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Abstract

During social interactions, speakers signal information about their emotional state through their voice, which is known as emotional
prosody. Little is known regarding the precise brain systems underlying emotional prosody decoding in children and whether accurate
neural decoding of these vocal cues is linked to social skills. Here, we address critical gaps in the developmental literature by
investigating neural representations of prosody and their links to behavior in children. Multivariate pattern analysis revealed that
representations in the bilateral middle and posterior superior temporal sulcus (STS) divisions of voice-sensitive auditory cortex
decode emotional prosody information in children. Crucially, emotional prosody decoding in middle STS was correlated with
standardized measures of social communication abilities; more accurate decoding of prosody stimuli in the STS was predictive of
greater social communication abilities in children. Moreover, social communication abilities were specifically related to decoding
sadness, highlighting the importance of tuning in to negative emotional vocal cues for strengthening social responsiveness and
functioning. Findings bridge an important theoretical gap by showing that the ability of the voice-sensitive cortex to detect emotional

cues in speech is predictive of a child’s social skills, including the ability to relate and interact with others.
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Introduction

The human voice is a critical social stimulus in a child’s
environment. The voice not only conveys semantic infor-
mation (“what”) through speech, but it also provides
information about the identity (“who”) and the emo-
tional state (“how”) of the speaker (Belin et al. 2004),
which is known as emotional prosody (Schirmer and Kotz
2006; Wildgruber et al. 2006; Briick, Kreifelts, and Wild-
gruber 2011; Grandjean 2021). Decoding these different
pieces of information from the vocal signal is critical
for navigating the social world. Understanding how a
communication partner is feeling is crucial for provid-
ing empathy and support and is particularly important
for building and maintaining interpersonal connections.
While the human voice serves as a conduit for convey-
ing emotional information in communication (Pell and
Kotz 2021), little is known regarding the neurobiological
mechanisms underlying emotional prosody perception
in children and their links to broader measures of social
function.

Vocal-emotional information is conveyed by a
speaker’s intonation, emphasis, rhythm, and speech rate
(Hammerschmidt and Jirgens 2007), and these vocal

gestures translate into an array of acoustical cues
embedded in ongoing speech (Banse and Scherer 1996).
For example, when a speaker is sad, vocal pitch and
speech rate are reduced relative to neutral speech;
however, when a speaker is happy, vocal pitch and speech
rate typically increase compared to neutral speech.
During the early stages of child development, young
listeners begin to map these distinct acoustical features,
which include changes in vocal pitch, timing, and timbre,
on to speakers’ emotional states (Flom and Bahrick
2007; Blasi et al. 2011). Following extensive experience
and learning, this vocal-emotional mapping yields an
efficient auditory mechanism for rapidly ascertaining
the emotional state of a communication partner (for a
review, see Morningstar et al. 2018).

An emerging literature has shown that, similar to
other cognitive skills such as reading and memory,
typically developing children reveal a wide range
of abilities with regard to social skills: While some
children effortlessly interact in social settings and
form social bonds, others have more difficulty with
these tasks (Constantino and Todd 2003; Posserud
et al. 2006). Consistent with these findings, previous
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studies investigating emotional prosody processing
have revealed substantial interindividual variability in
children for recognizing and categorizing emotions from
voices (Nowicki and Duke 1994). Thus, both decoding
of emotional prosody information and broader social
communication skills are continuously distributed even
among the general population of children without
neurodevelopmental disorders associated with social
communication and interaction deficits (Constantino
and Todd 2003). Importantly, theoretical models have
posited a link between individuals’ ability to decode
emotions of other individuals and the quality of their
social interactions (Keltner and Haidt 1999; Van Kleef
2009). These theoretical links have been substantiated by
behavioral evidence showing that children’s emotional
prosody recognition abilities are associated with their
social abilities (Chronaki et al. 2015; Neves et al.
2021). While processing vocal emotions represents a
crucial aspect of successful social interactions, it is
unknown whether heterogeneity in neural decoding
of emotional prosody information explains variance in
social communication abilities in children.

Despite the importance of decoding vocal-emotional
information for meaningful social interactions (Pell and
Kotz 2021), little is known regarding the brain sys-
tems and neural representations underlying emotional
prosody perception in typically developing children and
whether these representations are related to social
function. The vast majority of research in this area
has been conducted in adult participants, and results
from these studies have yielded inconsistent results.
Supplementary Table 1 summarizes experimental and
analytic approaches used in this literature as well as
the brain regions identified in these studies in response
to emotional prosody. Results from several functional
magnetic resonance imaging (fMRI) studies support a
crucial role for superior temporal cortex by showing
that hearing a range of emotional prosody stimuli elicits
increased activation in supratemporal plane (STP) as
well as anterior superior temporal sulcus (aSTS), middle
superior temporal sulcus (mSTS), and posterior superior
temporal sulcus (pSTS) (Mitchell et al. 2003; Grandjean
et al. 2005; Wildgruber et al. 2005; Ethofer et al. 2006,
2012; Johnstone et al. 2006; Beaucousin et al. 2007;
Briick, Kreifelts, Kaza, et al. 2011; Goerlich-Dobre et al.
2014; Ceravolo et al. 2016). Additional support for the
role of superior temporal cortex in emotional prosody
perception includes an fMRI study which showed that
multivariate patterns of fMRI activity within STP and
superior temporal sulcus (STS) discriminate between
different categories of vocal-emotional information;
however, multivariate pattern analysis (MVPA) in this
study was restricted to superior temporal regions and
did not examine brain systems beyond temporal cortex
(Ethofer et al. 2009). Apart from superior temporal cortex,
other studies of emotional prosody processing have
highlighted additional cortical and subcortical brain
regions, including lateral prefrontal and orbitofrontal

cortex (Buchanan et al. 2000; Kotz et al. 2003; Sander
et al. 2005; Fruhholz et al. 2012), the insula (Bach et al.
2008; Seydell-Greenwald et al. 2020; Giordano et al.
2021), and the amygdala (Frihholz and Grandjean 2013;
Frithholz et al. 2015). Results from previous studies have
shown increased activation in this extended collection of
brain regions during the processing of emotional prosody
stimuli; however, these findings beyond temporal cortex
have been inconsistent between studies. Twwo studies that
examined brain systems underlying emotional prosody
processing in children identified an extensive brain
network encompassing superior temporal, prefrontal,
occipital, basal ganglia, and cerebellar brain regions;
however, these studies used a silent baseline for their
analyses and it therefore is unclear whether these effects
specifically reflect emotional prosody processing or
auditory processing more generally (Morningstar et al.
2019, 2020). Moreover, while a previous study of adults
revealed above chance decoding of emotional voices in
temporal and prefrontal regions using searchlight MVPA
across the whole brain (Kotz et al. 2013), studies including
children (Morningstar et al. 2019, 2020) have not applied
an MVPA approach to decoding emotional prosody.
Importantly,itis unknown how the brain systems serving
emotional prosody processing relate to broader measures
of social function.

Here, we build on prior studies and extend our knowl-
edge regarding the precise brain systems underlying
emotional prosody processing by examining this ques-
tion in children with a specific focus on identifying links
between prosody processing and broader measures of
social function. We used event-related fMRI to measure
neural responses in typically developing children aged
7-12 years while they listened to emotional prosody and
neutral speech (Fig. 1). Our study had 3 major goals. Our
first goal was to assess emotional prosody processing
within auditory cortex, encompassing regions of both
STP and STS. A limitation of previous studies has been
a lack of anatomical specificity in auditory cortex with
regard to emotional prosody processing (Ethofer et al.
2009; Grossmann et al. 2010; Morningstar et al. 2019,
2020; Zhang et al. 2019), and here, we sought to identify
specific subregions of auditory cortex that are sensitive
to these vocal features. Moreover, none of the studies
in children used MVPA techniques to examine whether
these auditory regions can reliably discriminate between
emotional and neutral prosody stimuli. MVPA exploits
multivariate information present in the functional
imaging data and has high statistical sensitivity to
detect differential activation patterns associated with
emotional prosody and neutral speech (Kriegeskorte and
Bandettini 2007; Kotz et al. 2013; Haynes 2015; Kragel and
LaBar 2016). Furthermore, with cross-validation, MVPA
provides a highly robust, neurobiologically plausible
measure of dissociations in activation patterns induced
by specific stimuli (Kriegeskorte and Douglas 2019).
We therefore used MVPA to decode emotional prosody
versus neutral speech, and distinct vocal emotions (sad
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Fig. 1. fMRI stimuli, scanning protocol, and analysis strategy. A) fMRI stimuli consisted of acoustic sentences spoken in emotional and neutral prosody.
Spectrograms of sentence #2, “my spoon is on the table,” spoken in neutral speech (upper panel), in sad prosody (lower-left panel) and in happy prosody
(lower-right panel). B) Stimuli were selected based on results from a behavioral experiment conducted in an independent cohort of 27 school-age,
typically developing children and 9 adults, who provided ratings on a 5-point scale (*how sad or happy is this voice?”). C) A sparse sampling fMRI
scanning protocol with a repetition time (TR) larger than the acquisition time (TA) was used to present acoustic stimuli during silent intervals between
volume acquisitions to eliminate the effects of scanner noise on auditory perception. D) Schematic of the analyses employed in the study. (i) Definition
of ROIs within auditory cortex. (ii) ROI-based multivariate pattern classification of neutral and emotional prosody was employed to compare decoding
accuracy between auditory cortical subdivisions of the STP and STS. (iii) A whole-brain multivariate pattern classification method was used to examine
whether brain regions beyond auditory cortex accurately discriminate emotional and neutral prosody stimuli. (iv) Associations between children’s
neural decoding of emotional prosody, social communication skills, and emotion recognition accuracy.
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Emotion Recognition
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and happy), in regions of interest (ROIs) within both
STP and STS. The second goal of the study was to
further assess the brain systems underlying emotional
prosody processing by examining the contributions of
brain regions beyond auditory cortex for the decoding
of these vocal cues using whole-brain searchlight MVPA
in children. To facilitate comparison with prior work,
we additionally analyzed neural response levels to
emotional prosody in auditory ROIs and across the whole
brain.

The third goal of our study was to investigate whether
decoding of emotional prosody is related to social com-
munication and emotion recognition abilities in typically
developing children. This is a crucial question for estab-
lishing a link between children’s sensitivity to emotional
prosody cues in everyday speech and their proficiency
in relating to their peers and establishing social bonds.
Importantly, no previous studies have examined the rela-
tionship between neural decoding of emotional prosody
and broader measures of social function in children. We
therefore related neural decoding accuracy for emotional
prosody stimuli to established measures of social com-
munication skills using the Social Responsiveness Scale-
2 (SRS-2; Constantino and Gruber 2012) and to behav-
ioral emotion recognition using the Diagnostic Analysis
System of Nonverbal Accuracy 2 (DANVA2; Baum and
Nowicki 1998).

We investigated differential links for neural decoding
of sad and happy prosody with children’s social com-
munication skills. Although a previous study in children
with autism has hinted at a differential impact of sad
versus happy social cue detection for social functioning
(Williams and Gray 2013), the robustness of this result
and its generalization to the auditory domain is not
clear (Trevisan and Birmingham 2016), and moreover,
it is unknown whether such a differentiation might be
observed in typically developing children.

Materials and methods
Participants

The Stanford University Institutional Review Board
approved the study protocol. Parental consent and
children’s assent were obtained for all evaluation
procedures, and participants were paid for their partic-
ipation in the study. We recruited a total of 31 typically
developing children from the San Francisco Bay Area in
CA, USA, to participate in the study. Ten participants
were excluded after data acquisition as they did not
meet data quality criteria based on maximal movement
during fMRI scanning (see below for more details). The
final sample for data analysis included n=21 children
between 7 and 12 years of age. No participants were
excluded during data analysis. Detailed demographic
and neuropsychological characteristics are given in
Table 1.

All children were required to have a full-scale
intelligence quotient (IQ) >80 as measured by the

Wechsler Abbreviated Scale of Intelligence (WASI). All of
the participants were right-handed and had no history
of neurological, psychiatric, or learning disorders and no
personal or family (first degree) history of developmental
cognitive disorders or heritable neuropsychiatric disor-
ders. Mothers of the participants reported no evidence of
significant difficulty during pregnancy, labor, delivery,
or the immediate neonatal period, and no abnormal
developmental milestones as determined by neurologic
history and examination.

fMRI stimuli

The stimuli presented during fMRI scanning consisted
of acoustic sentences spoken in emotional and neutral
prosody as well as nonspeech environmental sounds. The
emotional and neutral prosody stimuli were recorded in a
recording studio by a professional actress who produced
108 vocal samples of 2 sentences, “a bag is in the room”
(sentence #1) and “my spoon is on the table” (sentence
#2), using sad, happy, and neutral emotions (Fig. 1A).
These sentences were previously validated to be neutral
with regard to their emotional content (Ben-David et al.
2011). For both the sad and happy prosody conditions,
the actress varied the intensity of prosodic cues with the
goal of yielding both low-intensity and high-intensity
emotional cues. All vocal stimuli were recorded using
a Shure PG27-USB condenser microphone connected to
a MacBook Air laptop computer and were digitized at a
sampling rate of 44.1 kHz and D/A converted with 16-bit
resolution. A second class of stimuli included in the study
was nonspeech environmental sounds. These sounds,
which included brief recordings of laundry machines,
dishwashers, and other household sounds, were taken
from a professional sound effects library. All vocal and
environmental sound stimuli were band-pass-filtered
(0.08-10.5 kHz), downsampled to 22.05 kHz, edited to
equate stimulus intensity, and adjusted to a duration
of 1,826 ms with a linear fade to prevent click-like
sounds to occur at the end the stimuli. The vocal stimuli
were equalized to a duration of 1,826 ms because this
represents the average duration of the vocal stimuli. We
used Praat software (RRID: SCR_016564), which does not
alter the speech pitch properties of the recordings, to
normalize the duration of the vocal stimuli to 1,826 ms.
This process inherently alters the speech rate (i.e. the
number of syllables or words within a given time);
however, this process did not significantly affect the
quality of these stimuli. All vocal and environmental
stimuli can be downloaded from the Open Science
Framework (https://dx.doi.org/10.17605/OSFIO/TYFXS).

Stimulus selection experiment

Emotional and neutral prosody stimuli for the fMRI
experiment were selected based on results from a
behavioral experiment conducted in an independent
cohort of 27 school-age typically developing children
(mean age+standard deviation [SD]: 11.1+1.2 years;
sex: 10 female, 17 male) who did not participate in
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Table 1. Participants’ demographic and neuropsychological characteristics. Continuous measures are given as mean =+ SD.

Characteristic Study sample Population
Number of participants 21

Sex (female/male) 8/13

Age 10.71 £ 1.38 years

WASI: full-scale IQ 120.29 + 11.68 100.00 £ 15
WASI: verbal IQ 119.71 + 14.94 100.00 £+ 15
WASI: performance I1Q 117.14 £ 11.19 100.00 £ 15
WIAT-II: word reading 110.76 £+ 10.81 100.00 £+ 15
WIAT-II: reading comprehension 113.48 +£10.16 100.00 £+ 15
SRS-2: total standard t-score 47.19 £+ 8.08 50+ 10
SRS-2: social communication standard t-score 46.14 £7.19 50 + 10
DANVAZ2: receptive tests z-scored accuracy? 0.32 £ 0.43 0+1

az-scored emotion recognition accuracy averaged across 4 subtests: adult facial expressions, adult paralanguage, child facial expressions, and child paralanguage.
Abbreviations: DANVA2 = Diagnostic Analysis System of Nonverbal Accuracy 2 (Baum and Nowicki 1998); SRS-2 = Social Responsiveness Scale-2 (Constantino
and Gruber 2012); WIAT-1I = Wechsler Individual Achievement Test, Second Edition.

the fMRI study as well as 9 adults. The 108 vocal
samples initially produced by the professional actress
were reduced to 24 samples for presentation during
the stimulus selection experiment. Participants were
seated in a quiet room in front of a laptop computer,
and headphones were placed over their ears. Consistent
with established methods for developing emotional
prosody stimuli (Mazefsky and Oswald 2007; Ingersoll
2010; Nowicki 2010), participants were asked to rate the
valence of candidate sentence stimuli on a 5-point scale
(“how sad or happy is this voice?”). Each candidate vocal
stimulus was presented twice to each participant, and
the order of stimulus presentation was randomized for
each participant. Stimuli that were consistently rated
“1” and “5” by the child and adult participants were
identified as the high-intensity “sad” and “happy” stimuli
for the fMRI experiment; stimuli rated “2” and “4” were
identified as the low-intensity “sad” and “happy” stimuli;
and the stimulus consistently rated “3” was identified
as the “neutral” control stimulus. Dependent samples t-
tests comparing the mean ratings for the final stimuli for
both sentences confirmed statistical differences between
all happy, sad, and neutral stimuli (Fig. 1B).

fMRI task

Acoustic stimuli were presented in 10 separate fMRI runs,
each lasting for ~3.5 min. One run consisted of 39 trials
of acoustic sentence stimuli spoken in sad (high and low
intensities), happy (high and low intensities), and neu-
tral prosody as well as environmental sounds and catch
trials. Stimuli were pseudorandomly presented within
each run. Stimulus presentation order was kept constant
across participants. Before each run, child participants
were instructed to play the “kitty cat game” during the
fMRI scanning. While lying down in the scanner, children
were first shown a brief video of a cat and were told
that the goal of the cat game was to listen to a variety
of sounds and to push a button on a button box only
when they heard kitty cat meows (catch trials). The
function of the catch trials was to keep the children alert
and engaged during stimulus presentation. During each

run, we presented 6 sentence exemplars per stimulus
condition (neutral, high-intensity sad, low-intensity sad,
high-intensity happy, and low-intensity happy), 6 envi-
ronmental sounds, and 3 catch trials. At the end of each
run, the children were shown another engaging video
of a cat. Across the 10 runs, a total of 30 repetitions of
each sentence and prosody intensity combination were
presented to each participant, including 30 repetitions
of the sentence “a bag is in the room” in high-intensity
sad, low-intensity sad, neutral, low-intensity happy, and
high-intensity happy as well as 30 repetitions of the
sentence “my spoon is on the table” in high-intensity sad,
low-intensity sad, neutral, low-intensity happy, and high-
intensity happy.

Speech stimuli were presented to participants in the
scanner using E-Prime v2.0 (RRID:SCR_009567). Partici-
pants wore custom-built headphones designed to reduce
the background scanner noise to ~70 adjusted dB (dBA)
(Abrams et al. 2011; Abrams et al. 2013). Headphone
sound levels were calibrated before each data collection
session, and all stimuli were presented at a sound level
of 75 dBA. Participants were scanned using a fast event-
related design. Acoustic stimuli were presented during
silent intervals between volume acquisitions to eliminate
the effects of scanner noise on auditory perception (see
below for details on the implementation).

Imaging data acquisition

Imaging data were acquired in a single session at
the Richard M. Lucas Center for Imaging at Stanford
University on a GE Signa 3.0 T magnetic resonance
imaging (MRI) scanner using a custom-built 8-channel
head coil. Participants were instructed to stay as still
as possible during scanning, and head movement was
further minimized by placing memory-foam pillows
around the head. Reduction of blurring and reduction
of signal loss arising from field inhomogeneities were
accomplished by the use of an automated high-order
shimming method before data acquisition. Whole-
brain functional images were acquired using a T2*-
weighted gradient-echo spiral in-out pulse sequence
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(Glover and Law 2001) with the following parameters:
repetition time (TR)=4,426 ms, echo time=30 ms,
flip angle=80°, slice acquisition order=ascending,
number of axial slices=31, slice thickness=4 mm,
spacing=0.5 mm, field of view =220 mm, matrix size =64
x 64, voxel size=3.44 x 3.44 x 4 mm?3, and total number
of volumes=43. The TR of 4,426 ms comprised the
stimulus duration of 1,826 ms, a 300-ms silent interval
buffering the beginning and end of each stimulus
presentation (600 ms total of silent buffers) to avoid
backward and forward masking effects, and the 2,000-ms
acquisition time (TA) for a single volume. A linear shim
correction was applied separately for each slice during
reconstruction using a magnetic field map acquired
automatically by the pulse sequence at the beginning
of the scanning session. To assist preprocessing of
the functional images, we additionally acquired an
anatomical image using a T1-weighted sequence.

fMRI preprocessing

Functional images collected in each of the 10 runs
were subjected to preprocessing procedures using
SPM12 (version 7219; RRID:SCR_007037) in MATLAB
R2019a (RRID:SCR_001622). The first 5 volumes were not
analyzed to allow for signal equilibrium. Preprocessing
included the following steps: (i) realignment using 6
motion parameters (3 translations and 3 rotations) to
mitigate effects of participant motion; (ii) slice timing
correction; (iii) coregistration of the mean functional
image to the individual anatomical image; (iv) seg-
mentation and bias-field correction of the individual
anatomical image and estimation of the deformation
field to map the image to the T1-weighted MNI152
template; (v) normalization of the functional images to
Montreal Neurological Institute (MNI) space using the
deformation field estimated in the previous step; (vi)
interpolation to an isotropic voxel size of 2.0 mm,; and (vii)
smoothing of the functional images with an 6-mm full-
width at half-maximum (FWHM) 3D Gaussian kernel.
The quality of spatial normalization was manually
inspected.

Scanner movement criteria for inclusion in
statistical analyses

For inclusion in the fMRI analysis, we required that
each functional run have a maximum volume-to-volume
movement of <6 mm and that no more than 15% of
volumes per run had movement exceeding 0.5 voxels
(1.72 mm) or spikes in global signal exceeding 5%.
Moreover, we required that all individual participant data
included in the analysis consist of at least 7 functional
runs that met our inclusion criteria (Abrams et al. 2019).
Children who had fewer than 7 functional runs that met
our inclusion criteria were excluded from the data anal-
ysis. All 21 participants included in the analysis had at
least 7 functional runs that met our scanner movement
criteria. Fourteen of the participants had 10 runs of data
that met these movement criteria, 5 participants had 9

runs of data that met movement criteria, 1 participant
had 8 runs of data, and 1 participant had 7 runs that met
criteria.

Statistical analyses

The statistical analyses had 3 aims. First, we used ROI-
based MVPA within distinct voice-sensitive subregions
of auditory cortex to assess dissociable contributions of
auditory cortical regions to children’s emotional prosody
decoding. Second, we used whole-brain searchlight MVPA
analysis to explore prosody decoding beyond auditory
cortex. Third, we examined relationships between
children’s neural prosody decoding and standardized
measures of social communication and emotion recog-
nition abilities.

Voxel-wise analysis of fMRI activation

The goal of the voxel-wise analysis of fMRI activation
was to identify brain regions that showed differential
activity levels in response to emotional prosody stim-
uli, neutral speech, and environmental sounds. For each
participant, we modeled the voxel-wise blood oxygen
level-dependent (BOLD) signal time series using a gen-
eral linear model (GLM) implemented with SPM12. The
first-level design matrix included, for each run sepa-
rately, regressors modeling the speech stimulus condi-
tions (neutral speech, high-intensity sad prosody, low-
intensity sad prosody, high-intensity happy prosody, and
low-intensity happy prosody; separate regressors for sen-
tence #1 and sentence #2) and a regressor modeling the
catch trials. Environmental sounds were not modeled
and served as the baseline condition. Regressors were
built as a boxcar function convolved with the canoni-
cal hemodynamic response function and the temporal
derivative to account for voxel-wise latency differences
in hemodynamic response. The 6 motion parameters
estimated during preprocessing were included as nui-
sance regressors. Low-frequency drift was removed using
a high-pass filter (0.5 cycles/min), and serial correlations
were accounted for by modeling the voxel-wise BOLD sig-
nal time series as a first-degree autoregressive process.
We generated a single contrast image per participant for
the following contrasts: (neutral speech > environmental
sounds), (sad prosody > neutral speech), and (happy
prosody > neutral speech). To increase the signal-to-
noise ratio of the contrast images, we combined the high-
intensity and low-intensity variants for each emotion (i.e.
a total of 120 stimulus repetitions for both sad and happy
prosody conditions).

A second-level analysis used a one-sample t-test on
the contrasts of interest (neutral speech > environmental
sounds), (sad prosody > neutral speech), and (happy
prosody > neutral speech). Statistically significant clus-
ters of activation were obtained using a cluster-defining
threshold of P <0.005 and a spatial extent of 70 voxels,
controlling the family-wise error (FWE) rate at « <0.05
across the whole brain as determined by using Monte
Carlo simulations implemented in a custom MATLAB
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script (Ward 2000). The unthresholded t-maps of the
contrasts (neutral speech > environmental sounds), (sad
prosody > neutral speech), and (happy prosody > neutral
speech) are available on NeuroVault (RRID:SCR_003806;
https://neurovault.org/collections/HRQEJGAZ/).

Multivariate decoding of emotional prosody

in auditory cortex

An ROI-based multivariate pattern classification method
was used to examine whether auditory cortical areas dis-
criminate emotional prosody and neutral speech stimuli.
Classification analysis was performed for each partici-
pant using PyMVPA (version 2.6.1; RRID:SCR_006099) in
Python 2.7.18 (RRID:SCR_008394) on the Stanford Uni-
versity “Sherlock” cluster. Activation patterns extracted
from run-wise contrast images generated by SPM served
as inputs to the classification analysis. Specifically,
voxel-wise fMRI time series were first modeled using
a GLM with a design matrix that was identical to
that previously described (see Voxel-wise analysis of
fMRI activation above), including regressors modeling
the speech stimulus conditions and catch trials, and
motion parameters as nuisance regressors. Individual
participants’ contrast images were generated for the
following contrasts: (sad prosody > environmental
sounds), (happy prosody > environmental sounds), and
(neutral speech > environmental sounds). To increase
the signal-to-noise ratio of the contrast images, we
combined the high-intensity and low-intensity variants
for each emotion. To facilitate run-based cross-validation
within each participant, we generated separate contrast
images per run, resulting in 7-10 images per contrast and
participant, depending on how many runs were included
for a particular participant.

A linear support vector machine (SVM; C=1) was used
to identify brain regions that discriminated emotional
prosody from neutral speech. Classification accuracy
was estimated using a leave-one-run-out crossvalida-
tion: Activation patterns within a particular ROI were
assigned to k independent vectors, where k represents
the number of runs and each vector contains the
contrast beta values for each voxel in the ROI measured
in response to a stimulus category for a single run.
The SVM was trained on the data of k — 1 runs and
was tested on the data of the remaining run. This
procedure was repeated for k times with data from
each of the runs used exactly once for testing. The
average classification accuracy was used to evaluate the
classifier’s performance. Contrast images from different
runs are thought to be independent; thus, the leave-one-
run-out procedure provides an unbiased assessment of
crossvalidated classifier performance (Etzel et al. 2011).

ROI-based multivariate pattern classification was used
for 2 related analyses: First, decoding accuracy was com-
pared between auditory cortical subdivisions of the STP,
which are thought to encompass more primary regions of
auditory cortex (Hickok and Poeppel 2007; Rauschecker
and Scott 2009) and regions of the STS, a more ventral
aspect of auditory cortex associated with human voice
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processing (Belin et al. 2000) (see subsection entitled
Anatomical ROIs for details on these regions). An STP ROl
was constructed by combining ROIs for Heschl's gyrus,
planum temporale, and planum polare, while the STS ROI
was constructed by combining the pSTS, mSTS, and aSTS
ROIs. Separate STP and STS ROIs were constructed for
left and right hemisphere auditory cortices. In the second
analysis, decoding performance for each of the 12 ROIs
were compared separately.

Classification accuracy values were subjected to
second-level analyses in R (version 3.6.3; RRID:SCR_
001905). First, decoding between STP and STS of both
hemispheres were compared using a repeated-measures
2 x 2 ANOVA with two within-participant factors; ROI
and hemisphere («=0.05). Follow-up comparisons were
performed using paired-samples t-tests (¢=0.05, false
discovery rate [FDR]-adjusted across hemispheres). Fur-
ther, decoding accuracy within each ROI was examined
to confirm that decoding was above chance (50%) using a
one-sample t-test against 0.5 (@ =0.05). Note that a t-test
against chance level assesses if above chance decoding
is present in our sample. We provide valid population
inference below through the use of permutation-based
prevalence inference (Allefeld et al. 2016). Second,
decoding of each of the 12 bilateral auditory corti-
cal ROIs were separately assessed using a repeated-
measures 6 x 2 ANOVA with 2 within-participant factors:
ROI and hemisphere (¢ =0.05). Follow-up comparisons
were performed using paired-samples t-tests («=0.05,
FDR-adjusted within each hemisphere). For follow-up
comparisons, we used Heschl's gyrus as a reference
ROI to which all of the other ROIs were compared. We
reasoned that decoding within Heschl’s gyrus might
primarily reflect differences between emotional prosody
and neutral speech in low-level acoustical features, such
as fundamental frequency and timbral cues, whereas
we were primarily interested in decoding of emotional
cues beyond low-level acoustical features (Ethofer et al.
2009). We also checked for each ROI if decoding was
above chance level (50% accuracy) using a one-sample t-
test against 0.5 (¢ =0.05). Finally, separate analyses were
conducted for the contrasts (sad prosody versus neutral
speech) and (happy prosody versus neutral speech)
to identify similarities and differences related to the
valence of the emotional prosody. We report effect sizes
of ANOVA effects in terms of generalized eta-squared
(n?c) and effect sizes for t-tests as Cohen’s d.

To examine decoding of multiple vocal emotions in
auditory cortical regions, a multi-emotion decoding anal-
ysis was performed for the contrasts (sad prosody versus
happy prosody) and (sad prosody versus happy prosody
versus neutral speech). The 2-class classification for (sad
prosody versus happy prosody) was identical to the previ-
ously described contrasts, which differentiated between
emotional prosody and neutral speech. For (sad prosody
versus happy prosody versus neutral speech), activa-
tion patterns extracted from run-wise contrast images
generated by SPM served as inputs to a multiclass clas-
sification analysis as implemented in PyMVPA using a
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Fig. 2. ROI-based emotional prosody decoding. A) Auditory cortical brain regions included in the ROI-based emotional prosody decoding analysis. ROIs
located on the STP (HG, PT, and PP) are colored in green, while ROIs located within STS (pSTS, mSTS, and aSTS) are colored in blue. B) Classification
accuracies for bilateral STP and STS ROIs for the (sad prosody versus neutral speech) and (happy prosody versus neutral speech) contrasts. Results show
consistently greater emotional prosody decoding in the STS compared to the STP across contrasts and hemispheres. C) Classification accuracies for all
bilateral auditory cortical regions. Post hoc comparisons showed that classification accuracy within mSTS is consistently greater than those measured
in HG, which served as a reference region for this analysis. Classification accuracy within pSTS was also greater than HG for 3 of the stimulus contrasts.
Abbreviations: * =P < 0.05; ** =P <0.01; *** =P < 0.001; HG =Heschl’s gyrus; LH =left hemisphere; PP =planum polare; PT = planum temporale; RH=right

hemisphere.

linear SVM in a “one-against-one” manner. All aspects of
the multiclass classification analysis, including ROIs and
cross-validation procedures, were identical to the 2-class
classification described previously, with the exception of
the classifier and chance level (33% accuracy).

Finally, we examined decoding across all bilateral
voice-sensitive superior temporal cortex voxels using
an ROI encompassing all statistically significant voxels
of the (neutral speech > environmental sounds) GLM
contrast (Ethofer et al. 2009). Apart from the RO], all fur-
ther aspects were identical to the 2-class classifications
described above (see Supplementary Results).

Anatomical ROIs

To examine decoding within specific subregions of
auditory cortex, ROIs encompassing bilateral superior
temporal auditory areas were constructed. These regions
were defined as 3 ROIs along the anterior-posterior axis
of auditory cortex in both the STP and the STS, which
is consistent with recent work highlighting dissociation

in the functional architecture between these subregions
of auditory cortex (Abrams et al. 2020). The first group
of ROIs consisted of auditory areas located along the
STP, including Heschl’s gyrus, planum temporale, and
planum polare (see Fig. 1D and Fig. 2A). These ROIs
were anatomically defined based on probabilistic maps
included in the Harvard-Oxford cortical atlas in FSL
(RRID:SCR_002823). The center coordinate for Heschl’s
gyrus was placed within the medial aspect of the
structure to capture the putative location of primary
auditory cortex (Moerel et al. 2014). The second group
of ROIs consisted of areas along the anterior-posterior
extent of STS; pSTS, mSTS, and aSTS. The pSTS, mSTS,
and aSTS ROIs were equidistantly placed along the full
anterior—posterior extent of the cluster of statistically
significant activation derived from the (neutral speech
> environmental sounds) contrast in both hemispheres
to capture functionally defined voice-sensitive cortex
(see Fig. 2A; the significant cluster is given in yellow).
The center coordinates for bilateral mSTS ROIs are
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Table 2. Auditory cortex ROI coordinates for multivariate decoding and activation analyses. Coordinates are given in MNI space.
Homotopic ROIs in bilateral auditory cortex were placed equidistant from the midsagittal plane on the x-axis.

ROI Subdivision of auditory cortex X Y z
HG STP —46/46 -21 6
PT STP —55/55 -30 12
PP STP —50/50 0 -1
pSTS STS —60/60 -30 2
mSTS STS —60/60 -15 -2
asTS STS —60/60 0 -8

Abbreviations: HG = Heschl’s gyrus; PP =planum polare; PT = planum temporale.

proximal to peak coordinates reported by seminal papers
on the localization of voice-sensitive STS (Belin et al.
2000; Pernet et al. 2015). All ROIs were constructed as
nonoverlapping spheres (radius=6 mm) in MNI space
centered on the coordinates listed in Table 2.

Whole-brain searchlight MVPA

Awhole-brain multivariate pattern classification method
was used to examine whether brain regions beyond
auditory cortex accurately discriminate emotional
and neutral prosody stimuli. Therefore, a whole-brain
searchlight analysis as implemented in PyMVPA was
performed. This analysis used the same contrast images
described for the 2- and multiclass analyses described
previously (see above for details on contrast image
generation). For each participant, we built whole-brain,
voxel-wise maps of classification accuracies reflecting
how well emotional and neutral prosody stimuli could
be discriminated based on the activation pattern of a
particular voxel and its surrounding voxels. Specifically,
a sphere (radius = 6 mm; 123 voxels) was moved across all
brain voxels. In every sphere, multivariate pattern clas-
sification was performed using identical procedures as
described above for the ROI-based classification (linear
SVM; leave-one-run-out cross-validation). The average
cross-validated classification accuracy was recorded for
the center voxel of the sphere, resulting in a whole-brain
accuracy map per participant for each stimulus contrast
of interest, including (sad prosody versus neutral speech)
and (happy prosody versus neutral speech).

Searchlight maps were subjected to second-level
analysis using permutation-based prevalence inference
using the minimum statistic (Allefeld et al. 2016). This
approach provides population inference regarding the
proportion of participants in the population, e.g. 50+%
(i.e. the majority), exhibiting above chance classification
at a particular voxel in the brain. Note that a simple
voxel-wise t-test against chance level cannot provide
valid population inference because the “true” single-
participant accuracy can never be below chance level
(Allefeld et al. 2016). To perform prevalence inference,
100 searchlight maps were constructed for each contrast
and participant using permuted class labels. Class labels
were permuted within each run, and importantly, the
permutation was fixed across all center voxels of a map
to preserve spatial dependencies (Stelzer et al. 2013).

All properties of the searchlight analysis with permuted
class labels were identical to the analysis with the
unpermuted labels. Subsequently, we smoothed both
the searchlight maps obtained using unpermuted and
permuted labels with a 6-mm FWHM Gaussian kernel.
Smoothing reduces residual anatomical misalignment,
and voxel-wise second-level inference critically relies
on anatomical alignment between participants. Finally,
searchlight maps were inputted to the prevalence infer-
ence algorithm by Allefeld et al. (2016), as implemented
in MATLAB (https://github.com/allefeld/prevalence-
permutation). The algorithm outputs voxel-wise FWE-
corrected P values (Nichols and Holmes 2002), which
were converted to z-scores. This procedure resulted in
separate statistical maps for each contrast and identifies
each voxel in the brain in which at least half of the
population showed above chance decoding (chance
level =50% accuracy) of (sad prosody versus neutral
speech) and (happy prosody versus neutral speech)
contrasts. Clusters of statistically significant voxels
(z > 1.65) were extracted using AtlasReader (Notter et al.
2019) in Python. We report the spatial extent (in mm?)
and the minimum FWE-corrected P value (Prwe-min) Of
statistically significant clusters consisting of >5 voxels.
To examine decoding of multiple vocal emotions
across the whole brain, a multi-emotion decoding
analysis was performed for the contrasts (sad prosody
versus happy prosody) and (sad prosody versus happy
prosody versus neutral speech). The 2-class classification
for (sad prosody versus happy prosody) was identical
to the previously described contrasts differentiating
between emotional prosody and neutral speech. For (sad
prosody versus happy prosody versus neutral speech),
activation patterns extracted from run-wise contrast
images generated by SPM served as inputs to a multiclass
classification analysis as implemented in PyMVPA
using a linear SVM in a “one-against-one” manner.
All aspects of the multiclass classification analysis,
including cross-validation procedures and prevalence
inference, were identical to the 2-class classification
described previously, with the exception of the classifier
and chance level (33% accuracy). The unthresholded
classification accuracy maps of the 4 contrasts, (sad
prosody versus neutral speech), (happy prosody versus
neutral speech), (sad prosody versus happy prosody),
and (sad prosody versus happy prosody versus neutral
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speech), averaged across participants, are available on
NeuroVault (RRID:SCR_003806; https://neurovault.org/
collections/HRQEJGAZ/).

Restricted anatomical search space

Permutation-based prevalence inference provides con-
servative voxel-wise inference. Thus, in addition to a
whole-brain analysis, we also performed an analysis
restricting the search space to voxels covering regions
that have been implicated in emotional prosody percep-
tion (for an overview, see Frithholz and Ceravolo 2018),
including the following bilateral parcels of the Harvard-
Oxford atlas: Heschl’s gyrus, planum temporale, planum
polare, anterior and posterior divisions of superior
temporal gyrus (STG) and middle temporal gyrus
(Grandjean et al. 2005; Ethofer et al. 2006, 2009, 2012),
pars triangularis and pars opercularis of inferior frontal
gyrus (IFG) (Frihholz et al. 2012), and the amygdala
(Frihholz and Grandjean 2013) (see Supplementary
Results).

ROI-based signal-level analysis

Group mean signal levels in response to emotional
prosody stimuli were computed for auditory cortical
brain regions. Signal level within each auditory cortical
ROI (see Table 2) was calculated by extracting the t-value
from individual participants’ contrast t-maps for the (sad
prosody > neutral speech) and (happy prosody > neutral
speech) comparisons. The mean t-value within each ROI
was computed for both contrasts in all participants (see
Supplementary Results).

Brain-behavior associations

The third aim of the study was to investigate associa-
tions between children’s neural decoding of emotional
prosody, social communication abilities, and emotion
recognition accuracy. Social communication abilities
were measured with the social communication subscale
of the SRS-2 (Constantino and Gruber 2012) and emotion
recognition was assessed using the DANVA2 (Nowicki
and Duke 1994; Baum and Nowicki 1998).

Association between neural decoding of emotional prosody
and social communication

The SRS-2 is a validated and widely used parent-
report rating scale that measures social behavior in
children (Constantino and Gruber 2012). The social
communication subscale has 22 items and assesses
reciprocal communication in social situations. For the
analyses using the SRS-2 social communication subscale,
the sign of the standardized t-scores outputted by the
scale was flipped to obtain a score of parent-reported
social communication abilities. Note that the original
standardized t-scores are reported in Table 1 to facilitate
an assessment of overall social functioning in our
sample. For the statistical analysis, the relationships
between neural decoding of emotional prosody and
social communication abilities (SRS-2 t-scores) were

computed using linear mixed effects models and follow-
up Pearson correlations. This brain-behavior analysis
was focused on brain regions which showed the highest
decoding performance from the ROI-based prosody
decoding analysis. First, to examine whether an asso-
ciation of neural decoding and social communication
abilities was present across emotion categories or was
primarily present for one emotion category (i.e. sad or
happy), we performed linear mixed effects modeling
using the R packages “lme4” (RRID:SCR_015654) and
“ImerTest” (RRID:SCR_015656). The mixed effects models
included neural decoding as the dependent variable;
SRS-2 scores, emotion category, and the interaction
between SRS-2 and emotion category as regressors; and
a random intercept for each participant. To examine
whether emotions of different valence showed distinct
relationships with social communication ability, the
relationship of decoding of (sad prosody versus neutral
speech) and (happy prosody versus neutral speech) with
SRS-2 scores were separately examined using Pearson’s
correlation coefficient r. Given that auditory cortical
regions revealed similar levels of classification accuracy
in both hemispheres, mixed effects models and corre-
lations were computed using the average classification
accuracy across hemispheres. The significance level for
all brain-behavior analyses was set to «=0.05, FDR-
adjusted for multiple ROIs.

Association between neural decoding of emotional prosody
and behavioral emotion recognition

DANVA?2 measures children’s ability to recognize and
express nonverbal emotional information. Given that
the brain measures in our study probe receptive aspects
of prosody, the brain-behavior analyses focused on the
4 receptive (rather than expressive) subtests of the
DANVA?2 that measure recognition of emotions in (i)
adult faces (subtest “adult facial expressions”), (ii) adult
voices (subtest “adult paralanguage”), (iii) child faces
(subtest “child facial expressions”), and (iv) child voices
(subtest “child paralanguage”). These subtests have been
validated for internal consistency, test-retest reliability,
and construct validity (Nowicki and Duke 1994; Baum
and Nowicki 1998). The adult and child facial expressions
subtests consist of 24 photographs of adults and 24
photographs of children, respectively, showing happy,
sad, angry, and fearful faces. The adult paralanguage
subtest consists of 24 samples of a sentence spoken by
adults in happy, sad, angry, and fearful prosody, while
the child paralanguage subtest consists of 32 samples
of a sentence spoken by children in happy, sad, angry,
and fearful prosody (Nowicki 2010). A combined emotion
recognition accuracy z-score was computed. Specifically,
each child’s raw score for each subtest, representing
the total number of emotion classification errors made,
was transformed to a z-score using age-specific norms
provided in the DANVA2 manual (Nowicki 2010). The
z-scores were then averaged across the 4 subtests,
including adult facial expressions, adult paralanguage,
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child facial expressions, and child paralanguage, for
each participant. Finally, because the z-scores reflected
recognition errors, the sign of the scores was flipped to
obtain scores representing emotion recognition accuracy
and therefore scores of recognition abilities rather
than impairments, relative to a norm population. Our
approach is consistent with empirical evidence showing
that emotion recognition ability on the behavioral
level is best conceptualized as a broad, mostly unitary
ability (Schlegel et al. 2012; Connolly et al. 2020). This
conceptualization is consistent with data from our
sample in which the scores from facial and paralanguage
subtests were highly correlated (r=0.54, P=0.01).

For the statistical analysis, the relationships between
neural decoding of emotional prosody and behavioral
emotion recognition (DANVA2 z-scores) were computed
using linear mixed effects models. These brain-behavior
analyses were focused on brain regions which showed
the highest decoding performance from the ROI-based
prosody decoding analysis. To examine whether an
association of neural decoding and emotion recognition
abilities was present across emotions or primarily
present for one emotion category (i.e. sad or happy),
we performed linear mixed effects modeling in R. The
mixed effects model included neural decoding as the
dependent variable; DANVA2 scores, emotion category,
and the interaction between DANVA2 and emotion
category as regressors; and a random intercept for
each participant. Given that auditory cortical regions
revealed similar levels of classification accuracy in
both hemispheres, mixed effects models were com-
puted using the average classification accuracy across
hemispheres. The significance level for all brain-
behavior analyses was set to a=0.05, FDR-adjusted for
multiple ROIs.

Cross-validation of brain-behavior associations

To confirm the robustness of the statistically sig-
nificant brain-behavior correlations, we estimated
T(observed, predicted), @ Cross-validated measure of how well
the independent variable (e.g. SRS-2 t-scores) predicts the
dependent variable (e.g. decoding of sad prosody versus
neutral speech), using a repeated 4-fold cross-validation
(100 iterations). Data points were randomly assigned to
4-folds, with the constraint that the mean values of
both the independent and dependent variable did not
differ across folds; this constraint was implemented by
repeating the random assignment as necessary until
there was no evidence for differences between folds
(P>0.50) according to a one-way ANOVA. Then, a linear
model was built using 3 folds, leaving out the fourth, and
this model was used to predict the data in the omitted
fold. This procedure was repeated 4 times leaving out
each fold once. Finally, the statistical significance of
the model was assessed using a permutation test.
The empirical null distribution of Tgbserved, predicted) Was
estimated by generating 1,000 surrogate datasets under
the null hypothesis of no association between the
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independent variable and the dependent variable (Cohen
et al. 2010).

Control analysis: association between neural activation
and behavior

To examine whether the statistically significant asso-
ciations that we detected between neural decoding
and broader measures of social function could also
be observed by using the mean activation of the ROIs
instead of classification accuracy, we computed mixed
effects models and correlations (r) between the signal
levels extracted from the (sad prosody > neutral speech)
and (happy prosody > neutral speech) contrasts (see ROI-
based signal-level analysis) and the behavioral measures
(see Supplementary Results).

Results

Multivariate decoding of emotional prosody

in anatomically distinct subdivisions

of auditory cortex

We assessed decoding of emotional prosody in children
within distinct subregions of auditory cortex using ROI-
based multivariate pattern classification. Consistent
with previous work examining prosody decoding in
auditory cortex (Ethofer et al. 2009), we restricted our
decoding analysis to auditory regions extending from
the STP, including primary auditory cortex, to more
ventral regions of auditory cortex, including STS. Voice-
sensitive areas were defined by first identifying brain
regions that showed greater activity for the (neutral
speech > environmental sounds) GLM contrast measured
across all children. Similar to canonical findings of
voice-sensitive cortex from previous studies (Belin et al.
2000; Pernet et al. 2015; Abrams et al. 2016), this
contrastrevealed significant clusters in bilateral superior
temporal cortex encompassing anterior, middle, and
posterior regions of STS (Fig. 2A, yellow).

The significant clusters from the (neutral speech >
environmental sounds) GLM contrast were used as the
basis for the definition of STS ROIs. To enable for a
greater degree of anatomical specificity in the prosody
decoding analysis, ROIs were constructed in anterior,
middle, and posterior subregions of STS (Deen et al. 2015).
Consistent with recent work highlighting dissociation
in the functional architecture between STS and more
dorsally located STP (Abrams et al. 2020), we further
included ROIs of anatomically defined STP subregions
which are thought to encompass more primary regions
of auditory cortex, including Heschl's gyrus, planum
polare, and planum temporale (Hickok and Poeppel 2007;
Rauschecker and Scott 2009). Multivariate decoding of
emotional prosody stimuli was then performed using
these 6 bilateral ROIs.

Results from multivariate decoding analyses revealed
a striking and consistent pattern of regional specificity
within auditory cortex for discriminating emotional
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prosody stimuli. We first examined whether decod-
ing of emotional prosody differed between STP and
STS subregions. This analysis was performed by first
combining the voxels from the 3 STP ROIs in each
hemisphere, then separately combining the three STS
ROIs in each hemisphere, and comparing classification
accuracies between these merged ROIs with a 2 x 2
(ROI x hemisphere) repeated-measures ANOVA. For
both of the primary contrasts of interest, including
(sad prosody versus neutral speech) and (happy prosody
versus neutral speech), results revealed a main effect of
ROI (sad vs. neutral: F(1, 20)=17.27, P <0.001, % =0.15;
happy vs. neutral: F(1, 20)=28.47, P<0.001, n%;=0.18)
but no effect of hemisphere or ROI x hemisphere
interaction. Post hoc comparisons revealed that STS
showed greater emotional prosody decoding than the STP
in both hemispheres and for both investigated contrasts
(P<0.009, grpr <0.01 for all comparisons). With the
exception of left STP for the (sad prosody versus neutral
speech) contrast, all other ROIs decoded above chance
level (all P <0.05; Fig. 2B).

In a second analysis, we further examined regional
specificity within auditory cortex for decoding emotional
prosody stimuli by comparing classification accuracies
between all 6 bilateral superior temporal cortex ROIs. For
both of the primary contrasts of interest, including (sad
prosody versus neutral speech) and (happy prosody ver-
sus neutral speech), a 6 x 2 (ROI x hemisphere) repeated-
measures ANOVA revealed a main effect of ROI (sad vs.
neutral: F(5, 100)=9.36, P <0.001, Greenhouse-Geisser-
corrected P value (pgg)<0.001, n°c=0.14; happy vs.
neutral: F(5, 100)=6.91, P <0.001, psg < 0.001, n2¢ =0.10)
but no effect of hemisphere or ROI x hemisphere
interaction. For the follow-up comparisons within each
hemisphere, we used Heschl’s gyrus, which comprises
primary auditory cortex, as a reference ROI. Results
from the (sad prosody versus neutral speech) contrast
revealed greater emotional prosody classification accu-
racies in left hemisphere mSTS (P=0.006, qrpr=0.03,
d=0.67) as well as right hemisphere pSTS (P=0.01,
qFDR:O-O?’y d:061) and mSTS (PZOOOZ, qFDR:O-Oly
d=0.78) compared to Heschl’s gyrus in their respective
hemisphere (Fig. 2C). The (happy prosody versus neutral
speech) contrast similarly revealed greater classification
accuracies in left hemisphere pSTS (P=0.006, gepr =0.02,
d=0.67) and mSTS (P=0.004, qrpr=0.02, d=0.71) and
right hemisphere pSTS (P=0.006, grpr=0.03, d=0.66),
with a trend toward greater decoding accuracy in
right hemisphere mSTS (P=0.028, qrpr =0.07, d=0.52),
compared to Heschl's gyrus (Fig.2C). By contrast,
neither the planum polare nor planum temporale of
the STP showed greater decoding accuracy compared
to Heschl's gyrus. We next examined whether and
which ROIs showed above chance classification accuracy
for decoding emotional prosody stimuli, and results
revealed that the 3 STS ROIs, including pSTS, mSTS,
and aSTS, showed classification accuracies that were
greater than chance across both stimulus contrasts and

hemispheres (P < 0.007 for all comparisons). By contrast,
not all STP ROIs consistently showed above chance
classification accuracies (see Supplementary Table 2 for
details). A multi-emotion analysis, which simultaneously
examined classification of (sad prosody versus happy
prosody versus neutral speech) in auditory cortical areas,
revealed similar results. We did not detect above chance
classification accuracies for (sad prosody versus happy
prosody), which suggests that the 3-class classification
was primarily driven by the contrasts between emotional
prosody and neutral speech. To complement these
regionally specific classification analyses, we next exam-
ined classification across all voice-sensitive superior
temporal cortex voxels, similar to previous work (Ethofer
et al. 2009). Classification results from this analysis
were consistent with those obtained from the regionally
specific analysis and show above chance classification
accuracies for decoding emotional prosody compared to
neutral stimuli, however, results did not identify above
chance classification accuracies for (sad prosody versus
happy prosody). Detailed results and a discussion of
the multi-emotion decoding analyses are given in the
Supplementary Material.

Multivariate decoding of emotional prosody
across the whole brain

The second major goal of the data analysis was to exam-
ine whether brain areas outside of superior temporal
cortex accurately decode emotional prosody stimuli. We
therefore performed a whole-brain searchlight analysis
with permutation-based prevalence inference to identify
brain regions that showed above chance decoding of
emotional versus neutral prosody. The spatial extent (in
mm?) and the minimum FWE-corrected P value (prwe.-min)
of statistically significant clusters consisting of >5 voxels
are reported. Consistent with the results from ROI-based
analysis of auditory cortex, results from the whole-
brain analysis revealed that multiple regions of superior
temporal cortex discriminate emotional prosody stimuli
from neutral speech (see Supplementary Table 3 for
MNI coordinates). For the (sad prosody versus neutral
speech) contrast, the whole-brain searchlight identified
a cluster in the right pSTS (112 mm?, prwe-min = 0.006).
No significant clusters outside of superior temporal
cortex were identified for the (sad prosody versus
neutral speech) contrast (Fig. 3A). Furthermore, for the
(happy prosody versus neutral speech) contrast, the
whole-brain analysis identified multiple clusters in STS,
including right (576 mm?, prwe.min = 0.005) and left mSTS
(544 mm?3, ppwe.min=0.005) and right pSTS (80 mm3,
PrwE-min = 0.008). Additional clusters were identified in
the right planum temporale (240 mm?3, prwe min = 0.008)
and the left posterior superior temporal gyrus (pSTG;
224 mm?3, prwe.min =0.006). Whole-brain analysis for
the (happy prosody versus neutral speech) contrast
additionally revealed a large cluster in the left central
operculum (528 mm?>, Ppwgmin=0.005) and several
smaller clusters located in the left parahippocampus
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Fig. 3. Searchlight-based prosody decoding. Chance level for the 2-class emotional prosody decoding was at 50%. A) For the (sad prosody versus neutral
speech) contrast, the whole-brain searchlight identified a significant cluster in the right pSTS. No significant clusters outside of superior temporal
cortex were identified for the (sad prosody versus neutral speech) contrast. B) For the (happy prosody versus neutral speech) contrast, the whole-brain
analysis identified multiple clusters in bilateral STS and STG. In addition, a large cluster in the left central operculum was identified. Abbreviations:

FWE = family-wise error.

(80 mm?, prwe min = 0.01), the right supramarginal gyrus
(48 mm?>, prwe-min =0.01), and the left cuneus (40 mm?,
PrwWE-min = 0.008) (see Fig. 3B). Importantly, whole-brain
searchlight results for both stimulus contrasts did
not identify significant clusters in either IFG or the
amygdala. Moreover, voxel-wise analyses restricting the
search space to IFG and the amygdala in addition to
superior temporal cortex also did not reveal significant
decoding of emotional prosody stimuli in IFG and amyg-
dala despite the less conservative FWE-correction (see
Supplementary Table 3). A multi-emotion searchlight
decoding analysis, which simultaneously examined
classification of (sad prosody versus happy prosody
versus neutral speech) across the whole brain, revealed
similar results. We did not detect statistically significant
above chance classification accuracies in any clusters
across the brain for (sad prosody versus happy prosody),
which suggests that the whole-brain 3-class classifi-
cation was primarily driven by the contrasts between
emotional prosody and neutral speech. Detailed results
and a discussion of the multi-emotion whole-brain
searchlight analyses are given in the Supplementary
Material.

Association between neural decoding

of emotional prosody and social

communication ability

The next major goal of the data analysis was to examine
whether neural measures of prosody decoding are
related to children’s social communication abilities.
Given the extensive experimental and theoretical
literatures implicating the STS as a key node for
voice-related processes, and the finding of consistent
decoding of emotional prosody in the STS using ROI-
based analyses (Fig.2) and whole-brain classifica-
tion approaches (Fig.3), the brain-behavior analysis
focused on decoding in STS. Based on the results of the
ROI-based decoding analyses, we specifically focused

on neural decoding in mSTS and pSTS, the regions
which showed the highest classification accuracies
in differentiating emotional prosody from neutral
speech. We performed a linear mixed effects analysis
to examine associations between mSTS decoding and
social communication abilities, measured using the
SRS-2, across emotion categories (i.e. sad and happy).
This analysis revealed a statistically significant main
effect of social communication abilities on mSTS
decoding (t(27.05)=2.85, P=0.008, gqrpr=0.02) and an
interaction between social communication abilities and
emotion category (t(21)=-3.32, P=0.003, qrpr=0.006).
Further analyses revealed that the relationship between
mSTS decoding and social communication abilities
was significant for sad but not happy prosody: We
found a positive association between decoding of (sad
prosody versus neutral speech) in the mSTS and social
communication abilities (r=0.56, P=0.009, grpg =0.02).
Specifically, children with greater emotional prosody
decoding in the STS had greater social communication
skills (Fig. 4). The 4-fold cross-validation confirmed the
robustness of the positive relationship between mSTS
decoding of (sad prosody versus neutral speech) and
social communication abilities, Tgbserved, predicted) = 050,
P=0.002. Correlation analysis with decoding of (happy
prosody versus neutral speech) failed to uncover a sig-
nificant relationship (r=0.10, P=0.68). No brain-behavior
relationships involving social communication abilities
were detected in the pSTS (main effect: £(33.11)=0.82,
P=0.42).

Association between neural decoding of
emotional prosody and emotion recognition

We examined whether individual differences in neu-
ral measures of prosody decoding are related to behav-
ioral emotion recognition accuracy measured with the
DANVA2. We performed a linear mixed effects analysis
to determine associations between mSTS decoding and
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Prosody decoding and social communication abilities

mSTS
Sad vs. Neutral

0.9

Classification Accuracy

mSTS 04

[e] r =0.56, p = 0.009
-65 -60 -55 -50 -45 -40
Social Communication Ability

Fig. 4. Neural decoding of sad prosody predicts social communication
abilities. Results revealed a significant positive association between
decoding of the (sad prosody versus neutral speech) contrast in the
mSTS and social communication abilities. Specifically, more accurate
emotional prosody decoding in the mSTS was associated with greater
social communication abilities in children.

DANVA?2 emotion recognition accuracy across emotion
categories (i.e. sad and happy). Results from this analysis
showed a trend toward a main effect of DANVA2 emotion
recognition accuracy on mSTS decoding (t(30.80)=1.93,
P=0.06) and no DANVA2 x emotion category interaction
t(21)=0.72, P=0.48). No significant brain-behavior rela-
tionships involving emotion recognition were detected in
the pSTS (main effect: t(35.45)=1.17, P=0.25).

Discussion

Understanding the emotional state of a speaker is
an essential skill for navigating the social world and
empathizing with others, which is critical for forming
and strengthening relationships (Pell and Kotz 2021).
Little is known regarding the brain systems underlying
emotional prosody processing in children and whether
it is related to their social abilities. We examined these
questions in school-age children and found that, similar
to reports from studies of adult listeners, bilateral
voice-sensitive regions of the STS decode emotional
prosody information. Surprisingly, brain regions outside
the superior temporal cortex failed to reliably decode
this information. Crucially, decoding in mSTS was
positively related to social communication abilities,
and this relationship was specific to sad prosody; more
accurate decoding of sad prosody stimuli in the mSTS
was predictive of greater social communication abilities
in children. Findings bridge an important theoretical gap
by showing that the auditory system'’s ability to detect
emotional cues produced by the voice is predictive of a
child’s social skills, including the ability to relate and
interact with others.

Voice-sensitive STS shows greater decoding

of emotional prosody information compared

to more primary regions of auditory cortex

A major finding of the current study is that voice-
sensitive regions of the STS decode emotional prosody
information in children, a result that was consistently

identified across ROIs, whole-brain classification anal-
yses, and emotional prosody contrasts. Moreover, STS
regions showed greater decoding of emotional prosody
relative to auditory processing regions of the STP, includ-
ing Heschl’s gyrus, which contains primary auditory
cortex, as well as planum polare and planum temporale.
The STS has long been implicated as the primary voice
sensitive region of the cerebral cortex based on the
fact that this brain region consistently shows greater
activation in response to human vocal sounds compared
to nonvocal control sounds (Belin et al. 2000; Pernet et al.
2015). By contrast, regions of the STP typically show
comparable activation profiles for vocal and nonvocal
sounds, which is consistent with the hypothesis that
these low-level regions of auditory cortex are responsible
for processing spectro-temporal acoustical features
irrespective of whether they contain vocal information
(Hickok and Poeppel 2007; Okada et al. 2010; De Heer
et al. 2017). Based on its sensitivity for the human voice,
models of voice perception have consistently implicated
the STS as a hub for distributing vocal information to
other brain systems for subsequent emotional, reward,
and cognitive processing (Belin et al. 2004; Young et al.
2020). Additional models have further implicated the
STS in more subtle aspects of human voice processing,
including the discrimination of emotional prosodic
stimuli (Schirmer and Kotz 2006; Wildgruber et al. 2006;
Bruck, Kreifelts, and Wildgruber 2011; Grandjean 2021).
For example, a previous study in adults showed that vocal
emotions are decoded from auditory cortex (Ethofer
et al. 2009). However, this study did not differentiate
between contributions of auditory cortical regions of the
STP and more ventral regions of auditory cortex within
STS. This differentiation is critical given that these 2
subregions of auditory cortex differ in cytoarchitecture
(Zachlod et al. 2020) and myelination (Glasser et al.
2016), have differential intrinsic functional (Abrams
et al. 2020) and structural connectivity profiles (Turken
and Dronkers 2011), and importantly, perform distinct
computations as shown by voxel-wise computational
modeling (Norman-Haignere and McDermott 2018).
Here, we show that STS regions show greater accuracy
for decoding emotional prosody information relative
to regions of the STP, where rudimentary spectro-
temporal acoustical features are likely to be decoded
from the speech signal. Findings from the current study
support the hypothesis that emotional prosody decoding
in the STS reflects higher-order operations that form
the basis for the recognition of emotions expressed
through the speaker’s voice. Specifically, we hypothesize
that the STS categorizes vocal-emotional cues using
a form of template matching by which patterns of
amplitude, pitch, and duration features in a vocal
stimulus are integrated over time and are subsequently
matched to templates of vocal patterns which are
associated with specific human emotions. Importantly,
this model proposes distinct roles for different auditory
cortical regions, with structures of the STP underlying
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spectro-temporal processing of incoming speech signals
and the STS integrating these signals over time and
matching specific neural patterns of activity to distinct
emotional categories.

Decoding of emotional prosody in prefrontal
cortex and amygdala

While results from the current study showed that decod-
ing of emotional prosody was largely restricted to audi-
tory processing regions of superior temporal cortex, one
exception was the finding of above chance decoding
of happy prosody in the left central operculum region.
This finding is intriguing given that this region in the
ventral portion of motor cortex represents the larynx,
the organ housing the vocal folds which are the sound
source of vocalizations (Penfield and Boldrey 1937; Belyk
and Brown 2017). Previous research has reported motor
involvement in prosody and vocal emotion perception.
For example, studies have provided causal evidence in
adults (Banissy et al. 2010; Sammler et al. 2015) and
correlative evidence in children (Correia et al. 2019), sup-
porting a role for the motor system in the perception
of prosodic and vocal-emotional cues. In particular, left
ventral motor cortex activation has been reported during
the perception of positive vocal emotions and has been
interpreted as preparation for responsive gestures (e.g.
laughter) in response to happy stimuli (Warren et al.
2006). While the passive listening design in our study is
unable to identify a precise role for the motor cortex in
prosody perception, findings from the current study add
to the expanding empirical and theoretical literatures
that highlight a key role for motor systems in voice and
speech perception.

A notable pattern of findings from the emotional
prosody literature involves studies reporting increased
activation of the IFG (Buchanan et al. 2000; Frihholz
et al. 2012) and amygdala (Bach et al. 2008; Frihholz
and Grandjean 2013) in response to emotional prosody
stimuli. Results from both ROI-based and whole-brain
classification analyses in our study did not provide
evidence for emotional prosody decoding in IFG. The-
oretical accounts have suggested that the IFG is engaged
when participants are required to explicitly evaluate and
categorize emotional prosody stimuli (Schirmer and Kotz
2006). Therefore, a plausible explanation as to why the
IFG did not decode emotional prosody stimuli in the
current study is that participants passively attended
to the speech stimuli and did not perform an emotion
categorization task. On the other hand, the contribution
of the amygdala to emotional prosody processing has
remained elusive, with some studies showing differential
activation for vocal emotional stimuli in the amygdala
(Schirmer et al. 2008; Frihholz and Grandjean 2013)
while other studies have not shown effects in this
brain region (Ethofer et al. 2006; Warren et al. 2006;
Kotz et al. 2013). Given that the amygdala has been
implicated in both implicit and explicit processing of
emotional prosody (Frihholz et al. 2012), it is unclear
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why many studies, including the current study, have
failed to reveal differential activation or decoding of
emotional prosody in the amygdala (Schirmer 2018). A
plausible hypothesis is that amygdala activation only
occurs for vocal emotions which signal a credible threat
to the individual (Frihholz and Grandjean 2013). As our
study did not include such stimuli, this hypothesis could
be further explored in future studies.

Emotional prosody processing in different
cohorts across the lifespan

Findings from the current study provide new information
germane to the neurodevelopment of emotional prosody
perception. From the first days of life, children are highly
attuned to human vocal sounds (DeCasper and Fifer
1980), and much of an infant’s acoustical input comes
from her primary caregivers, who often use infant-
directed speech (“motherese”) which is characterized
by exaggerated prosody (i.e. speech melody) to convey
emotionality (Trainor et al. 2000). Thus, children are
exposed to emotional prosody information in speech
from a very young age. Behavioral studies have shown
that the ability to detect and discriminate emotional
prosody cues becomes evident within the first year of
a child’s life, at a time when these young listeners also
show a preference for the sound structure of their native
language. The ability to identify and discriminate emo-
tional prosody cues continue to be refined throughout
childhood (Chronaki et al. 2018), with children reaching
adult-like levels of vocal emotion recognition by late
adolescence (Grosbras et al. 2018; Morningstar et al.
2018; Amorim et al. 2019). Studies investigating the brain
bases of emotional prosody perception have focused
primarily on infants, and results have revealed that
newborns (Zhang et al. 2019) and 7-month-old infants
(Grossmann et al. 2010) show temporal lobe activation
increases in response to emotional prosody. Importantly,
these infant studies employed functional near-infrared
spectroscopy which lacks the spatial resolution to
both resolve differential contributions of low-level and
extended auditory cortex areas to emotional prosody
decoding and to examine contributions of cortical
regions beyond auditory cortex. Despite middle and
late childhood being a crucial period of development
for refining sensitivity for emotional prosody, only 2
studies have examined the brain bases for prosody
perception within this age range (Morningstar et al. 2019,
2020). These studies focused on age-related effects and
showed that children aged 8-19 years reveal age-related
increases in activation for emotional prosody stimuli in
prefrontal cortical regions. Importantly, previous studies
did not directly contrast emotional and neutral prosody
stimuli (Morningstar et al. 2019, 2020). Therefore, a major
gap in our understanding of the neurodevelopment of
emotional prosody perception is that it is unknown
whether children in this age range, who often show
adult-like proficiency for identifying and discriminating
emotional prosody stimuli, rely on similar or different
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neural resources to decode these stimuli. Findings from
the current study inform this neurodevelopmental
literature by showing that children between 7 and
12 years of age reveal adult-like patterns of emotional
prosody decoding in the STS and that regions outside
of superior temporal cortex do not consistently decode
these stimuli. Findings suggest that adult-like neural
mechanisms underlying emotional prosody decoding
in superior temporal cortex are present by middle
childhood, even as these perceptual systems continue to
be refined into late childhood and adolescence (Chronaki
et al. 2012; Morningstar et al. 2018).

Emotional prosody decoding is related to social
abilities

A major finding from the current study is that greater
decoding of emotional prosody in STS is related to
greater scores on standardized measures of social
communication. When children interact with caregivers
and peers, extracting and interpreting the prosodic cues
embedded in the speech signal, which are indicative of
the speaker’s emotional state, is crucial for meaningful
social interactions (Lemerise and Arsenio 2000; Pell and
Kotz 2021). Moreover, an inability to understand the emo-
tion a speaker is expressing creates barriers to effective
social communication and may impact key aspects of
relationship building, including the ability to empathize
and show compassion to a communication partner.
Importantly, typically developing children show a wide
range of abilities with regard to both emotion recognition
(Nowicki and Duke 1994) and social communication
(Constantino and Todd 2003), and theoretical models
(Keltner and Haidt 1999; Van Kleef 2009) have posited
a link between a person’s ability to decode emotions of
other individuals and the quality of their social interac-
tions (Chronaki et al. 2015; Neves et al. 2021). Findings
from the current study linking neural prosody decoding
in the STS and social communication abilities in children
have important theoretical implications. Specifically,
an assumption of previous studies is that behavioral
and neural measures of prosody processing index a
crucial aspect of social function: the ability to interpret
prosodic cues during discourse as a means of improving
communication and relating to the speaker. Importantly,
previous neural studies of prosody processing have
not examined relationships to social communication
abilities and therefore have been unable to link exper-
imental findings with skills that impact social function
in everyday life. Findings from the current study advance
our understanding of emotional prosody processing by
showing that neural discrimination of these vocal cues
predicts broader measures of social function which
reflect the ability of individuals to make and sustain
social connections. Results add to an emerging literature
showing that sensitivity of auditory cortical areas to
dissociable aspects of vocal information, including
processing of a mother’s voice compared to unfamiliar
voices (Abrams et al. 2016, 2019), is linked to social

communication abilities in children. Results highlight
the importance of “tuning in” to vocal cues for strength-
ening social connections, which is crucial for children’s
well-being.

Results from brain-behavior analyses revealed anatom-
ical specificity within the STS in which effects were
restricted to the mSTS relative to more posterior aspects
of the STS. This result suggests a privileged role for
the mSTS within extended auditory cortex for the
extraction and interpretation of prosodic cues that
are crucial for children’s everyday social functioning.
Empirical evidence regarding the functional anatomy
within STS suggests that mSTS is especially tuned for
vocal sounds in general, and for speech prosody in
particular, when compared to nonvocal sounds (Belin
et al. 2000; Liebenthal et al. 2014; Pernet et al. 2015; Deen
et al. 2020). We confirmed this using automated meta-
analysis on the term “vocal” using Neurosynth, which
found that mSTS was consistently and most strongly
activated by vocal sounds across previous studies (see
Supplementary Results). Moreover, while pSTS is also
involved in speech and voice processing (Pernet et al.
2015), the functional anatomy of this structure is
much more diverse compared to mSTS and includes
functions as diverse as perception of facial expressions
and their integration with voices (Watson et al. 2014),
expression of emotional states, nonsocial audiovisual
integration, biological motion perception, and theory of
mind (Hein and Knight 2008; Deen et al. 2015). Results
from the current study provide new evidence for regional
specificity within the STS and suggest that the mSTS has
a pronounced role for decoding a range of vocal signals
relative to pSTS, which has stronger associations with
multisensory integrative processes.

Finally, the link between children’s social communica-
tion abilities and neural processing of emotional speech
stimuli was specific to decoding of sad prosody and was
not present for decoding of happy prosody. These results
suggest that decoding of sad prosody is particularly rel-
evant for social functioning in children. A link between
decoding sad emotional information and broader mea-
sures of social skills has been previously reported in
individuals with autism. These studies showed that indi-
viduals with autism were specifically impaired in behav-
iorally decoding sad emotions from visual stimuli and
decoding of sad emotions correlated with social function
in affected children (Williams and Gray 2013), adoles-
cents (Wallace et al. 2011), and adults (Boraston et al.
2007). Importantly, all of these studies showed specificity
for sad stimuli and the same relationships were not
found for happy stimuli. We add to this literature by
showing a relationship between decoding sad emotions
in voices and social functioning in typically developing
children. Together, these findings suggest that under-
standing when a communication partner is feeling sad
might be crucial for building and maintaining interper-
sonal connections through the provision of empathy and
support.
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Task-based neuroimaging of auditory social
information processing in school-age children
Examining the functional brain bases of vocal and social-
emotional information processing in children represents
a crucial approach for understanding why some children
excel, while others struggle, at decoding this informa-
tion during communication. Nevertheless, surprisingly
little task-based fMRI research has been performed in
children in the context of auditory social information
processing. Importantly, data collection for task-based
neuroimaging studies in relatively young children rep-
resents a significant challenge compared to studies in
adult populations and resting-state or structural MRI
in children (Yerys et al. 2009; Yuan et al. 2009). Impor-
tantly, resting-state and structural MRI studies cannot
address specific research questions related to the neural
decoding of emotional prosody and its associations with
broader social function in children. Crucially, an addi-
tional consideration is that the robustness and replica-
bility of findings in task-based neuroimaging is not only
dependent on the number of participants but also on
the amount of individual participant-level data (Baker
et al. 2021). A recent report demonstrated that sample
sizes comparable to the number of participants in this
study yield replicable results with only 4 runs of fMRI
data with a similar number of trials per run (Nee 2019). In
comparison, we required that each child participant had
at least 7 runs with 39 trials per run that met our rigor-
ous scanner movement inclusion criteria. Nevertheless,
future studies with larger samples, and multiple runs as
used here, are needed to ensure the replicability of the
findings reported here.

Conclusion

In conclusion, we have identified brain systems instan-
tiated in the STS that decode emotional prosody in typi-
cally developing children, and decoding is linked to social
communication skills in these children. Findings suggest
that decoding emotional information from vocal cues is
a crucial component of social function in children and
that “tuning in” to these vocal cues facilitates the for-
mation and strengthening of children’s social bonds. Our
findings provide a neurobiological template for inves-
tigating emotional prosody decoding in children with
clinical disorders, such as autism, who show insensitivity
to emotional prosody and voices more generally.
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