Work in Progress:

Tumor-Immune Interactions in Triple Negative Breast Cancer Brain Metastases

- Triple Negative Breast Cancer
- Breast-to-Brain Metastases
 - TNBC
 - Leptomeningeal Disease (LMD)
- Proposed Project Aims
 - Rationale
 - Preliminary Data
 - Approach
- Current Work and Future Timeline

Maxine Umeh-Garcia, PhD, MSc.
SCIT T32 Seminar
Hayden Gephart and Plevritis Labs
April 22nd 2020
Breast Cancer

• 1 in 8 women in the U.S. will develop invasive breast cancer

• In 2018, an estimated 268,600 new cases (invasive) and 62,930 (non-invasive) breast cancer are expected to be diagnosed in women in the U.S., of which about 41,760 women are expected to die

 • In women under 45, breast cancer is most common in African-American women, and they are more likely to die of breast cancer

 • Currently more than 3.1 million women with a history of breast cancer in the U.S.

 • 85% of breast cancers occur in women who have no family history of breast cancer
Triple Negative Breast Cancer (TNBC)

- TNBC is a heterogeneous group of tumors simply defined by the absence of estrogen (ER) and progesterone (PR) hormone receptors, and lack of overexpression of epidermal growth factor receptor 2 (ErbB2/Her2) gene.

- TNBC account for **10-20%** of all invasive breast cancers.

- TNBC is associated with African-American race, younger age, higher tumor grade, and more advanced tumor stage at diagnosis.

- Chemotherapy is the **only** recommended systemic treatment, however **only 30%** of TNBC patients achieve pCR. Patients who do not have **6-fold** higher risk of relapse, and **12-fold** higher risk of death.

- Survival at 3 yrs is lower (68%) for metastatic TNBC patients compared to other metastatic breast cancer types (88%).
Triple Negative Breast Cancer (TNBC)
TNBC in African-American Women

- Women of African ancestry have a disproportionately higher frequency (up to 79%) of TNBC, compared to women of European ancestry
- TNBC frequency is consistently higher in women of African ancestry than any other racial/ethnic group

- In African-American women premenopausal status, increased parity (pregnancies), and shorter duration of breastfeeding are positively associated with increased risk of TNBC

- 5-year distant relapse-free survival is 62.8% for young black women, compared with 77% for young white women with equal access to health care (UK study)
Primary TNBC

overexpression
miR-127

reactivation of
LRIG1

TNBC Metastasis

Dissertation Research –
What molecular mechanisms and/or signaling pathways regulate TNBC cells in vitro and TNBC tumors in vivo?

Postdoctoral Research –
What molecular mechanisms drive shedding/dissemination, seeding, and outgrowth of TNBC metastases?
Breast Cancer Brain Metastasis

- Breast cancer brain metastasis (BCBM) occurs in **10-30% of metastatic breast cancer patients**
 - Second leading cause of brain metastases following lung cancer

- Incidence of BCBM continues to increase
 - Prolonged patient survival
 - Improved imaging techniques

- Median survival ranges from 2 – 25.3 months
 - **Few patients survive past 1 year**
 - Associated with serve neurological decline

![Before and After Surgical Resection](image)
- BCBM Incidence and Survival is breast cancer subtype dependent

- **Current treatment strategies:**
 - Surgical resection
 - Whole brain radiation therapy (WBRT)
 - Stereotactic Radiosurgery
 - Chemotherapy
 - Targeted therapies (HR+: Tamoxifen, HER2+: Trastuzamab)

- **Major challenge in treating BCBMs is the Blood-Brain-Barrier**

Although there are ongoing clinical trials, no FDA-approved systemic treatments for BCBM
Leptomeningeal Disease (LMD)

- LMD is defined as **tumor spread within the leptomeninges** and subarachnoid space
- 10% of patients with solid cancers present with LMD

- **Breast (TNBC), lung, and melanoma** are the most common primary tumor sites in LMD patients

- **LMD survival** is extremely poor
 - Lung: 3 - 6 months
 - Breast: 3.5 - 4.4 months
 - Melanoma: 1.7 - 2.5 months

- **Therapeutic strategies** include intrathecal therapy (spinal canal and subarachnoid space to reach CSF), systemic therapy, and radiotherapy (WBRT)

- To date, there have been only 6 randomized clinical trails specifically on treatment of LMD

- Understanding the molecular mechanisms that drive **TNBC brain/LMD metastasis (seed – primary TNBC and soil – normal brain microenvironment)** pose an unmet clinical need
“The Birth” of the Project

Angelo et al, 2014, Nature Medicine
Project Hypothesis

The spatial architecture of the tumor microenvironment reflects distinct tumor-immune interactions; these interactions prime systemic immune tolerance of disseminated tumor cells, enabling brain-specific metastases.
AIM 1: DETERMINE THE EXTENT TO WHICH THE STRUCTURED MICROENVIRONMENT CORRELATES WITH PATIENT OUTCOMES BY GENERATING A TUMOR-IMMUNE SPATIAL MAP OF TNBC BRAIN METASTASES.

RATIONALE:

1. Immune infiltration is associated with patient survival in specifically in TNBC subtype

2. Angelo Lab – Immune landscape of 41 primary TNBCs using MIBI

3. The brain was previously thought to be an “immune-privileged” space so there has been little interrogation of the immune landscape of TNBC brain metastases

Keren et al, 2018, Cell
AIM 1: DETERMINE THE EXTENT TO WHICH THE STRUCTURED MICROENVIRONMENT CORRELATES WITH PATIENT OUTCOMES BY GENERATING A TUMOR-IMMUNE SPATIAL MAP OF TNBC BRAIN METASTASES.

PRELIMINARY DATA:

1. Presence of infiltrating immune cells in a mouse model of human TNBC brain metastases

2. Astrocytes increase the production of glial fibrillary acidic protein (GFAP) in the presence of TNBC leptomeningeal disease
AIM 1: DETERMINE THE EXTENT TO WHICH THE STRUCTURED MICROENVIRONMENT CORRELATES WITH PATIENT OUTCOMES BY GENERATING A TUMOR-IMMUNE SPATIAL MAP OF TNBC BRAIN METASTASES.

APPROACH

A. Construct an in-situ subcellular protein spatial map of the TNBC brain metastases microenvironment using MIBI on archival FFPE tissue samples.

B. Quantitate the composition and spatial architecture of the tumor-immune microenvironment using a validated image analysis pipeline.

C. Assess the extent to which the composition and spatial architecture correlates with CNS disease progression, the likelihood of LMD development, and patient survival.
A. Protein **spatial map of the TNBC brain metastases microenvironment**

Tumor-Immune Panel Keren et al, 2018, Cell

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Immune Cell Types</th>
<th>Antigen Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Catenin</td>
<td>Lymphocytes</td>
<td>CD11b</td>
</tr>
<tr>
<td>EGFR</td>
<td>Monocytes</td>
<td>CD11c</td>
</tr>
<tr>
<td>Keratin 6</td>
<td></td>
<td>CD63</td>
</tr>
<tr>
<td>Keratin 17</td>
<td></td>
<td>CD68</td>
</tr>
<tr>
<td>Pan-keratin</td>
<td>CD56</td>
<td>Neutrophils</td>
</tr>
<tr>
<td>p53</td>
<td>CD16</td>
<td>MPO</td>
</tr>
</tbody>
</table>

Stroma		
CD31	CD138	
SMA	CD16	
Vimentin	CD56	

Cell Status		
dsDNA	CD15	
H3K27me3	CD133	
Ki-67	CD15	
H3K9ac	CD16	
pS6	CD63	

<table>
<thead>
<tr>
<th>Immune Regulation</th>
<th>Lag3</th>
<th>PD1</th>
<th>PD-L1</th>
<th>IDO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HLA1</td>
<td>HLA-DR</td>
<td>CD209</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interactions</th>
<th>CD47</th>
<th>SIRPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD11b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD200</td>
<td>CD200R</td>
<td></td>
</tr>
<tr>
<td>CX3CL1</td>
<td>CX3CR1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brain Resident Cell Types</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrocytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microglia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMEM119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2RY12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iba1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iba1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AIM 2: IDENTIFY TUMOR-IMMUNE RECEPTOR-LIGAND PAIRS BY GENERATING A TRANSCRIPTOMIC PROFILE OF TNBC BRAIN METASTASES, AND DETERMINE IF THESE INTERACTIONS CORRELATE WITH TUMOR-IMMUNE SPATIAL ARCHITECTURE.

RATIONALE:

1. MIBI panel is highly focused – unbiased approach to identify tumor-immune interactions (receptor-ligand pairs), which can be then be assessed by MIBI or traditional IHC

PRELIMINARY DATA:

1. Assessed a few validated tumor-immune receptor-ligand pairs in GBMseq.org

![PDCD1 (PD-1) Log2 Counts Per Million](chart.png)
AIM 2: IDENTIFY TUMOR-IMMUNE RECEPTOR-LIGAND PAIRS BY GENERATING A TRANSCRIPTOMIC PROFILE OF TNBC BRAIN METASTASES, AND DETERMINE IF THESE INTERACTIONS CORRELATE WITH TUMOR-IMMUNE SPATIAL ARCHITECTURE.

APPROACH

A. **Build RNA expression profiles of TNBC brain metastases** (and healthy brain) using **single-cell RNA-sequencing**

B. Identify co-expression of genes that encode **receptor-ligand pairs** in tumor and immune cell populations using biocomputational approaches.

C. Assess the extent to which **receptor-ligand pairs** correlate with tumor-immune spatial architecture.
AIM 3: DETERMINE IF TUMOR-IMMUNE INTERACTIONS IN PRIMARY TNBC PRIME TOLERANCE OF DISSEMINATED CELLS ENABLING METASTASES, AND DEFINE IF INTERACTIONS CORRELATE WITH RACE.

RATIONALE:

1. Enk et al. – Altered function of dendritic cells in progressing versus regressing melanoma metastases. Hypothesized that this **tolerance was a result of dendritic cells co-opted by the tumor**, which possessed the ability to **migrate from the primary tumor to the regional lymphatic organs**.

 Suggests that the immune landscape of the primary tumor could contribute to systemic immune tolerance, enabling metastatic outgrowth
AIM 3: DETERMINE IF TUMOR-IMMUNE INTERACTIONS IN PRIMARY TNBC PRIME TOLERANCE OF DISSEMINATED CELLS ENABLING METASTASES, AND DEFINE IF INTERACTIONS CORRELATE WITH RACE.

APPROACH

A. Visualize the tumor-immune landscape in primary TNBC tumors using MIBI, and assess the extent to which it correlates with brain metastases and/or LMD development.

B. Identify tumor-immune interactions that are differentially expressed between patients of differing racial backgrounds
 Racial disparity in primary TNBC
 Studies (limited) have identified differences in immune response based on patient race

C. Measure expression of relevant targets in human cerebrospinal fluid (CSF).
 CSF can detect changes in brain tumors
 Patient CSF can easily be collected/stored
Acknowledgments

✧ Melanie Hayden Gephart, MD, MAS
✧ Sylvia K. Plevritis, PhD
✧ Drs. M. Angelo, S. Napel, S. Quake, C. Curtis
✧ Gephart Lab Members
✧ Plevritis Lab Members
✧ Funding: NIH SCIT T32

Thank you for your attention!

Questions?