

Technology development for a 100 picosecond coincidence time resolution time-of-flight positron emission tomography system

Shirin Pourashraf

(shirinp1@Stanford.edu)

Stanford Cancer Imaging Training (SCIT) Seminar / RSL Weekly Seminars

Mentored by: Drs. Andrei lagaru, M.D. & Craig Levin, Ph.D.

Jan. 11th, 2023

Positron Emission Tomography (PET) System

• %80 of PET usage in Cancer:

- Detecting and staging specific types of cancer and/or assessing response to treatment
- Cardovascular and/or Neurollgical Disease
 - Evaluating the function of organs, such as the heart and/or brain

Stanford University

School of Medicine

Department of Radiology

olecular Imaging

Program at Stanford

- Positron emitter radionuclides
 e.g ¹¹C, ¹³N, ¹⁵O, & ¹⁸F
- Ring of Detector modules
 - Scintillation crystals + photosensor + electronic readout
- Event localization along lines of response (LOR)
 - Arrival time difference of coincident events

Time of Flight Positron Emission Tomography (TOF-PET)

- CTR (Coincidence Time Resolution): FWHM of Δt distribution
- D: Patient diameter (e.g. 40 cm)
- c = 3×10¹⁰ cm/s: speed of light
- Δx = c × CTR/2: Localization error

CTR (ps)	$\Delta x = c \times \frac{CTR}{2}$	$Gain = \frac{SNR_{TOF}}{SNR_{Non-TOF}} \approx \sqrt{\frac{D}{c \times \frac{CTR}{2}}}$
1000	15 cm	1.6
500	7.5 cm	3.1
400	6 cm	2.6
214	3.7 cm	3.5
100	1.5 cm	5.2

https://oncologymedicalphysics.com/nuclear-tomographic-imaging/

School of Medicine

Department of Radiology

State-of-the-Art: 214 ps CTR TOF-PET/CT

Single Bed Position Images

- Improved CTR (214 ps) and localization along LOR (3.7 cm)
 - Improved reconstructed image SNR, signal-to-background ratio, image quality, accuracy, and lesion detectability
- or getting the same image quality as Conventional PET
 - Lower injected dose to patients or shorter scan time
- **IIPS** Wider category of patients can be served

Molecular Imaging Program at Stanford

System Level Electronic Readout for TOF-PET

SCIT Stanford Cancer Imaging **Training Program**

- At system level, 214 ps is the best commerciallyavailable CTR (Biograph TOF-PET/CT)
- Currently several benchtop experiments with CTR ≤100 ps using single-pixel detectors
 - Challenging to scale results up to full system

System Design Approaches:

- One-to-one coupling of scintillation crystals to compact sized SiPMs:
 - × Large number of electronic readout channels needed
 - × Costly, not power efficient, and heat generated degrading SiPM performance, especially CTR

- Designing ASICs
 - × Long design time
 - × Also costly

Multiplexing:

Simply hardwiring SiPMs signals together

× Parasitic capacitance >>> CTR degradation

- Resistive charge division × High RC constant >>> CTR degradation
- Delay-line method
- × Lower SNR, especially for longer delays
- × Requiring more resources from FPGA

Scale-Up Scheme of 100 ps TOF-PET Stanford Cancer Imaging

- J. W. Cates, C. S. Levin, Physics in Medicine and Biology, 2018
- S. Pourashraf, et al, Physics in Medicine and Biology, 2021
- S. Pourashraf, et al, IEEE TRPMS, 2022

Training Program

Multiplexing of Timing Channels

Why not simply combine LVDS signals?

• Standard LVDS has several advantages, but are current mode drivers not voltage!

SCIT Stanford Cancer Imaging **Training Program**

 Not aware of an electronic component to efficiently combine our sharp edge LVDS timings!

- But our case, several drivers (D) hanging off a main bus line with one receiver (R) at the end!
- Impedance mismatch and reflection due to stubs (unterminated length of drivers to the main bus)
- Needs careful considerations
 - Otherwise signal integrity issue, increased jitter, and loss of information

Our 24:1 Timing Multiplexing Approach

- Only passive micro-baluns and one extra comparator used
 - Saving footprint
 - Cost effective

Power efficient
Just 4.5 mW/Channel
extra power dissipation!

- Converting 8-LVDS timing signals to single-ended outputs using passive micro-baluns
- Then again converting these single-ended outputs to differential signals using micro-baluns
- Finally, hardwiring these 8 differential timing outputs at nodes A₁...₈ & B₁...₈ inputting the differential pins of the last MAX40025 comparator to produce the final LVDS timing channel

PCBs for System Development

Stanford Cancer Imaging **Training Program**

School of Medicine

Department of Radiology

Compact and scalable

- Timing chain implemented in 13.3 mm width of a 4-layer FR4 PCB (green board)
- 4x6 array of 3x3 mm² SiPMs on timing board
- Energy chain implemented in 13.3 mm width of a 6-layer FR4 PCB board (red board)

PCB and Physical Implementation

SCIT Stanford Cancer Imaging **Training Program**

- Multiplexing chain:
 - Didn't increase the 13.3 mm width of our PCB 🙂
 - ✓ High sensitivity remains
 - Increased the length of PCB only ~27 mm
 - \checkmark Should not have effect on increasing jitter as the timing signals are already digitized! 🙂

Fail-Safe Biasing for Comparators

- External fail-safe resistive biasing at the differential inputs of all MAX40025 comparators
 - It provided 2.1 V common mode voltages for comparator's positive and negative inputs
 - It also provided V_{id}= 2.5 mV dropped on 82 Ω line termination resistors of comparator to clean up the LVDS timing signals at idle line states

SCIT Stanford Cancer Imaging

Training Program

 Careful selection of resistive network is needed as it can introduce more jitter

 In our system, V_{id} can be <2.5 mV as the noise level is very low (~1 mV)

Experiments with 24:1 Timing Multiplexing Readout

Stanford Cancer Imaging **Training Program**

- LVDS 24:1 multiplexed timing signals of one detector unit (**Positive & Negative**)
 - Using 2x4 array of 3x3x10 mm³ fast LGSO crystal coated with BaSO₄ reflector
 - Triggered with Energy Signal

- Combined 24 SiPMs' fast output
 - 24:1 SiPM-to-channel multiplexing
- Average CTR of **107±3.6 ps** over multiple measurements @optimum 31 V SiPM biasing

– Near to 100 ps CTR as single 10 mm crystal detector ③

School of Medicine

Department of Radiology

- This 24:1 timing multiplexing method also has the potential to be used in other TOF applications due to:
 - -Simplicity and Scalability
 - -Cost/Area/Power Efficiency

-Most importantly, its "Ease of Implementation" & "Robustness"

Discussion

- Effective implementation of compact TOF-PET detector layer
 - Combined 8-timing channels (24 SiPM's fast outputs)
 - 107 ps FWHM CTR for 20 mm long crystal elements
 - 1.1 W power dissipation per detector unit layer
- Simpler possible version of the multiplexing scheme
 - Should mostly perform the same
 - Saving 7 micro-baluns
- There is a high potential this multiplexing scheme can serve more than 24 SiPMs (e.g. 48)

Next Steps:

Bottom

View

• **Currently** testing SMA-less Detector Layer Units (highly compact)

> 0.4 mm DF40C connectors

- Timing measurements with green 4-layer FR4 PCBs of 13.3 mm width & 0.4 mm thickness
- 4x6 array of 3x3 mm² SiPMs (photo-sensors) on back of green timing board

olecular Imaging

Program at Stanford

AIPS

4x6 SiPMs

Previous Readout with SMA Connectors

Under Test SMA-less Readout (Challenging to test)

• Each two timing boards will be mounted on a **10-layer FR4 red board** assigned for energy and positioning assessment

Getting Closer to Final Goal: Partial-Ring TOF-PET (16 Detector Modules)

Thank You! and

Mentors:

Drs. Andrei lagaru & Craig Levin

Stanford MEDICINE Molecular Imaging Instrumentation Laboratory

SCIT Stanford Cancer Imaging Training Program

(NIH T32 CA009695)

