recovering 511 keV photons that undergo Compton scatter within PET detector blocks at angles as small as ~29°

MIPS

lolecular Imaging

Program at Stanford

Stanford University

School of Medicine Department of Radiology

~20 mm

CTR Set-up Using DynTOT Blocks for Energy Gating

- Side-coupling 2x4 arrays of 3x3x10 mm³ fast LGSO crystals to 24 SiPMs (6x4 arrays)
- Using 24:1 timing multiplexing readouts
- 625 ps resolution FPGA-based MPCNT used to directly measure the energy

Stanford University

Department of Radiology

School of Medicine

ER & CTR Performance after Embedding DynTOT Block with Extended Pulses

S. Pourashraf, *J. W. Cates*, and C. S. Levin, "A Scalable Dynamic TOT Circuit for a 100 ps TOF-PET Detector Design to Improve Energy Linearity and Dynamic Range", *IEEE Transaction on Radiation and Plasma Medical Sciences*, Dec. 2023. DOI: <u>10.1109/TRPMS.2023.3344399</u> 2023.

School of Medicine Department of Radiology

Scale-Up Procedure

- S. Pourashraf, et al, IEEE TRPMS, 2023
- S. Pourashraf, et al, IEEE TRPMS, 2022
- S. Pourashraf, et al, Physics in Medicine and Biology, 2021

SMA-Less Detector Layer Units

Previous Readouts with SMA Connectors

 Impossible to be used in System Level

SMA-Less Detector Layer Units

Readouts with/without SMA Connectors

ЛІРЅ

olecular Imaging

Program at Stanford

For system level implementation:

- Replacing bulky SMA connectors with low profile (~1.5 cm) connectors
 - All active/passive components are replaced with their low profile (less than 1.5 cm height) counterparts
- Merging each two detector layer units for maintenance ease and/or saving some resources/space/power dissipation

SMA-Less Detector Layer Units

-

- Timing readout
 - Green 4-layer FR4 PCBs
 - 13.3 x 147 x 0.4 mm³
- 4x6 array of 3x3 mm² SiPMs on back of green timing board

MIPS

lolecular Imaging

Program at Stanford

Тор **Bottom Bottom** Top View View View View ut: We ha 7.7.7.7.1.1.1. 0.4 mm 13.3 mm Thick

4x6 SiPMs

- Energy/positioning readout or merged detector layer unit
 - Red 12-layer FR4 PCB
 - 27.5 x 130 x **1.2** mm³
- Each two timing boards mounted on a merged detector layer unit board (red PCB)
 - Ease of maintenance

Details of SMA-Less Detector Layer Units

CTR Set-Up of Skinny Readout in Coincidence with Reference Detector

Screenshot of FPGA Logic Analyzer

ILA Status: Idle			Coincidence
Name		Value	
✓ ♥ i_e_buf[1:0]	NAME OF TAXABLE PARTY.	0	0 \ <u>\</u> . 0
Image: New Detector Image: New Detector Image: New Detector Image: New Detector	Energy Signals	0	
		0	
~ W [_t_buf[1:0]		0	
Image: New Detector Image: New Detector Image: New Detector Image: New Detector	Timing Signals	0	
		0	
> * [_v_e_f[1:0]	Dark-Counts	0	0 '
> ₩ [_v_e_[1:0] > ₩ [_v_t_[1:0]			
		0	
A CONTRACTOR OF THE OWNER			Updated at: 2023-Jan-27 10:06:12
	and the second se	< >	> <
MIPS			

olecular Imaging

Program at Stanford

- Comparable timing/energy signals of skinny and reference detectors
- CTR performance still kept at ~100 ps

Stanford University

Department of Radiology

School of Medicine

Overview of System Level Connectivity

MIPS

Molecular Imaging Program at Stanford

Overview of System Level Connectivity

Real System Level Connectivity

Merged Detector Layer Unit (Timing & Energy/Positioning)

- Low-noise custom-designed boards from 4-layer to 12-layer PCBs
- Being used to evaluate the detector module performance
- Bulky boards are in the back-end
 - Not affecting the high packing fraction and sensitivity of our system

Physical Boards Arrangements

MIPS

olecular Imaging

Program at Stanford

 Length/thickness/material of the interconnecting flex and multi-coax cables are going to be optimized to keep the signal integrity and CTR performance!

SMA-Less CTR Set-up

Stanford University

Department of Radiology

School of Medicine

Stack of High Packing Fraction Detector Layer Units

Program at Stanford

- ~1 mm thick mechanical holder to firmly keep the stack of skinny detector layer units within the module!
 - Still under further optimization

School of Medicine Department of Radiology

Resources & Power Consumption

Detector Resources and Power Dissipation

	Res	ources Quantity	Power Dissipation		
	Merged Detector Layer Units	Detector Module	Whole System	Merged Detector Layer Unit (mW)	Whole System (W)
			16-Modules Partial-Ring		E
2×4 Array of 3×3×10 mm ³ Crystals	2 × 1	64	1024	-	-
SiPMs	2 × 24	1536	24576	3*	2*
LDO for Timing Comparators	2 × 0.5	32	512	1 × 135	69.1
Timing Comparators	2 × 9	576	9216	2 × 390	400
LDO for RF Amps.	2 × 0.5	32	512	1 × 52	26.6
RF Amps.	2 × 8	512	8192	2 × 145	148.5
LDOs for ±5 V of Op-amps	2	64	1024	2 × 11.5	11.8
Op-amps ^{**}	2 × 2	64	1024	2 × 115	117.8
DynTOT (Digital ICs)	2 × 1	64	1024	2 × 11	11.3
LDOs for 3.3 V & 2.5 V of CPLD	2	64	2048	130	66.6
CPLD	2 × 1	64	1024	2 × 420	430.1
FPGA Channels	2	64	1024	2 × 4	4.1
	Total Power Consum	~ 1.26 W	~ 1.3 kW		

* Estimated Maximum power in the presence of high dose of FDG

** Replacing ADA4817 Op-amps with lower power/height OPA694 op-amps saving us ~450 mW (0.23 kw) power dissipation per merged detector layer unit (whole system!)

Thermal Imaging of Detector Layer Unit Readout

- Thermal imaging of merged detector layer unit (red board)
- Only one timing readout (green board) is mounted
 - To see the heat spatial distribution (hot spots) of CPLD too
- Images are used to embed an Effective Cooling System
 - To push away the heat from the SiPM array and preserve their performance

Stanford University

Department of Radiology

School of Medicine

Detector Module Level Assembly

Partial-Ring TOF-PET: 16 Detector Modules

Front of Module

 White skinny sheets: thermal conductive materials to push away the heat from SiPMs outward
Stanford U

Molecular Imaging Program at Stanford School of Medicine Department of Radiology

Detector Module Level Assembly

Partial-Ring TOF-PET: 16 Detector Modules

Back of Module

Front of Module

Discussion

- Finalized detector layer design and sub-modules
- Validated the performance of SMA-less skinny readouts
- Performing our thermal studies
- Evaluating sub-module/module detector layer units with multi-channel FPGA-based TDC

Acknowledgments

Stanford MEDICINE Molecular Imaging Instrumentation Laboratory

Seoul National University: Dr. Jae Sung Lee & Dr. Jun Yeon Won

XILINX°

Xilinx University Program

National Institutes of Health NIH research grants:

E 5R01CA21466903 & 1R01EB02512501

Marubeni America Corporation

Stanford University

Department of Radiology

School of Medicine

Thanks!

