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Positron Emission Tomography 
(PET) System

• %80 of PET usage in Cancer:
– Detecting and staging specific types of

cancer and/or assessing response to
treatment

• Cardovascular and/or Neurollgical
Disease
– Evaluating the function of organs, such

as the heart and/or brain
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Concept Behind PET

• Positron emitter radionuclides
– e.g ¹¹C, ¹³N, ¹⁵O, & ¹⁸F

• Ring of Detector modules
– Scintillation crystals + 

photosensor + electronic 
readout

• Event localization along lines 
of response (LOR)
– Arrival time difference of 

coincident events

Detector 
module
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• ∆t = t₂-t₁: Arrival time difference
between photons in coincident events

• CTR (Coincidence Time Resolution):
FWHM of ∆t distribution

• D: Patient diameter (e.g. 40 cm)
• c = 3×10¹⁰ cm/s: speed of light
• ∆x = c × CTR/2: Localization error
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Time of Flight Positron Emission 
Tomography (TOF-PET)

Confined probability
to a small segment
on the LOR J

Equal probability
in all voxels along
the LOR L

∆x>D ∆x<D

CTR (ps) ∆x = c×CTR
2

Gain = 𝑺𝑵𝑹𝑻𝑶𝑭
𝑺𝑵𝑹𝑵𝒐𝒏'𝑻𝑶𝑭

≈ 𝑫

c×CTR
2

1000 15 cm 1.6
500 7.5 cm 3.1
400 6 cm 2.6
214 3.7 cm 3.5
100 1.5 cm 5.2

https://oncologymedicalphysics.com/nuclear-tomographic-imaging/
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https://www.siemens-healthineers.com/en-us/molecular-imaging/pet-ct/biograph-vision-quadra

State-of-the-Art: 214 ps CTR 
TOF-PET/CT

• Improved CTR (214 ps) and localization along LOR (3.7 cm)
– Improved reconstructed image SNR, signal-to-background ratio, image quality, accuracy, and lesion detectability

• or getting the same image quality as Conventional PET
– Lower injected dose to patients or shorter scan time
– Wider category of patients can be served

Single Bed Position Images

Improved Image Quality                   Shorter Scan Time
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• At system level, 214 ps is the best commercially-
available CTR (Biograph TOF-PET/CT)

• Currently several benchtop experiments with CTR ≤100
ps using single-pixel detectors
− Challenging to scale results up to full system

System Design Approaches:
• One-to-one coupling of scintillation crystals to compact

sized SiPMs:
× Large number of electronic readout channels needed
×Costly, not power efficient, and heat generated degrading

SiPM performance, especially CTR

System Level Electronic Readout 
for TOF-PET

• Designing ASICs
× Long design time
× Also costly

Multiplexing:
• Simply hardwiring SiPMs signals together
× Parasitic capacitance >>> CTR degradation

• Resistive charge division
×High RC constant >>> CTR degradation

• Delay-line method
× Lower SNR, especially for longer delays
×Requiring more resources from FPGA
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Scale-Up Scheme of 100 ps TOF-PET
• J. W. Cates, C. S. Levin, Physics in Medicine and Biology, 2018
• S. Pourashraf, et al, Physics in Medicine and Biology, 2021
• S. Pourashraf, et al, IEEE TRPMS, 2022

Partial-Ring TOF-PET:
16 detector modules
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Electronic Read-out of Detector 
Layer Unit

• Hardwired each 3 SiPM fast outputs
• Creating a 24:8 multiplexing ratio
• J. W. Cates, C. S. Levin, Physics in Medicine

and Biology, 2018
• S. Pourashraf, et al, Physics in Medicine and

Biology, 2021
• S. Pourashraf, et al, IEEE TRPMS, 2022
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Multiplexing of Timing Channels

• Not aware of an electronic component 
to efficiently combine our sharp edge 

LVDS timings! 

• Impedance mismatch and reflection due to stubs
(unterminated length of drivers to the main bus)

• Needs careful considerations
– Otherwise signal integrity issue, increased jitter,

and loss of information

Why not simply combine LVDS signals?
• Standard LVDS has several advantages, but are 

current mode drivers not voltage!
• But our case, several

drivers (D) hanging off a
main bus line with one
receiver (R) at the end!

https://www.ti.com/lit/an/snla375/snla375.pdf?ts=1667664571867
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Our 24:1 Timing Multiplexing 
Approach

• Only passive micro-baluns
and one extra comparator
used
− Saving footprint
− Cost effective
− Power efficient

Just 4.5 mW/Channel 
extra power dissipation!

• Converting 8-LVDS timing
signals to single-ended
outputs using passive
micro-baluns

• Then again converting
these single-ended outputs
to differential signals using
micro-baluns

• Finally, hardwiring these 8 differential
timing outputs at nodes A₁...₈ & B₁...₈
inputting the differential pins of the last
MAX40025 comparator to produce the
final LVDS timing channel
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• Compact and scalable
− Timing chain implemented in 13.3 mm width of 

a 4-layer FR4 PCB (green board)
− 4x6 array of 3x3 mm² SiPMs on timing board
− Energy chain implemented in 13.3 mm width of 

a 6-layer FR4 PCB board (red board)
LVDS

Timing

Dynamic 
TOT CPLD

USB Blaster 
Plug

Energy

25 MHz Clock 
Oscillator

13.3 mm 13.3 mm

24-SiPM Back of Red Board:

PCBs for System Development Stanford Cancer Imaging 
Training Program
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PCB and Physical Implementation

• Multiplexing chain:
−Didn't increase the 13.3 mm width of our PCB J

P High sensitivity remains
− Increased the length of PCB only ~27 mm
ü Should not have effect on increasing jitter as

the timing signals are already digitized! J

Comparators
MAX40025

RF Amplifiers
BGA729N63×3 mm² SiPM Array

Series-J

Micro-Baluns
DXW21HN5011

13.3 mm

13.3 mm
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• External fail-safe resistive biasing at the
differential inputs of all MAX40025 comparators
– It provided 2.1 V common mode voltages for

comparator’s positive and negative inputs
– It also provided Vid= - 2.5 mV dropped on 82 Ω

line termination resistors of comparator to clean
up the LVDS timing signals at idle line states

Fail-Safe Biasing for Comparators
One channel 
Timing Chain

:

External fail-safe 
biasing 

Idle line state 
problem 

– Careful selection of resistive network is needed as
it can introduce more jitter

– In our system, Vid can be <2.5 mV as the noise
level is very low (~1 mV)

Stanford Cancer Imaging 
Training Program



MIPS Stanford University
Molecular Imaging
Program at Stanford

School of Medicine
Department  of  Radiology 14

• Combined 24 SiPMs’ fast output
− 24:1 SiPM-to-channel multiplexing

• Average CTR of 107±3.6 ps over multiple measurements
@optimum 31 V SiPM biasing
−Near to 100 ps CTR as single 10 mm crystal detector J

Experiments with 24:1 Timing 
Multiplexing Readout

~20 mm

• LVDS 24:1 multiplexed timing signals of one
detector unit (Positive & Negative)
−Using 2x4 array of 3x3x10 mm³ fast LGSO

crystal coated with BaSO₄ reflector
− Triggered with Energy Signal

CTR of 24:1 Multiplexed Timing

Best CTR:
103.56 ps

LVDS 24:1 multiplexed 
timing Signals

Average CTR: 
107±3.6 ps
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Some Other Time of Flight 
Applications

15

Automotive
3D TOF Camera

Robotics

• This 24:1 timing multiplexing method also has the potential to be used in other
TOF applications due to:

−Simplicity and Scalability
−Cost/Area/Power Efficiency

−Most importantly, its “Ease of Implementation” & “Robustness”
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Discussion

• Effective implementation of compact TOF-PET
detector layer
− Combined 8-timing channels (24 SiPM’s fast outputs)
− 107 ps FWHM CTR for 20 mm long crystal elements
− 1.1 W power dissipation per detector unit layer

• Simpler possible version of the multiplexing
scheme
− Should mostly perform the same
− Saving 7 micro-baluns

• There is a high potential this multiplexing scheme
can serve more than 24 SiPMs (e.g. 48)
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Next Steps:

0.4 mm 
Thick13.3 mm

• Currently testing SMA-less
Detector Layer Units (highly
compact)

• Timing measurements with
green 4-layer FR4 PCBs of
13.3 mm width & 0.4 mm
thickness

• 4x6 array of 3x3 mm² SiPMs
(photo-sensors) on back of
green timing board

4x6 SiPMs

Top 
View

Bottom 
View

• Each two timing boards will be mounted on a
10-layer FR4 red board assigned for energy
and positioning assessment

Previous Readout with SMA Connectors

Under Test SMA-less Readout
(Challenging to test)0.4 mm DF40C 

connectors
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Getting Closer to Final Goal:
Partial-Ring TOF-PET (16 Detector Modules)
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Thank You!
and

Mentors:
Drs. Andrei Iagaru & Craig Levin
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