A Machine-Learning Approach to Differentiating Benign and Malignant Peripheral Nerve Sheath Tumors

A MULTICENTER STUDY

Michael Zhang, MD
Mentors: K. Yeom, S. Napel
10.21.20
Outline

- **Background:**
 - Benign and Malignant PNST
 - Current Clinical Workflow

- **Methods:**
- **Results**
- **Future Directions**

Goal: Develop a binary classifier using MRI information, providing early diagnosis of Benign and Malignant peripheral nerve sheath tumors (PNSTs)
Benign and Malignant PNST

Peripheral Nerve Sheath Tumors (outside the brain and spine)

- **Benign (BPNSTs)**
 - Schwannoma
 - Neurofibroma
 - Perineuroma
 - Hybrids
 - Ganglioneuroma

- **Malignant (MPNSTs)**
MPNSTs – Can’t Miss Diagnosis

- Natural History
 - 5-year survival 30-50%
 - 50% of all MPNSTs occur in Neurofibromatosis (NF1)
 - 5-10% of NF1 patients will develop MPNSTs

- Pathophysiology
 - Malignant Transformation
 - Neurofibroma → Malignancy
 - Invasion and metastasis → morbidity & surgical difficulty
Surgical Morbidity – Complex

MPNST, Surgical Goal: complete resection – *total resection is curative* – with minimal disruption of nerve function

Surgical Challenges
- Greater nerve fiber invasion
- Neighboring tissue invasion
- Needs wide excisional margins
- Must avoid seeding
- Expect repeat surgery
Surgical Morbidity – Simple

BPNSTs are surgically simpler
- Local involvement
- Low recurrence potential

Schwannoma:
- Tumor of supporting Schwann cells
- Single nerve fiber
- Tumor displaces uninvolved fascicles

Neurofibroma:
- Tumor of the endoneurium
- Single or multiple nerves
- Possible functional implications
A Need for Early Diagnosis by Imaging

Accurate imaging can aid surgical planning to maximize quality of life
- Resect MPNSTs earlier
- Avoid unnecessary surgery

Imaging Options
- MRI: qualitative and semantics
- PET: SUV > 3.5
- Gold Standard: Surgical Biopsy

Wasa et al. - MRI Criteria
With 2 of 4 – 61% sens, 90% spec

1. Diameter > 5 cm
2. Peripheral tumor enhancement
3. Perilesional edema
4. Intra-tumoral cyst
Radiographic Ambiguity

MRI T1 with Gad Fat Sat commonly available

- Neck – NF1
- Right Thigh – MPNST
- Left Thigh – MPNST
- Right RP – MPNST
Additional Tools: PET, Derlin et al.

PET – less available

SUVmax ≥ 3.5
- 100% Sensitive
- 54.5% Specific
- 47.4% PPV

MRI comparison
- 66.7% sensitive
- 90% specific
- 75% PPV
Outline

Goal: Develop a binary classifier (MPNST vs BPNST) with MRI

- Background:
- **Methods**:
 - Segmentation
 - Clinical data collection
 - Feature
 - Extraction
 - Selection
 - Optimization
 - Prediction Analysis
- Results
- Future Directions
Workflow

- **Input**: MRI T1-gad with Fat Suppression
 - Most available

- **Output**: Classification probability and label
 - MPNST or BPNST

Goal: develop a binary classifier for Malignant versus Benign peripheral nerve sheath tumors (PNSTs) with MRI
Radiomics Workflow

- Image segmentation
- Clinical data collection
- Feature
 - Extraction
 - Selection
 - Optimization
- Prediction Analysis

Goal: develop a binary classifier for Malignant versus Benign peripheral nerve sheath tumors (PNSTs) with MRI
Images and Segmentation

- Imaging Segmentation
 - 171 Benign
 - 95 Malignant
 - SHC, Uni. Utah, Mayo

- Clinical data collection

- Feature
 - Extraction
 - Selection
 - Optimization

- Prediction Analysis
Clinical Features

- Chart review
- Red Flag symptoms of MPNSTs/infiltrative tumors

<table>
<thead>
<tr>
<th></th>
<th>Benign (N = 171)</th>
<th>Malignant (N = 95)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yrs. (SD)</td>
<td>45.5 (15.3)</td>
<td>43.3 (18.2)</td>
<td>0.320</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>75 (44%)</td>
<td>54 (57%)</td>
<td>0.042</td>
</tr>
<tr>
<td>Female</td>
<td>96 (56%)</td>
<td>41 (43%)</td>
<td></td>
</tr>
<tr>
<td>Spontaneous Pain</td>
<td>41 (24%)</td>
<td>71 (75%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Motor Deficit</td>
<td>45 (26%)</td>
<td>31 (33%)</td>
<td>0.275</td>
</tr>
<tr>
<td>NF1</td>
<td>38 (22%)</td>
<td>41 (43%)</td>
<td><0.001</td>
</tr>
<tr>
<td>NF2</td>
<td>10 (6%)</td>
<td>0 (0%)</td>
<td>0.016</td>
</tr>
<tr>
<td>Schwannomatosis</td>
<td>5 (3%)</td>
<td>0 (0%)</td>
<td>0.164</td>
</tr>
</tbody>
</table>

Red Flag symptoms of MPNSTs/infiltrative tumors:
- Pain
- Rapid growth
- Neurological deficits
Feature Extraction

- Quantitative Imaging Feature Pipeline (Stanford, Napel)
- Upload NifTI segmentations
- Pyradiomics Package: 900 standardized features
Feature Selection – Preliminary Model

1. LASSO
 - 70:30 Train Test Split
 - R, glmnet-package
 - 10x Cross Validation
 - 1000 cycles

2. Preliminary model
 - 80% selection
 - 21 Features (from 900)
 › 19 Textural
 › 2 Clinical

3. Error Reduction

1. 900 Initial Features
 - First Order Statistics (19 features)
 - Shape-based (3D) (16 features)
 - Shape-based (2D) (10 features)
 - Gray Level Cooccurrence Matrix (24 features)
 - Gray Level Run Length Matrix (16 features)
 - Gray Level Size Zone Matrix (16 features)
 - Neighbouring Gray Tone Difference Matrix (5 features)
 - Gray Level Dependence Matrix (14 features)

2. 21 Selected Features
 1. Intercept
 2. log-sigma-5-mm-3D_glim_RunLengthNonUniformity
 3. wavlet-HLS_glim_MaximumProbability
 4. wavlet-HLS_glim_RunVariance
 5. original_shape_MaximumCircumference
 6. original_glim_RunEmphasis
 7. original_shape_Maximum2DCircumference
 8. log-sigma-5-mm-3D_glim_GrayLevelNonUniformity
 9. Energy
 10. log-sigma-5-mm-3D_interborder_Skewness
 11. log-sigma-5-mm-3D_interborder_Max
 12. wavlet-HLS_glim_LargeAreaLargeGrayLevelEmphasis
 13. log-sigma-3-mm-3D_interborder_Energy
 14. wavlet-HLS_interborder_Energy
 15. log-sigma-3-mm-3D_interborder_TotalEnergy
 16. original_interborder_TotalEnergy
 17. wavlet-HLS_interborder_TotalEnergy
Feature Selection – Optimized Model

- Imaging Segmentation
- Clinical data collection

- Feature
 › Extraction
 › Selection
 › Optimization
 • caret package
 • 21 features, ranked

- Prediction Analysis
Goal: Develop a binary classifier (Malignant/Benign) with MRI

- Background:
- Methods:
- Results
 - 1. Texture + Clinical
 - 2. Texture Only
 - 3. Clinical Only
 - 4. Comparison to Human
- Future Directions
1. Clinical + Texture: AUCs

Receiver Operating Curve for Training Set

- Sensitivity (True Positive Rate)
- AUC = 0.940

Receiver Operating Curve for Test Set

- Sensitivity (True Positive Rate)
- AUC = 0.845
2. Comparison to Human Readers

- Two of each training level
 - Two trials
 - 1. Imaging + Clinical
 - 2. Imaging only
 - Imaging:
 - T1W, post-gad, fat-sat +
 - T2W or proton-density images, when available

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Student</td>
<td>0.518</td>
<td>0.775</td>
<td>0.538</td>
<td>0.752</td>
</tr>
<tr>
<td>PN Surgery Fellow</td>
<td>0.625</td>
<td>0.814</td>
<td>0.648</td>
<td>0.798</td>
</tr>
<tr>
<td>PN Surgeon</td>
<td>0.821</td>
<td>0.667</td>
<td>0.575</td>
<td>0.872</td>
</tr>
<tr>
<td>Radiologist</td>
<td>0.839</td>
<td>0.676</td>
<td>0.588</td>
<td>0.896</td>
</tr>
<tr>
<td>Overall</td>
<td>0.684</td>
<td>0.742</td>
<td>0.589</td>
<td>0.823</td>
</tr>
<tr>
<td>AUC</td>
<td></td>
<td></td>
<td></td>
<td>0.704</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Student</td>
<td>0.661</td>
<td>0.725</td>
<td>0.569</td>
<td>0.796</td>
</tr>
<tr>
<td>PN Surgery Fellow</td>
<td>0.554</td>
<td>0.775</td>
<td>0.577</td>
<td>0.759</td>
</tr>
<tr>
<td>PN Surgeon</td>
<td>0.821</td>
<td>0.686</td>
<td>0.590</td>
<td>0.875</td>
</tr>
<tr>
<td>Radiologist</td>
<td>0.839</td>
<td>0.686</td>
<td>0.597</td>
<td>0.898</td>
</tr>
<tr>
<td>Overall</td>
<td>0.704</td>
<td>0.723</td>
<td>0.582</td>
<td>0.826</td>
</tr>
<tr>
<td>AUC</td>
<td></td>
<td></td>
<td></td>
<td>0.702</td>
</tr>
</tbody>
</table>
Conclusions and Limitations

- Radiomics Classifier Outperforms Human readers

- Radiomics
 - Sensitivity 0.676
 - Specificity 0.882

- Humans
 - Sensitivity 0.839
 - Specificity 0.686

- Imaging Availability
 - Axial view only
 - T1W only
 - Acquisition technique: fat saturation, contrast quality

- Patient heterogeneity: brachial plexus, arm, wrist

- Segmentation vs Semantics
Semantics not captured by segmentations

BPNST: Neurofibroma
 - Target sign

BPNST: Schwannoma
 - Split fat sign

MPNST
 - Absent split fat sign

MPNST
 - Perilesional edema

Stanford University
Acknowledgements

Radiology
- Dr. Kristen Yeom
- Dr. Sam Gambhir
- Dr. Heike Daldrup-Link

PNST Team
- Dr. Elizabeth Tong
- Dr. Thomas Wilson
- Dr. Mark Mahan
- Lydia Tam
- Edward Lee

QIFP Team
- Professor Sandy Napel
- Sarah Mattonen
- Dev Gude

Stanford Neurosurgery
- Dr. Gary K. Steinberg
- Dr. Gerald Grant
- Dr. Gordon Li